index 5f225d3..7a5ae2c 100644 (file)
@@ -1,16 +1,16 @@
[[!toc]]

-Types, OCAML
+Types, OCaml
------------

-OCAML has type inference: the system can often infer what the type of
+OCaml has type inference: the system can often infer what the type of
an expression must be, based on the type of other known expressions.

-For instance, if we type
+For instance, if we type

# let f x = x + 3;;

-The system replies with
+The system replies with

val f : int -> int = <fun>

@@ -32,7 +32,7 @@ element:
# (3) = 3;;
- : bool = true

-though OCAML, like many systems, refuses to try to prove whether two
+though OCaml, like many systems, refuses to try to prove whether two
functional objects may be identical:

# (f) = f;;
@@ -41,11 +41,11 @@ functional objects may be identical:
Oh well.

-Booleans in OCAML, and simple pattern matching
+Booleans in OCaml, and simple pattern matching
----------------------------------------------

Where we would write `true 1 2` in our pure lambda calculus and expect
-it to evaluate to `1`, in OCAML boolean types are not functions
+it to evaluate to `1`, in OCaml boolean types are not functions
(equivalently, are functions that take zero arguments).  Selection is
accomplished as follows:

@@ -65,7 +65,7 @@ That is,
# match true with true -> 1 | false -> 2;;
- : int = 1

-Compare with
+Compare with

# match 3 with 1 -> 1 | 2 -> 4 | 3 -> 9;;
- : int = 9
@@ -73,7 +73,7 @@ Compare with
Unit and thunks
---------------

-All functions in OCAML take exactly one argument.  Even this one:
+All functions in OCaml take exactly one argument.  Even this one:

# let f x y = x + y;;
# f 2 3;;
@@ -87,7 +87,7 @@ Here's how to tell that `f` has been curry'd:
After we've given our `f` one argument, it returns a function that is
still waiting for another argument.

-There is a special type in OCAML called `unit`.  There is exactly one
+There is a special type in OCaml called `unit`.  There is exactly one
object in this type, written `()`.  So

# ();;
@@ -112,7 +112,7 @@ correct type is the unit:

Let's have some fn: think of `rec` as our `Y` combinator.  Then

-    # let rec f n = if (0 = n) then 1 else (n * (f (n - 1)));;
+    # let rec f n = if (0 = n) then 1 else (n * (f (n - 1)));;
val f : int -> int = <fun>
# f 5;;
- : int = 120
@@ -145,7 +145,7 @@ So we can try our usual tricks:
# (fun x -> true) omega;;
- : bool = true

-OCAML declined to try to evaluate the argument before applying the
+OCaml declined to try to evaluate the argument before applying the
functor.  But remember that `omega` is a function too, so we can
reverse the order of the arguments:

@@ -171,138 +171,144 @@ We can use functions that take arguments of type unit to control
execution.  In Scheme parlance, functions on the unit type are called
*thunks* (which I've always assumed was a blend of "think" and "chunk").

-Curry-Howard, take 1
---------------------
+--------------

-We will return to the Curry-Howard correspondence a number of times
-during this course.  It expresses a deep connection between logic,
-types, and computation.  Today we'll discuss how the simply-typed
-lambda calculus corresponds to intuitionistic logic.  This naturally
-give rise to the question of what sort of computation classical logic
-corresponds to---as we'll see later, the answer involves continuations.
+So the integer division operation presupposes that its second argument
+(the divisor) is not zero, upon pain of presupposition failure.
+Here's what my OCaml interpreter says:

-So at this point we have the simply-typed lambda calculus: a set of
-ground types, a set of functional types, and some typing rules, given
-roughly as follows:
+    # 12/0;;
+    Exception: Division_by_zero.

-If a variable `x` has type &sigma; and term `M` has type &tau;, then
-the abstract `\xM` has type &sigma; `-->` &tau;.
+So we want to explicitly allow for the possibility that
+division will return something other than a number.
+We'll use OCaml's option type, which works like this:

-If a term `M` has type &sigma; `-->` &tau, and a term `N` has type
-&sigma;, then the application `MN` has type &tau;.
+    # type 'a option = None | Some of 'a;;
+    # None;;
+    - : 'a option = None
+    # Some 3;;
+    - : int option = Some 3

-These rules are clearly obverses of one another: the functional types
-that abstract builds up are taken apart by application.
-
-The next step in making sense out of the Curry-Howard corresponence is
-to present a logic.  It will be a part of intuitionistic logic.  We'll
-start with the implicational fragment (that is, the part of
-intuitionistic logic that only involves axioms and implications):
+So if a division is normal, we return some number, but if the divisor is
+zero, we return None. As a mnemonic aid, we'll append a `'` to the end of our new divide function.

<pre>
-Axiom: ---------
-        A |- A
-
-Structural Rules:
-
-Exchange: &Gamma;, A, B, &Delta; |- C
-          ---------------------------
-          \$Gamma;, B, A, &Delta; |- C
-
-Contraction: &Gamma;, A, A |- B
-             -------------------
-             &Gamma;, A |- B
-
-Weakening: &Gamma; |- B
-           -----------------
-           &Gamma;, A |- B
-
-Logical Rules:
-
---> I:   &Gamma;, A |- B
-         -------------------
-         &Gamma; |- A --> B
-
---> E:   &Gamma; |- A --> B         &Gamma; |- A
-         -----------------------------------------
-         &Gamma; |- B
+let div' (x:int) (y:int) =
+  match y with 0 -> None |
+               _ -> Some (x / y);;
+
+(*
+val div' : int -> int -> int option = fun
+# div' 12 3;;
+- : int option = Some 4
+# div' 12 0;;
+- : int option = None
+# div' (div' 12 3) 2;;
+Characters 4-14:
+  div' (div' 12 3) 2;;
+      ^^^^^^^^^^
+Error: This expression has type int option
+       but an expression was expected of type int
+*)
</pre>

-`A`, `B`, etc. are variables over formulas.
-&Gamma;, &Delta;, etc. are variables over (possibly empty) sequences
-of formulas.  `&Gamma; |- A` is a sequent, and is interpreted as
-claiming that if each of the formulas in &Gamma; is true, then `A`
-must also be true.
-
-This logic allows derivations of theorems like the following:
+This starts off well: dividing 12 by 3, no problem; dividing 12 by 0,
+just the behavior we were hoping for.  But we want to be able to use
+the output of the safe-division function as input for further division
+operations.  So we have to jack up the types of the inputs:

<pre>
--------  Id
-A |- A
----------- Weak
-A, B |- A
-------------- --> I
-A |- B --> A
------------------ --> I
-|- A --> B --> A
+let div' (x:int option) (y:int option) =
+  match y with None -> None |
+               Some 0 -> None |
+               Some n -> (match x with None -> None |
+                                       Some m -> Some (m / n));;
+
+(*
+val div' : int option -> int option -> int option = <fun>
+# div' (Some 12) (Some 4);;
+- : int option = Some 3
+# div' (Some 12) (Some 0);;
+- : int option = None
+# div' (div' (Some 12) (Some 0)) (Some 4);;
+- : int option = None
+*)
</pre>

-Should remind you of simple types.  (What was `A --> B --> A` the type
-of again?)
+Beautiful, just what we need: now we can try to divide by anything we
+want, without fear that we're going to trigger any system errors.

-The easy way to grasp the Curry-Howard correspondence is to *label*
-the proofs.  Since we wish to establish a correspondence between this
-logic and the lambda calculus, the labels will all be terms from the
-simply-typed lambda calculus.  Here are the labeling rules:
+I prefer to line up the `match` alternatives by using OCaml's
+built-in tuple type:

<pre>
-Axiom: -----------
-       x:A |- x:A
-
-Structural Rules:
-
-Exchange: &Gamma;, x:A, y:B, &Delta; |- R:C
-          --------------------------------------
-          &Gamma;, y:B, x:A, &Delta; |- R:C
-
-Contraction: &Gamma;, x:A, x:A |- R:B
-             --------------------------
-             &Gamma;, x:A |- R:B
-
-Weakening: &Gamma; |- R:B
-           ---------------------
-           &Gamma;, x:A |- R:B     [x chosen fresh]
-
-Logical Rules:
+let div' (x:int option) (y:int option) =
+  match (x, y) with (None, _) -> None |
+                    (_, None) -> None |
+                    (_, Some 0) -> None |
+                    (Some m, Some n) -> Some (m / n);;
+</pre>

---> I:   &Gamma;, x:A |- R:B
-         -------------------------
-         &Gamma; |- \xM:A --> B
+So far so good.  But what if we want to combine division with
+other arithmetic operations?  We need to make those other operations
+aware of the possibility that one of their arguments will trigger a
+presupposition failure:

---> E:   &Gamma; |- f:(A --> B)      &Gamma; |- x:A
-         ---------------------------------------------
-         &Gamma; |- (fx):B
+<pre>
+let add' (x:int option) (y:int option) =
+  match (x, y) with (None, _) -> None |
+                    (_, None) -> None |
+                    (Some m, Some n) -> Some (m + n);;
+
+(*
+val add' : int option -> int option -> int option = <fun>
+# add' (Some 12) (Some 4);;
+- : int option = Some 16
+# add' (div' (Some 12) (Some 0)) (Some 4);;
+- : int option = None
+*)
</pre>

-In these labeling rules, if a sequence &Gamma; in a premise contains
-labeled formulas, those labels remain unchanged in the conclusion.
+This works, but is somewhat disappointing: the `add'` operation
+doesn't trigger any presupposition of its own, so it is a shame that
+it needs to be adjusted because someone else might make trouble.

-Using these labeling rules, we can label the proof
-just given:
+But we can automate the adjustment.  The standard way in OCaml,
+Haskell, etc., is to define a `bind` operator (the name `bind` is not
+well chosen to resonate with linguists, but what can you do). To continue our mnemonic association, we'll put a `'` after the name "bind" as well.

<pre>
-------------  Id
-x:A |- x:A
----------------- Weak
-x:A, y:B |- x:A
-------------------------- --> I
-x:A |- (\y.x):(B --> A)
----------------------------- --> I
-|- (\x y. x):A --> B --> A
+let bind' (x: int option) (f: int -> (int option)) =
+  match x with None -> None |
+               Some n -> f n;;
+
+let add' (x: int option) (y: int option)  =
+  bind' x (fun x -> bind' y (fun y -> Some (x + y)));;
+
+let div' (x: int option) (y: int option) =
+  bind' x (fun x -> bind' y (fun y -> if (0 = y) then None else Some (x / y)));;
+
+(*
+#  div' (div' (Some 12) (Some 2)) (Some 4);;
+- : int option = Some 1
+#  div' (div' (Some 12) (Some 0)) (Some 4);;
+- : int option = None
+# add' (div' (Some 12) (Some 0)) (Some 4);;
+- : int option = None
+*)
</pre>

-We have derived the *K* combinator, and typed it at the same time!
+Compare the new definitions of `add'` and `div'` closely: the definition
+for `add'` shows what it looks like to equip an ordinary operation to
+survive in dangerous presupposition-filled world.  Note that the new
+definition of `add'` does not need to test whether its arguments are
+None objects or real numbers---those details are hidden inside of the
+`bind'` function.

-[To do: add pairs and destructors; unit and negation...]
+The definition of `div'` shows exactly what extra needs to be said in
+order to trigger the no-division-by-zero presupposition.

-Excercise: construct a proof whose labeling is the combinator S.
+For linguists: this is a complete theory of a particularly simply form
+of presupposition projection (every predicate is a hole).