add anchor for imp
[lambda.git] / topics / _week4_fixed_point_combinator.mdwn
1 [[!toc]]
2
3 **Chris:** I'll be working on this page heavily until 11--11:30 or so. Sorry not to do it last night, I crashed.
4
5
6 #Recursion: fixed points in the lambda calculus##
7
8 Sometimes when you type in a web search, Google will suggest
9 alternatives.  For instance, if you type in "Lingusitics", it will ask
10 you "Did you mean Linguistics?".  But the engineers at Google have
11 added some playfulness to the system.  For instance, if you search for
12 "anagram", Google asks you "Did you mean: nag a ram?"  And if you
13 search for "recursion", Google asks: "Did you mean: recursion?"
14
15 ##What is the "rec" part of "letrec" doing?##
16
17 How could we compute the length of a list? Without worrying yet about what lambda-calculus implementation we're using for the list, the basic idea would be to define this recursively:
18
19 >       the empty list has length 0
20
21 >       any non-empty list has length 1 + (the length of its tail)
22
23 In OCaml, you'd define that like this:
24
25         let rec length = fun lst ->
26                 if lst == [] then 0 else 1 + length (tail lst)
27         in ... (* here you go on to use the function "length" *)
28
29 In Scheme you'd define it like this:
30
31         (letrec [(length
32                                 (lambda (lst) (if (null? lst) 0 [+ 1 (length (cdr lst))] )) )]
33                 ... ; here you go on to use the function "length"
34         )
35
36 Some comments on this:
37
38 1. `null?` is Scheme's way of saying `isempty`. That is, `(null? lst)` returns true (which Scheme writes as `#t`) iff `lst` is the empty list (which Scheme writes as `'()` or `(list)`).
39
40 2. `cdr` is function that gets the tail of a Scheme list. (By definition, it's the function for getting the second member of an ordered pair. It just turns out to return the tail of a list because of the particular way Scheme implements lists.)
41
42 3.      I use `length` instead of the convention we've been following so far of hyphenated names, as in `make-list`, because we're discussing OCaml code here, too, and OCaml doesn't permit the hyphenated variable names. OCaml requires variables to always start with a lower-case letter (or `_`), and then continue with only letters, numbers, `_` or `'`. Most other programming languages are similar. Scheme is very relaxed, and permits you to use `-`, `?`, `/`, and all sorts of other crazy characters in your variable names.
43
44 4.      I alternate between `[ ]`s and `( )`s in the Scheme code just to make it more readable. These have no syntactic difference.
45
46
47 The main question for us to dwell on here is: What are the `let rec` in the OCaml code and the `letrec` in the Scheme code?
48
49 Answer: These work like the `let` expressions we've already seen, except that they let you use the variable `length` *inside* the body of the function being bound to it---with the understanding that it will there refer to the same function that you're then in the process of binding to `length`. So our recursively-defined function works the way we'd expect it to. In OCaml:
50
51         let rec length = fun lst ->
52                 if lst == [] then 0 else 1 + length (tail lst)
53         in length [20; 30]
54         (* this evaluates to 2 *)
55
56 In Scheme:
57
58         (letrec [(length
59                                 (lambda (lst) (if (null? lst) 0 [+ 1 (length (cdr lst))] )) )]
60                         (length (list 20 30)))
61         ; this evaluates to 2
62
63 If you instead use an ordinary `let` (or `let*`), here's what would happen, in OCaml:
64
65         let length = fun lst ->
66                 if lst == [] then 0 else 1 + length (tail lst)
67         in length [20; 30]
68         (* fails with error "Unbound value length" *)
69
70 Here's Scheme:
71
72         (let* [(length
73                                 (lambda (lst) (if (null? lst) 0 [+ 1 (length (cdr lst))] )) )]
74                         (length (list 20 30)))
75         ; fails with error "reference to undefined identifier: length"
76
77 Why? Because we said that constructions of this form:
78
79         let length = A
80                 in B
81
82 really were just another way of saying:
83
84         (\length. B) A
85
86 and so the occurrences of `length` in A *aren't bound by the `\length` that wraps B*. Those occurrences are free.
87
88 We can verify this by wrapping the whole expression in a more outer binding of `length` to some other function, say the constant function from any list to the integer 99:
89
90         let length = fun lst -> 99
91         in let length = fun lst ->
92                         if lst == [] then 0 else 1 + length (tail lst)
93         in length [20; 30]
94         (* evaluates to 1 + 99 *)
95
96 Here the use of `length` in `1 + length (tail lst)` can clearly be seen to be bound by the outermost `let`.
97
98 And indeed, if you tried to define `length` in the lambda calculus, how would you do it?
99
100         \lst. (isempty lst) zero (add one (length (extract-tail lst)))
101
102 We've defined all of `isempty`, `zero`, `add`, `one`, and `extract-tail` in earlier discussion. But what about `length`? That's not yet defined! In fact, that's the very formula we're trying here to specify.
103
104 What we really want to do is something like this:
105
106         \lst. (isempty lst) zero (add one (... (extract-tail lst)))
107
108 where this very same formula occupies the `...` position:
109
110         \lst. (isempty lst) zero (add one (
111                 \lst. (isempty lst) zero (add one (... (extract-tail lst)))
112                         (extract-tail lst)))
113
114 but as you can see, we'd still have to plug the formula back into itself again, and again, and again... No dice.
115
116 So how could we do it? And how do OCaml and Scheme manage to do it, with their `let rec` and `letrec`?
117
118 1.      OCaml and Scheme do it using a trick. Well, not a trick. Actually an impressive, conceptually deep technique, which we haven't yet developed. Since we want to build up all the techniques we're using by hand, then, we shouldn't permit ourselves to rely on `let rec` or `letrec` until we thoroughly understand what's going on under the hood.
119
120 2.      If you tried this in Scheme:
121
122                 (define length
123                                 (lambda (lst) (if (null? lst) 0 [+ 1 (length (cdr lst))] )) )
124
125                 (length (list 20 30))
126
127         You'd find that it works! This is because `define` in Scheme is really shorthand for `letrec`, not for plain `let` or `let*`. So we should regard this as cheating, too.
128
129 3.      In fact, it *is* possible to define the `length` function in the lambda calculus despite these obstacles. This depends on using the "version 3" implementation of lists, and exploiting its internal structure: that it takes a function and a base value and returns the result of folding that function over the list, with that base value. So we could use this as a definition of `length`:
130
131                 \lst. lst (\x sofar. successor sofar) zero
132
133         What's happening here? We start with the value zero, then we apply the function `\x sofar. successor sofar` to the two arguments <code>x<sub>n</sub></code> and `zero`, where <code>x<sub>n</sub></code> is the last element of the list. This gives us `successor zero`, or `one`. That's the value we've accumuluted "so far." Then we go apply the function `\x sofar. successor sofar` to the two arguments <code>x<sub>n-1</sub></code> and the value `one` that we've accumulated "so far." This gives us `two`. We continue until we get to the start of the list. The value we've then built up "so far" will be the length of the list.
134
135 We can use similar techniques to define many recursive operations on
136 lists and numbers. The reason we can do this is that our "version 3,"
137 fold-based implementation of lists, and Church's implementations of
138 numbers, have a internal structure that *mirrors* the common recursive
139 operations we'd use lists and numbers for.  In a sense, the recursive
140 structure of the `length` operation is built into the data
141 structure we are using to represent the list.  The non-recursive
142 version of length exploits this embedding of the recursion into
143 the data type.
144
145 This is one of the themes of the course: using data structures to
146 encode the state of some recursive operation.  See discussions of the
147 [[zipper]] technique, and [[defunctionalization]].
148
149 As we said before, it does take some ingenuity to define functions like `extract-tail` or `predecessor` for these implementations. However it can be done. (And it's not *that* difficult.) Given those functions, we can go on to define other functions like numeric equality, subtraction, and so on, just by exploiting the structure already present in our implementations of lists and numbers.
150
151 With sufficient ingenuity, a great many functions can be defined in the same way. For example, the factorial function is straightforward. The function which returns the nth term in the Fibonacci series is a bit more difficult, but also achievable.
152
153 ##Some functions require full-fledged recursive definitions##
154
155 However, some computable functions are just not definable in this
156 way. We can't, for example, define a function that tells us, for
157 whatever function `f` we supply it, what is the smallest integer `x`
158 where `f x` is `true`.  (You may be thinking: but that
159 smallest-integer function is not a proper algorithm, since it is not
160 guaranteed to halt in any finite amount of time for every argument.
161 This is the famous [[!wikipedia Halting problem]].  But the fact that
162 an implementation may not terminate doesn't mean that such a function
163 isn't well-defined.  The point of interest here is that its definition
164 requires recursion in the function definition.)
165
166 Neither do the resources we've so far developed suffice to define the
167 [[!wikipedia Ackermann function]]:
168
169         A(m,n) =
170                 | when m == 0 -> n + 1
171                 | else when n == 0 -> A(m-1,1)
172                 | else -> A(m-1, A(m,n-1))
173
174         A(0,y) = y+1
175         A(1,y) = 2+(y+3) - 3
176         A(2,y) = 2(y+3) - 3
177         A(3,y) = 2^(y+3) - 3
178         A(4,y) = 2^(2^(2^...2)) [where there are y+3 2s] - 3
179         ...
180
181 Many simpler functions always *could* be defined using the resources we've so far developed, although those definitions won't always be very efficient or easily intelligible.
182
183 But functions like the Ackermann function require us to develop a more general technique for doing recursion---and having developed it, it will often be easier to use it even in the cases where, in principle, we didn't have to.
184
185 ##Using fixed-point combinators to define recursive functions##
186
187 ###Fixed points###
188
189 In general, a **fixed point** of a function `f` is any value `x`
190 such that `f x` is equivalent to `x`. For example,
191 consider the squaring function `square` that maps natural numbers to their squares.
192 `square 2 = 4`, so `2` is not a fixed point.  But `square 1 = 1`, so `1` is a
193 fixed point of the squaring function.
194
195 There are many beautiful theorems guaranteeing the existence of a
196 fixed point for various classes of interesting functions.  For
197 instance, imainge that you are looking at a map of Manhattan, and you
198 are standing somewhere in Manhattan.  The the [[!wikipedia Brouwer
199 fixed-point theorem]] guarantees that there is a spot on the map that is
200 directly above the corresponding spot in Manhattan.  It's the spot
201 where the blue you-are-here dot should be.
202
203 Whether a function has a fixed point depends on the set of arguments
204 it is defined for.  For instance, consider the successor function `succ`
205 that maps each natural number to its successor.  If we limit our
206 attention to the natural numbers, then this function has no fixed
207 point.  (See the discussion below concerning a way of understanding
208 the successor function on which it does have a fixed point.)
209
210 In the lambda calculus, we say a fixed point of a term `f` is any term `X` such that:
211
212         X <~~> f X
213
214 You should be able to immediately provide a fixed point of the
215 identity combinator I.  In fact, you should be able to provide a
216 whole bunch of distinct fixed points.
217
218 With a little thought, you should be able to provide a fixed point of
219 the false combinator, KI.  Here's how to find it: recall that KI
220 throws away its first argument, and always returns I.  Therefore, if
221 we give it I as an argument, it will throw away the argument, and
222 return I.  So KII ~~> I, which is all it takes for I to qualify as a
223 fixed point of KI.
224
225 What about K?  Does it have a fixed point?  You might not think so,
226 after trying on paper for a while.
227
228 However, it's a theorem of the lambda calculus that every formula has
229 a fixed point. In fact, it will have infinitely many, non-equivalent
230 fixed points. And we don't just know that they exist: for any given
231 formula, we can explicit define many of them.
232
233 Yes, as we've mentioned, even the formula that you're using the define
234 the successor function will have a fixed point. Isn't that weird?
235 Think about how it might be true.  We'll return to this point below.
236
237 ###How fixed points help define recursive functions###
238
239 Recall our initial, abortive attempt above to define the `length` function in the lambda calculus. We said "What we really want to do is something like this:
240
241         \list. if empty list then zero else add one (... (tail lst))
242
243 where this very same formula occupies the `...` position."
244
245 Imagine replacing the `...` with some function that computes the
246 length function.  Call that function `length`.  Then we have
247
248         \list. if empty list then zero else add one (length (tail lst))
249
250 At this point, we have a definition of the length function, though
251 it's not complete, since we don't know what value to use for the
252 symbol `length`.  Technically, it has the status of an unbound
253 variable.
254
255 Imagine now binding the mysterious variable, and calling the resulting
256 function `h`:
257
258         h := \length \list . if empty list then zero else add one (length (tail list))
259
260 Now we have no unbound variables, and we have complete non-recursive
261 definitions of each of the other symbols.
262
263 So `h` takes an argument, and returns a function that accurately
264 computes the length of a list---as long as the argument we supply is
265 already the length function we are trying to define.  (Dehydrated
266 water: to reconstitute, just add water!)
267
268 Here is where the discussion of fixed points becomes relevant.  Saying
269 that `h` is looking for an argument (call it `LEN`) that has the same
270 behavior as the result of applying `h` to `LEN` is just another way of
271 saying that we are looking for a fixed point for `h`.
272
273     h LEN <~~> LEN
274
275 Replacing `h` with its definition, we have
276
277     (\list . if empty list then zero else add one (LEN (tail list))) <~~> LEN
278
279 If we can find a value for `LEN` that satisfies this constraint, we'll
280 have a function we can use to compute the length of an arbitrary list.
281 All we have to do is find a fixed point for `h`.
282
283 The strategy we will present will turn out to be a general way of
284 finding a fixed point for any lambda term.
285
286 ##Deriving Y, a fixed point combinator##
287
288 How shall we begin?  Well, we need to find an argument to supply to
289 `h`.  The argument has to be a function that computes the length of a
290 list.  The function `h` is *almost* a function that computes the
291 length of a list.  Let's try applying `h` to itself.  It won't quite
292 work, but examining the way in which it fails will lead to a solution.
293
294     h h <~~> \list . if empty list then zero else 1 + h (tail list)
295
296 The problem is that in the subexpression `h (tail list)`, we've
297 applied `h` to a list, but `h` expects as its first argument the
298 length function.
299
300 So let's adjust h, calling the adjusted function H:
301
302     H = \h \list . if empty list then zero else one plus ((h h) (tail list))
303
304 This is the key creative step.  Instead of applying `h` to a list, we
305 apply it first to itself.  After applying `h` to an argument, it's
306 ready to apply to a list, so we've solved the problem just noted.
307 We're not done yet, of course; we don't yet know what argument to give
308 to `H` that will behave in the desired way.
309
310 So let's reason about `H`.  What exactly is H expecting as its first
311 argument?  Based on the excerpt `(h h) (tail l)`, it appears that
312 `H`'s argument, `h`, should be a function that is ready to take itself
313 as an argument, and that returns a function that takes a list as an
314 argument.  `H` itself fits the bill:
315
316     H H <~~> (\h \list . if empty list then zero else 1 + ((h h) (tail list))) H
317         <~~> \list . if empty list then zero else 1 + ((H H) (tail list))
318         == \list . if empty list then zero else 1 + ((\list . if empty list then zero else 1 + ((H H) (tail list))) (tail list))
319         <~~> \list . if empty list then zero
320                     else 1 + (if empty (tail list) then zero else 1 + ((H H) (tail (tail list))))
321
322 We're in business!
323
324 How does the recursion work?
325 We've defined `H` in such a way that `H H` turns out to be the length function.
326 In order to evaluate `H H`, we substitute `H` into the body of the
327 lambda term.  Inside the lambda term, once the substitution has
328 occurred, we are once again faced with evaluating `H H`.  And so on.
329
330 We've got the infinite regress we desired, defined in terms of a
331 finite lambda term with no undefined symbols.
332
333 Since `H H` turns out to be the length function, we can think of `H`
334 by itself as half of the length function (which is why we called it
335 `H`, of course).  Can you think up a recursion strategy that involves
336 "dividing" the recursive function into equal thirds `T`, such that the
337 length function <~~> T T T?
338
339 We've starting with a particular recursive definition, and arrived at
340 a fixed point for that definition.
341 What's the general recipe?
342
343 1.   Start with any recursive definition `h` that takes itself as an arg: `h := \fn ... fn ...`
344 2.   Next, define `H := \f . h (f f)` 
345 3.   Then compute `H H = ((\f . h (f f)) (\f . h (f f)))`
346 4.   That's the fixed point, the recursive function we're trying to define
347
348 So here is a general method for taking an arbitrary h-style recursive function
349 and returning a fixed point for that function:
350
351      Y := \h. ((\f.h(ff))(\f.h(ff)))
352
353 Test:
354
355     Yh == ((\f.h(ff))(\f.h(ff)))
356        <~~> h((\f.h(ff))(\f.h(ff)))
357        == h(Yh)
358
359 That is, Yh is a fixed point for h.
360
361 Works!
362
363 Let's do one more example to illustrate.  We'll do `K`, since we
364 wondered above whether it had a fixed point.
365
366 Before we begin, we can reason a bit about what the fixed point must
367 be like.  We're looking for a fixed point for `K`, i.e., `\xy.x`.  `K`
368 ignores its second argument.  That means that no matter what we give
369 `K` as its first argument, the result will ignore the next argument
370 (that is, `KX` ignores its first argument, no matter what `X` is).  So
371 if `KX <~~> X`, `X` had also better ignore its first argument.  But we
372 also have `KX == (\xy.x)X ~~> \y.X`.  This means that if `X` ignores
373 its first argument, then `\y.X` will ignore its first two arguments.
374 So once again, if `KX <~~> X`, `X` also had better ignore at least its
375 first two arguments.  Repeating this reasoning, we realize that `X`
376 must be a function that ignores an infinite series of arguments.  
377 Our expectation, then, is that our recipe for finding fixed points
378 will build us a function that somehow manages to ignore an infinite
379 series of arguments.
380
381     h := \xy.x
382     H := \f.h(ff) == \f.(\xy.x)(ff) ~~> \fy.ff
383     H H := (\fy.ff)(\fy.ff) ~~> \y.(\fy.ff)(\fy.ff)
384
385 Let's check that it is in fact a fixed point:
386
387     K(H H) == (\xy.x)((\fy.ff)(\fy.ff)
388            ~~> \y.(\fy.ff)(\fy.ff)
389
390 Yep, `H H` and `K(H H)` both reduce to the same term.  
391
392 To see what this fixed point does, let's reduce it a bit more:
393
394     H H == (\fy.ff)(\fy.ff)
395         ~~> \y.(\fy.ff)(\fy.ff)
396         ~~> \yy.(\fy.ff)(\fy.ff)
397         ~~> \yyy.(\fy.ff)(\fy.ff)
398     
399 Sure enough, this fixed point ignores an endless, infinite series of
400 arguments.  It's a write-only memory, a black hole.
401
402 Now that we have one fixed point, we can find others, for instance,
403
404     (\fy.fff)(\fy.fff) 
405     ~~> \y.(\fy.fff)(\fy.fff)(\fy.fff)
406     ~~> \yy.(\fy.fff)(\fy.fff)(\fy.fff)(\fy.fff)
407     ~~> \yyy.(\fy.fff)(\fy.fff)(\fy.fff)(\fy.fff)(\fy.fff)
408
409 Continuing in this way, you can now find an infinite number of fixed
410 points, all of which have the crucial property of ignoring an infinite
411 series of arguments.
412
413 ##What is a fixed point for the successor function?##
414
415 As we've seen, the recipe just given for finding a fixed point worked
416 great for our `h`, which we wrote as a definition for the length
417 function.  But the recipe doesn't make any assumptions about the
418 internal structure of the function it works with.  That means it can
419 find a fixed point for literally any function whatsoever.
420
421 In particular, what could the fixed point for the
422 successor function possibly be like?
423
424 Well, you might think, only some of the formulas that we might give to the `successor` as arguments would really represent numbers. If we said something like:
425
426         successor make-pair
427
428 who knows what we'd get back? Perhaps there's some non-number-representing formula such that when we feed it to `successor` as an argument, we get the same formula back.
429
430 Yes! That's exactly right. And which formula this is will depend on the particular way you've implemented the successor function.
431
432 One (by now obvious) upshot is that the recipes that enable us to name
433 fixed points for any given formula aren't *guaranteed* to give us
434 *terminating* fixed points. They might give us formulas X such that
435 neither `X` nor `f X` have normal forms. (Indeed, what they give us
436 for the square function isn't any of the Church numerals, but is
437 rather an expression with no normal form.) However, if we take care we
438 can ensure that we *do* get terminating fixed points. And this gives
439 us a principled, fully general strategy for doing recursion. It lets
440 us define even functions like the Ackermann function, which were until
441 now out of our reach. It would also let us define arithmetic and list
442 functions on the "version 1" and "version 2" implementations, where it
443 wasn't always clear how to force the computation to "keep going."
444
445 ###Varieties of fixed-point combinators###
446
447 OK, so how do we make use of this?
448
449 Many fixed-point combinators have been discovered. (And some
450 fixed-point combinators give us models for building infinitely many
451 more, non-equivalent fixed-point combinators.)
452
453 Two of the simplest:
454
455 <pre><code>&Theta;&prime; &equiv; (\u f. f (\n. u u f n)) (\u f. f (\n. u u f n))
456 Y&prime; &equiv; \f. (\u. f (\n. u u n)) (\u. f (\n. u u n))</code></pre>
457
458 <code>&Theta;&prime;</code> has the advantage that <code>f (&Theta;&prime; f)</code> really *reduces to* <code>&Theta;&prime; f</code>. Whereas <code>f (Y&prime; f)</code> is only *convertible with* <code>Y&prime; f</code>; that is, there's a common formula they both reduce to. For most purposes, though, either will do.
459
460 You may notice that both of these formulas have eta-redexes inside them: why can't we simplify the two `\n. u u f n` inside <code>&Theta;&prime;</code> to just `u u f`? And similarly for <code>Y&prime;</code>?
461
462 Indeed you can, getting the simpler:
463
464 <pre><code>&Theta; &equiv; (\u f. f (u u f)) (\u f. f (u u f))
465 Y &equiv; \f. (\u. f (u u)) (\u. f (u u))</code></pre>
466
467 I stated the more complex formulas for the following reason: in a language whose evaluation order is *call-by-value*, the evaluation of <code>&Theta; (\self. BODY)</code> and `Y (\self. BODY)` will in general not terminate. But evaluation of the eta-unreduced primed versions will.
468
469 Of course, if you define your `\self. BODY` stupidly, your formula will never terminate. For example, it doesn't matter what fixed point combinator you use for <code>&Psi;</code> in:
470
471 <pre><code>&Psi; (\self. \n. self n)</code></pre>
472
473 When you try to evaluate the application of that to some argument `M`, it's going to try to give you back:
474
475         (\n. self n) M
476
477 where `self` is equivalent to the very formula `\n. self n` that contains it. So the evaluation will proceed:
478
479         (\n. self n) M ~~>
480         self M ~~>
481         (\n. self n) M ~~>
482         self M ~~>
483         ...
484
485 You've written an infinite loop!
486
487 However, when we evaluate the application of our:
488
489 <pre><code>&Psi; (\self (\lst. (isempty lst) zero (add one (self (extract-tail lst))) ))</code></pre>
490
491 to some list `L`, we're not going to go into an infinite evaluation loop of that sort. At each cycle, we're going to be evaluating the application of:
492
493         \lst. (isempty lst) zero (add one (self (extract-tail lst)))
494
495 to *the tail* of the list we were evaluating its application to at the previous stage. Assuming our lists are finite (and the implementations we're using don't permit otherwise), at some point one will get a list whose tail is empty, and then the evaluation of that formula to that tail will return `zero`. So the recursion eventually bottoms out in a base value.
496
497 ##Fixed-point Combinators Are a Bit Intoxicating##
498
499 ![tatoo](/y-combinator-fixed.jpg)
500
501 There's a tendency for people to say "Y-combinator" to refer to fixed-point combinators generally. We'll probably fall into that usage ourselves. Speaking correctly, though, the Y-combinator is only one of many fixed-point combinators.
502
503 I used <code>&Psi;</code> above to stand in for an arbitrary fixed-point combinator. I don't know of any broad conventions for this. But this seems a useful one.
504
505 As we said, there are many other fixed-point combinators as well. For example, Jan Willem Klop pointed out that if we define `L` to be:
506
507         \a b c d e f g h i j k l m n o p q s t u v w x y z r. (r (t h i s i s a f i x e d p o i n t c o m b i n a t o r))
508
509 then this is a fixed-point combinator:
510
511         L L L L L L L L L L L L L L L L L L L L L L L L L L
512
513
514 ##Watching Y in action##
515
516 For those of you who like to watch ultra slow-mo movies of bullets
517 piercing apples, here's a stepwise computation of the application of a
518 recursive function.  We'll use a function `sink`, which takes one
519 argument.  If the argument is boolean true (i.e., `\x y.x`), it
520 returns itself (a copy of `sink`); if the argument is boolean false
521 (`\x y. y`), it returns `I`.  That is, we want the following behavior:
522
523     sink false ~~> I
524     sink true false ~~> I
525     sink true true false ~~> I
526     sink true true true false ~~> I
527
528 So we make `sink = Y (\f b. b f I)`:
529
530     1. sink false
531     2. Y (\fb.bfI) false
532     3. (\f. (\h. f (h h)) (\h. f (h h))) (\fb.bfI) false
533     4. (\h. [\fb.bfI] (h h)) (\h. [\fb.bfI] (h h)) false
534     5. [\fb.bfI] ((\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))) false
535     6. (\b.b[(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))]I)  false
536     7. false [(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))] I
537              --------------------------------------------
538     8. I
539
540 So far so good.  The crucial thing to note is that as long as we
541 always reduce the outermost redex first, we never have to get around
542 to computing the underlined redex: because `false` ignores its first
543 argument, we can throw it away unreduced.
544
545 Now we try the next most complex example:
546
547     1. sink true false
548     2. Y (\fb.bfI) true false
549     3. (\f. (\h. f (h h)) (\h. f (h h))) (\fb.bfI) true false
550     4. (\h. [\fb.bfI] (h h)) (\h. [\fb.bfI] (h h)) true false
551     5. [\fb.bfI] ((\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))) true false
552     6. (\b.b[(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))]I)  true false
553     7. true [(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))] I false
554     8. [(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))] false
555
556 We've now arrived at line (4) of the first computation, so the result
557 is again I.
558
559 You should be able to see that `sink` will consume as many `true`s as
560 we throw at it, then turn into the identity function after it
561 encounters the first `false`.
562
563 The key to the recursion is that, thanks to Y, the definition of
564 `sink` contains within it the ability to fully regenerate itself as
565 many times as is necessary.  The key to *ending* the recursion is that
566 the behavior of `sink` is sensitive to the nature of the input: if the
567 input is the magic function `false`, the self-regeneration machinery
568 will be discarded, and the recursion will stop.
569
570 That's about as simple as recursion gets.
571
572 ##Application to the truth teller/liar paradoxes##
573
574 ###Base cases, and their lack###
575
576 As any functional programmer quickly learns, writing a recursive
577 function divides into two tasks: figuring out how to handle the
578 recursive case, and remembering to insert a base case.  The
579 interesting and enjoyable part is figuring out the recursive pattern,
580 but the base case cannot be ignored, since leaving out the base case
581 creates a program that runs forever.  For instance, consider computing
582 a factorial: `n!` is `n * (n-1) * (n-2) * ... * 1`.  The recursive
583 case says that the factorial of a number `n` is `n` times the
584 factorial of `n-1`.  But if we leave out the base case, we get
585
586     3! = 3 * 2! = 3 * 2 * 1! = 3 * 2 * 1 * 0! = 3 * 2 * 1 * 0 * -1! ...
587
588 That's why it's crucial to declare that 0! = 1, in which case the
589 recursive rule does not apply.  In our terms,
590
591     fac = Y (\fac n. iszero n 1 (fac (predecessor n)))
592
593 If `n` is 0, `fac` reduces to 1, without computing the recursive case.
594
595 Curry originally called `Y` the paradoxical combinator, and discussed
596 it in connection with certain well-known paradoxes from the philosophy
597 literature.  The truth teller paradox has the flavor of a recursive
598 function without a base case: the truth-teller paradox (and related
599 paradoxes).
600
601 (1)    This sentence is true.
602
603 If we assume that the complex demonstrative "this sentence" can refer
604 to (1), then the proposition expressed by (1) will be true just in
605 case the thing referred to by *this sentence* is true.  Thus (1) will
606 be true just in case (1) is true, and (1) is true just in case (1) is
607 true, and so on.  If (1) is true, then (1) is true; but if (1) is not
608 true, then (1) is not true.
609
610 Without pretending to give a serious analysis of the paradox, let's
611 assume that sentences can have for their meaning boolean functions
612 like the ones we have been working with here.  Then the sentence *John
613 is John* might denote the function `\x y. x`, our `true`.
614
615 Then (1) denotes a function from whatever the referent of *this
616 sentence* is to a boolean.  So (1) denotes `\f. f true false`, where
617 the argument `f` is the referent of *this sentence*.  Of course, if
618 `f` is a boolean, `f true false <~~> f`, so for our purposes, we can
619 assume that (1) denotes the identity function `I`.
620
621 If we use (1) in a context in which *this sentence* refers to the
622 sentence in which the demonstrative occurs, then we must find a
623 meaning `m` such that `I m = I`.  But since in this context `m` is the
624 same as the meaning `I`, so we have `m = I m`.  In other words, `m` is
625 a fixed point for the denotation of the sentence (when used in the
626 appropriate context).
627
628 That means that in a context in which *this sentence* refers to the
629 sentence in which it occurs, the sentence denotes a fixed point for
630 the identity function.  Here's a fixed point for the identity
631 function:
632
633 <pre><code>Y I
634 (\f. (\h. f (h h)) (\h. f (h h))) I
635 (\h. I (h h)) (\h. I (h h)))
636 (\h. (h h)) (\h. (h h)))
637 &omega; &omega;
638 &Omega
639 </code></pre>
640
641 Oh.  Well!  That feels right.  The meaning of *This sentence is true*
642 in a context in which *this sentence* refers to the sentence in which
643 it occurs is <code>&Omega;</code>, our prototypical infinite loop...
644
645 What about the liar paradox?
646
647 (2)  This sentence is false.
648
649 Used in a context in which *this sentence* refers to the utterance of
650 (2) in which it occurs, (2) will denote a fixed point for `\f.neg f`,
651 or `\f l r. f r l`, which is the `C` combinator.  So in such a
652 context, (2) might denote
653
654      Y C
655      (\f. (\h. f (h h)) (\h. f (h h))) I
656      (\h. C (h h)) (\h. C (h h)))
657      C ((\h. C (h h)) (\h. C (h h)))
658      C (C ((\h. C (h h))(\h. C (h h))))
659      C (C (C ((\h. C (h h))(\h. C (h h)))))
660      ...
661
662 And infinite sequence of `C`s, each one negating the remainder of the
663 sequence.  Yep, that feels like a reasonable representation of the
664 liar paradox.
665
666 See Barwise and Etchemendy's 1987 OUP book, [The Liar: an essay on
667 truth and circularity](http://tinyurl.com/2db62bk) for an approach
668 that is similar, but expressed in terms of non-well-founded sets
669 rather than recursive functions.
670
671 ##However...##
672
673 You should be cautious about feeling too comfortable with
674 these results.  Thinking again of the truth-teller paradox, yes,
675 <code>&Omega;</code> is *a* fixed point for `I`, and perhaps it has
676 some a privileged status among all the fixed points for `I`, being the
677 one delivered by Y and all (though it is not obvious why Y should have
678 any special status).
679
680 But one could ask: look, literally every formula is a fixed point for
681 `I`, since
682
683     X <~~> I X
684
685 for any choice of X whatsoever.
686
687 So the Y combinator is only guaranteed to give us one fixed point out
688 of infinitely many---and not always the intuitively most useful
689 one. (For instance, the squaring function has zero as a fixed point,
690 since 0 * 0 = 0, and 1 as a fixed point, since 1 * 1 = 1, but `Y
691 (\x. mul x x)` doesn't give us 0 or 1.) So with respect to the
692 truth-teller paradox, why in the reasoning we've
693 just gone through should we be reaching for just this fixed point at
694 just this juncture?
695
696 One obstacle to thinking this through is the fact that a sentence
697 normally has only two truth values.  We might consider instead a noun
698 phrase such as
699
700 (3)  the entity that this noun phrase refers to
701
702 The reference of (3) depends on the reference of the embedded noun
703 phrase *this noun phrase*.  It's easy to see that any object is a
704 fixed point for this referential function: if this pen cap is the
705 referent of *this noun phrase*, then it is the referent of (3), and so
706 for any object.
707
708 The chameleon nature of (3), by the way (a description that is equally
709 good at describing any object), makes it particularly well suited as a
710 gloss on pronouns such as *it*.  In the system of
711 [Jacobson 1999](http://www.springerlink.com/content/j706674r4w217jj5/),
712 pronouns denote (you guessed it!) identity functions...
713
714 Ultimately, in the context of this course, these paradoxes are more
715 useful as a way of gaining leverage on the concepts of fixed points
716 and recursion, rather than the other way around.