1 ## Recursion ##
3 ## Basic fixed points ##
5 1. Recall that <code>&omega; := \f.ff</code>, and <code>&Omega; :=
6 &omega; &omega;</code>.  Is <code>&Omega;</code> a fixed point for
7 <code>&omega;</code>?  Find a fixed point for <code>&omega;</code>,
8 and prove that it is a fixed point.
10 ## Arithmetic infinity? ##
12 The next few questions involve reasoning about Church arithmetic and
13 infinity.  Let's choose some arithmetic functions:
15     succ = \nfz.f(nfz)
16     add = \m n. m succ n in
17     mult = \m n. m (add n) 0 in
18     exp = \m n . m (mult n) 1 in
20 There is a pleasing pattern here: addition is defined in terms of
21 the successor function, multiplication is defined in terms of
22 addition, and exponentiation is defined in terms of multiplication.
24 1. Find a fixed point `X` for the succ function.  Prove it's a fixed
25 point, i.e., demonstrate that `succ X <~~> succ (succ X)`.
27 We've had surprising success embedding normal arithmetic in the lambda
28 calculus, modeling the natural numbers, addition, multiplication, and
29 so on.  But one thing that some versions of arithmetic supply is a
30 notion of infinity, which we'll write as `inf`.  This object usually
31 satisfies the following constraints, for any (finite) natural number `n`:
33     n + inf == inf
34     n * inf == inf
35     n ^ inf == inf
36     n leq inf == True
38 2. Prove that `add 1 X <~~> X`, where `X` is the fixed
39 point you found in (1).  What about `add 2 X <~~> X`?
41 Comment: a fixed point for the succ function is an object such that it
42 is unchanged after adding 1 to it.  It make a certain amount of sense
43 to use this object to model arithmetic infinity.  For instance,
44 depending on implementation details, it might happen that `leq n X` is
45 true for all (finite) natural numbers `n`.  However, the fixed point
46 you found for succ is unlikely to be a fixed point for `mult n` or for
47 `exp n`.
50 #Mutually-recursive functions#
52 <OL start=5>
53 <LI>(Challenging.) One way to define the function `even` is to have it hand off
54 part of the work to another function `odd`:
56         let even = \x. iszero x
57                                         ; if x == 0 then result is
58                                         true
59                                         ; else result turns on whether x's pred is odd
60                                         (odd (pred x))
62 At the same tme, though, it's natural to define `odd` in such a way that it
63 hands off part of the work to `even`:
65         let odd = \x. iszero x
66                                         ; if x == 0 then result is
67                                         false
68                                         ; else result turns on whether x's pred is even
69                                         (even (pred x))
71 Such a definition of `even` and `odd` is called **mutually recursive**. If you
72 trace through the evaluation of some sample numerical arguments, you can see
73 that eventually we'll always reach a base step. So the recursion should be
74 perfectly well-grounded:
76         even 3
77         ~~> iszero 3 true (odd (pred 3))
78         ~~> odd 2
79         ~~> iszero 2 false (even (pred 2))
80         ~~> even 1
81         ~~> iszero 1 true (odd (pred 1))
82         ~~> odd 0
83         ~~> iszero 0 false (even (pred 0))
84         ~~> false
86 But we don't yet know how to implement this kind of recursion in the lambda
87 calculus.
89 The fixed point operators we've been working with so far worked like this:
91         let X = Y T in
92         X <~~> T X
94 Suppose we had a pair of fixed point operators, `Y1` and `Y2`, that operated on
95 a *pair* of functions `T1` and `T2`, as follows:
97         let X1 = Y1 T1 T2 in
98         let X2 = Y2 T1 T2 in
99         X1 <~~> T1 X1 X2 and
100         X2 <~~> T2 X1 X2
102 If we gave you such a `Y1` and `Y2`, how would you implement the above
103 definitions of `even` and `odd`?
106 <LI>(More challenging.) Using our derivation of Y from the [Week3
107 notes](/week3/#index4h2) as a model, construct a pair `Y1` and `Y2` that behave
108 in the way described.
110 (See [[hints/Assignment 4 hint 3]] if you need some hints.)