author Chris Barker Sun, 28 Nov 2010 03:26:49 +0000 (22:26 -0500) committer Chris Barker Sun, 28 Nov 2010 03:26:49 +0000 (22:26 -0500)

index a826eed..fdfc2a5 100644 (file)
@@ -303,3 +303,304 @@ side, and non-determinism on the list monad side.
Refunctionalizing zippers
-------------------------

+------------------------------
+
+This thread develops an idea based on a detailed suggestion of Ken
+Shan's.  We'll build a series of functions that operate on trees,
+doing various things, including replacing leaves, counting nodes, and
+converting a tree to a list of leaves.  The end result will be an
+application for continuations.
+
+From an engineering standpoint, we'll build a tree transformer that
+deals in monads.  We can modify the behavior of the system by swapping
+a layer of funtionality without disturbing the underlying system, for
+of intensionality to an extensional grammar, but we have not yet seen
+the utility of replacing one monad with other.)
+
+First, we'll be needing a lot of trees during the remainder of the
+course.  Here's a type constructor for binary trees:
+
+    type 'a tree = Leaf of 'a | Node of ('a tree * 'a tree)
+
+These are trees in which the internal nodes do not have labels.  [How
+would you adjust the type constructor to allow for labels on the
+internal nodes?]
+
+We'll be using trees where the nodes are integers, e.g.,
+
+
+<pre>
+let t1 = Node ((Node ((Leaf 2), (Leaf 3))),
+               (Node ((Leaf 5),(Node ((Leaf 7),
+                                      (Leaf 11))))))
+
+    .
+ ___|___
+ |     |
+ .     .
+_|__  _|__
+|  |  |  |
+2  3  5  .
+        _|__
+        |  |
+        7  11
+</pre>
+
+Our first task will be to replace each leaf with its double:
+
+<pre>
+let rec treemap (newleaf:'a -> 'b) (t:'a tree):('b tree) =
+  match t with Leaf x -> Leaf (newleaf x)
+             | Node (l, r) -> Node ((treemap newleaf l),
+                                    (treemap newleaf r));;
+</pre>
+`treemap` takes a function that transforms old leaves into new leaves,
+and maps that function over all the leaves in the tree, leaving the
+structure of the tree unchanged.  For instance:
+
+<pre>
+let double i = i + i;;
+treemap double t1;;
+- : int tree =
+Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
+
+    .
+ ___|____
+ |      |
+ .      .
+_|__  __|__
+|  |  |   |
+4  6  10  .
+        __|___
+        |    |
+        14   22
+</pre>
+
+We could have built the doubling operation right into the `treemap`
+code.  However, because what to do to each leaf is a parameter, we can
+decide to do something else to the leaves without needing to rewrite
+`treemap`.  For instance, we can easily square each leaf instead by
+supplying the appropriate `int -> int` operation in place of `double`:
+
+<pre>
+let square x = x * x;;
+treemap square t1;;
+- : int tree =ppp
+Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
+</pre>
+
+Note that what `treemap` does is take some global, contextual
+information---what to do to each leaf---and supplies that information
+to each subpart of the computation.  In other words, `treemap` has the
+
+In general, we're on a journey of making our treemap function more and
+more flexible.  So the next step---combining the tree transducer with
+tree that is ready to accept any `int->int` function and produce the
+updated tree.
+
+\tree (. (. (f2) (f3))(. (f5) (.(f7)(f11))))
+<pre>
+\f    .
+  ____|____
+  |       |
+  .       .
+__|__   __|__
+|   |   |   |
+f2  f3  f5  .
+          __|___
+          |    |
+          f7  f11
+</pre>
+
+That is, we want to transform the ordinary tree `t1` (of type `int
+tree`) into a reader object of type `(int->int)-> int tree`: something
+that, when you apply it to an `int->int` function returns an `int
+tree` in which each leaf `x` has been replaced with `(f x)`.
+
+With previous readers, we always knew which kind of environment to
+expect: either an assignment function (the original calculator
+simulation), a world (the intensionality monad), an integer (the
+enough for now to expect that our reader will expect a function of
+type `int->int`.
+
+<pre>
+type 'a reader = (int->int) -> 'a;;  (* mnemonic: e for environment *)
+</pre>
+
+It's easy to figure out how to turn an `int` into an `int reader`:
+
+<pre>
+let int2int_reader (x:'a): 'b reader = fun (op:'a -> 'b) -> op x;;
+int2int_reader 2 (fun i -> i + i);;
+- : int = 4
+</pre>
+
+But what do we do when the integers are scattered over the leaves of a
+tree?  A binary tree is not the kind of thing that we can apply a
+function of type `int->int` to.
+
+<pre>
+  match t with Leaf x -> reader_bind (f x) (fun x' -> reader_unit (Leaf x'))
+             | Node (l, r) -> reader_bind (treemonadizer f l) (fun x ->
+</pre>
+
+This function says: give me a function `f` that knows how to turn
+something of type `'a` into an `'b reader`, and I'll show you how to
+turn an `'a tree` into an `'a tree reader`.  In more fanciful terms,
+the `treemonadizer` function builds plumbing that connects all of the
+leaves of a tree into one connected monadic network; it threads the
+
+<pre>
+- : int tree =
+Node (Node (Leaf 4, Leaf 6), Node (Leaf 10, Node (Leaf 14, Leaf 22)))
+</pre>
+
+Here, our environment is the doubling function (`fun i -> i + i`).  If
+int2int_reader t1`) to a different `int->int` function---say, the
+squaring function, `fun i -> i * i`---we get an entirely different
+result:
+
+<pre>
+- : int tree =
+Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
+</pre>
+
+Now that we have a tree transducer that accepts a monad as a
+parameter, we can see what it would take to swap in a different monad.
+For instance, we can use a state monad to count the number of nodes in
+the tree.
+
+<pre>
+type 'a state = int -> 'a * int;;
+let state_unit x i = (x, i+.5);;
+let state_bind u f i = let (a, i') = u i in f a (i'+.5);;
+</pre>
+
+Gratifyingly, we can use the `treemonadizer` function without any
+modification whatsoever, except for replacing the (parametric) type
+
+<pre>
+let rec treemonadizer (f:'a -> 'b state) (t:'a tree):('b tree) state =
+  match t with Leaf x -> state_bind (f x) (fun x' -> state_unit (Leaf x'))
+             | Node (l, r) -> state_bind (treemonadizer f l) (fun x ->
+                                state_bind (treemonadizer f r) (fun y ->
+                                  state_unit (Node (x, y))));;
+</pre>
+
+Then we can count the number of nodes in the tree:
+
+<pre>
+- : int tree * int =
+(Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11))), 13)
+
+    .
+ ___|___
+ |     |
+ .     .
+_|__  _|__
+|  |  |  |
+2  3  5  .
+        _|__
+        |  |
+        7  11
+</pre>
+
+Notice that we've counted each internal node twice---it's a good
+excerice to adjust the code to count each node once.
+
+One more revealing example before getting down to business: replacing
+`state` everywhere in `treemonadizer` with `list` gives us
+
+<pre>
+# treemonadizer (fun x -> [[x; square x]]) t1;;
+- : int list tree list =
+[Node
+  (Node (Leaf [2; 4], Leaf [3; 9]),
+   Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))]
+</pre>
+
+Unlike the previous cases, instead of turning a tree into a function
+from some input to a result, this transformer replaces each `int` with
+a list of `int`'s.
+
+Now for the main point.  What if we wanted to convert a tree to a list
+of leaves?
+
+<pre>
+type ('a, 'r) continuation = ('a -> 'r) -> 'r;;
+let continuation_unit x c = c x;;
+let continuation_bind u f c = u (fun a -> f a c);;
+
+let rec treemonadizer (f:'a -> ('b, 'r) continuation) (t:'a tree):(('b tree), 'r) continuation =
+  match t with Leaf x -> continuation_bind (f x) (fun x' -> continuation_unit (Leaf x'))
+             | Node (l, r) -> continuation_bind (treemonadizer f l) (fun x ->
+                                continuation_bind (treemonadizer f r) (fun y ->
+                                  continuation_unit (Node (x, y))));;
+</pre>
+
+We use the continuation monad described above, and insert the
+`continuation` type in the appropriate place in the `treemonadizer` code.
+We then compute:
+
+<pre>
+# treemonadizer (fun a c -> a :: (c a)) t1 (fun t -> []);;
+- : int list = [2; 3; 5; 7; 11]
+</pre>
+
+We have found a way of collapsing a tree into a list of its leaves.
+
+The continuation monad is amazingly flexible; we can use it to
+simulate some of the computations performed above.  To see how, first
+note that an interestingly uninteresting thing happens if we use the
+continuation unit as our first argument to `treemonadizer`, and then
+apply the result to the identity function:
+
+<pre>
+# treemonadizer continuation_unit t1 (fun x -> x);;
+- : int tree =
+Node (Node (Leaf 2, Leaf 3), Node (Leaf 5, Node (Leaf 7, Leaf 11)))
+</pre>
+
+That is, nothing happens.  But we can begin to substitute more
+interesting functions for the first argument of `treemonadizer`:
+
+<pre>
+(* Simulating the tree reader: distributing a operation over the leaves *)
+# treemonadizer (fun a c -> c (square a)) t1 (fun x -> x);;
+- : int tree =
+Node (Node (Leaf 4, Leaf 9), Node (Leaf 25, Node (Leaf 49, Leaf 121)))
+
+(* Simulating the int list tree list *)
+# treemonadizer (fun a c -> c [a; square a]) t1 (fun x -> x);;
+- : int list tree =
+Node
+ (Node (Leaf [2; 4], Leaf [3; 9]),
+  Node (Leaf [5; 25], Node (Leaf [7; 49], Leaf [11; 121])))
+
+(* Counting leaves *)
+# treemonadizer (fun a c -> 1 + c a) t1 (fun x -> 0);;
+- : int = 5
+</pre>
+
+We could simulate the tree state example too, but it would require
+generalizing the type of the continuation monad to
+
+    type ('a -> 'b -> 'c) continuation = ('a -> 'b) -> 'c;;
+