author Chris Sun, 15 Mar 2015 17:24:08 +0000 (13:24 -0400) committer Chris Sun, 15 Mar 2015 17:24:08 +0000 (13:24 -0400)

index 0f654f2..50e89ac 100644 (file)
@@ -134,8 +134,9 @@ piece, which we can think of as a function from a type to a type.
Call this type function M, and let P, Q, R, and S be variables over types.

Recall that a monad requires a singleton function 1:P-> MP, and a
Call this type function M, and let P, Q, R, and S be variables over types.

Recall that a monad requires a singleton function 1:P-> MP, and a
-composition operator >=>: (P->MQ) -> (Q->MR) -> (R->MS) that obey the
-following laws:
+composition operator >=>: (P->MQ) -> (Q->MR) -> (P->MR) [type type for
+the composition operator corrects a "type"-o from the class handout]
+that obey the following laws:

1 >=> k = k
k >=> 1 = k

1 >=> k = k
k >=> 1 = k
@@ -164,3 +165,24 @@ More specifically,
Then the obvious singleton for the Option monad is \p.Just p.  Give
(or reconstruct) the composition operator >=> we discussed in class.
Show your composition operator obeys the monad laws.
Then the obvious singleton for the Option monad is \p.Just p.  Give
(or reconstruct) the composition operator >=> we discussed in class.
Show your composition operator obeys the monad laws.
+
+2. Do the same with crossy lists.  That is, given an arbitrary type
+'a, let the boxed type be a list of objects of type 'a.  The singleton
+is `\p.[p]`, and the composition operator is
+
+     >=> (first:P->[Q]) (second:Q->[R]) :(P->[R]) = fun p -> [r | q <- first p, r <- second q]
+
+Sanity check:
+
+    f p = [x, x+1]
+    s q = [x*x, x+x]
+    >=> f s 7 = [49, 14, 64, 16]
+
+3. Do the same for zippy lists.  That is, you need to find a
+composition operator such that
+
+    f p = [x, x+1]
+    s q = [x*x, x+x]
+    >=> f s 7 = [49, 64]
+
+and then prove it obeys the monad laws.