author Jim Sun, 22 Mar 2015 12:25:55 +0000 (08:25 -0400) committer Jim Sun, 22 Mar 2015 12:25:55 +0000 (08:25 -0400)
 topics/_week8_scratch.mdwn [new file with mode: 0644] patch | blob

diff --git a/topics/_week8_scratch.mdwn b/topics/_week8_scratch.mdwn
new file mode 100644 (file)
index 0000000..6dfbdeb
--- /dev/null
@@ -0,0 +1,434 @@
+-----------------
+
+We've just seen a way to separate thinking about error conditions
+(such as trying to divide by zero) from thinking about normal
+arithmetic computations.  We did this by making use of the `option`
+type: in each place where we had something of type `int`, we put
+instead something of type `int option`, which is a sum type consisting
+either of one choice with an `int` payload, or else a `None` choice
+which we interpret as signaling that something has gone wrong.
+
+The goal was to make normal computing as convenient as possible: when
+any new errors, so we would rather not think about the difference
+between `int`s and `int option`s.  We tried to accomplish this by
+defining a `bind` operator, which enabled us to peel away the `option`
+husk to get at the delicious integer inside.  There was also a
+homework problem which made this even more convenient by defining a
+`lift` operator that mapped any binary operation on plain integers
+into a lifted operation that understands how to deal with `int
+option`s in a sensible way.
+
+So what exactly is a monad?  We can consider a monad to be a system
+that provides at least the following three elements:
+
+*      A complex type that's built around some more basic type. Usually
+       the complex type will be polymorphic, and so can apply to different basic types.
+       In our division example, the polymorphism of the `'a option` type
+       provides a way of building an option out of any other type of object.
+       People often use a container metaphor: if `u` has type `int option`,
+       then `u` is a box that (may) contain an integer.
+
+               type 'a option = None | Some of 'a;;
+
+*      A way to turn an ordinary value into a monadic value.  In OCaml, we
+       did this for any integer `x` by mapping it to
+       the option `Some x`.  In the general case, this operation is
+       known as `unit` or `return.` Both of those names are terrible. This
+       operation is only very loosely connected to the `unit` type we were
+       discussing earlier (whose value is written `()`). It's also only
+       very loosely connected to the "return" keyword in many other
+       programming languages like C. But these are the names that the literature
+       uses.  [The rationale for "unit" comes from the monad laws
+       (see below), where the unit function serves as an identity,
+       just like the unit number (i.e., 1) serves as the identity
+       object for multiplication.  The rationale for "return" comes
+       from a misguided desire to resonate with C programmers and
+       other imperative types.]
+
+       The unit/return operation is a way of lifting an ordinary object into
+       the monadic box you've defined, in the simplest way possible. You can think
+       of the singleton function as an example: it takes an ordinary object
+       and returns a set containing that object. In the example we've been
+       considering:
+
+               let unit x = Some x;;
+               val unit : 'a -> 'a option = <fun>
+
+       So `unit` is a way to put something inside of a monadic box. It's crucial
+       to the usefulness of monads that there will be monadic boxes that
+       aren't the result of that operation. In the Option/Maybe monad, for
+       instance, there's also the empty box `None`. In another (whimsical)
+       example, you might have, in addition to boxes merely containing integers,
+       special boxes that contain integers and also sing a song when they're opened.
+
+       The unit/return operation will always be the simplest, conceptually
+       most straightforward way to lift an ordinary value into a monadic value
+       of the monadic type in question.
+
+*      Thirdly, an operation that's often called `bind`. As we said before, this is another
+       unfortunate name: this operation is only very loosely connected to
+       what linguists usually mean by "binding." In our Option/Maybe monad, the
+       bind operation is:
+
+               let bind u f = match u with None -> None | Some x -> f x;;
+               val bind : 'a option -> ('a -> 'b option) -> 'b option = <fun>
+
+       Note the type: `bind` takes two arguments: first, a monadic box
+       (in this case, an `'a option`); and second, a function from
+       value: in this case, a `'b option` (you can start with, e.g., `int option`s
+       and end with `bool option`s).
+
+       Intuitively, the interpretation of what `bind` does is this:
+       the first argument is a monadic value `u`, which
+       evaluates to a box that (maybe) contains some ordinary value, call it `x`.
+       Then the second argument uses `x` to compute a new monadic
+       value.  Conceptually, then, we have
+
+               let bind u f = (let x = unbox u in f x);;
+
+       The guts of the definition of the `bind` operation amount to
+       specifying how to unbox the monadic value `u`.  In the `bind`
+       operator for the Option monad, we unboxed the monadic value by
+       matching it with the pattern `Some x`---whenever `u`
+       happened to be a box containing an integer `x`, this allowed us to
+       get our hands on that `x` and feed it to `f`.
+
+       If the monadic box didn't contain any ordinary value,
+       we instead pass through the empty box unaltered.
+
+       In a more complicated case, like our whimsical "singing box" example
+       from before, if the monadic value happened to be a singing box
+       containing an integer `x`, then the `bind` operation would probably
+       be defined so as to make sure that the result of `f x` was also
+       a singing box. If `f` also wanted to insert a song, you'd have to decide
+       whether both songs would be carried through, or only one of them.
+        (Are you beginning to realize how wierd and wonderful monads
+       can be?)
+
+       There is no single `bind` function that dictates how this must go.
+       For each new monadic type, this has to be worked out in an
+       useful way.
+
+So the "Option/Maybe monad" consists of the polymorphic `option` type, the
+`unit`/return function, and the `bind` function.
+
+
+A note on notation: Haskell uses the infix operator `>>=` to stand for
+`bind`: wherever you see `u >>= f`, that means `bind u f`.
+
+Also, if you ever see this notation:
+
+       do
+               x <- u
+               f x
+
+That's a Haskell shorthand for `u >>= (\x -> f x)`, that is, `bind u f`.
+Similarly:
+
+       do
+               x <- u
+               y <- v
+               f x y
+
+is shorthand for `u >>= (\x -> v >>= (\y -> f x y))`, that is, `bind u
+(fun x -> bind v (fun y -> f x y))`. Those who did last week's
+homework may recognize this last expression.  You can think of the
+notation like this: take the singing box `u` and evaluate it (which
+includes listening to the song).  Take the int contained in the
+singing box (the end result of evaluting `u`) and bind the variable
+`x` to that int.  So `x <- u` means "Sing me up an int, which I'll call
+`x`".
+
+(Note that the above "do" notation comes from Haskell. We're mentioning it here
+because you're likely to see it when reading about monads. (See our page on [[Translating between OCaml Scheme and Haskell]].) It won't work in
+OCaml. In fact, the `<-` symbol already means something different in OCaml,
+having to do with mutable record fields. We'll be discussing mutation someday
+soon.)
+
+As we proceed, we'll be seeing a variety of other monad systems. For example, another monad is the List monad. Here the monadic type is:
+
+       # type 'a list
+
+The `unit`/return operation is:
+
+       # let unit x = [x];;
+       val unit : 'a -> 'a list = <fun>
+
+That is, the simplest way to lift an `'a` into an `'a list` is just to make a
+singleton list of that `'a`. Finally, the `bind` operation is:
+
+       # let bind u f = List.concat (List.map f u);;
+       val bind : 'a list -> ('a -> 'b list) -> 'b list = <fun>
+
+What's going on here? Well, consider `List.map f u` first. This goes through all
+the members of the list `u`. There may be just a single member, if `u = unit x`
+for some `x`. Or on the other hand, there may be no members, or many members. In
+any case, we go through them in turn and feed them to `f`. Anything that gets fed
+to `f` will be an `'a`. `f` takes those values, and for each one, returns a `'b list`.
+For example, it might return a list of all that value's divisors. Then we'll
+have a bunch of `'b list`s. The surrounding `List.concat ( )` converts that bunch
+of `'b list`s into a single `'b list`:
+
+       # List.concat [; [1;2]; [1;3]; [1;2;4]]
+       - : int list = [1; 1; 2; 1; 3; 1; 2; 4]
+
+monadic system, there has to be a specification of the complex monad type,
+which will be parameterized on some simpler type `'a`, and the `unit`/return
+operation, and the `bind` operation. These will be different for different
+
+Many monadic systems will also define special-purpose operations that only make
+sense for that system.
+
+Although the `unit` and `bind` operation are defined differently for different
+monadic systems, there are some general rules they always have to follow.
+
+
+--------------
+
+Just like good robots, monads must obey three laws designed to prevent
+them from hurting the people that use them or themselves.
+
+*      **Left identity: unit is a left identity for the bind operation.**
+       That is, for all `f:'a -> 'b m`, where `'b m` is a monadic
+       type, we have `(unit x) >>= f == f x`.  For instance, `unit` is itself
+       a function of type `'a -> 'a m`, so we can use it for `f`:
+
+               # let unit x = Some x;;
+               val unit : 'a -> 'a option = <fun>
+               # let ( >>= ) u f = match u with None -> None | Some x -> f x;;
+               val ( >>= ) : 'a option -> ('a -> 'b option) -> 'b option = <fun>
+
+       The parentheses is the magic for telling OCaml that the
+       function to be defined (in this case, the name of the function
+       is `>>=`, pronounced "bind") is an infix operator, so we write
+       `u >>= f` or equivalently `( >>= ) u f` instead of `>>= u
+       f`.
+
+               # unit 2;;
+               - : int option = Some 2
+               # unit 2 >>= unit;;
+               - : int option = Some 2
+
+       Now, for a less trivial instance of a function from `int`s to `int option`s:
+
+               # let divide x y = if 0 = y then None else Some (x/y);;
+               val divide : int -> int -> int option = <fun>
+               # divide 6 2;;
+               - : int option = Some 3
+               # unit 2 >>= divide 6;;
+               - : int option = Some 3
+
+               # divide 6 0;;
+               - : int option = None
+               # unit 0 >>= divide 6;;
+               - : int option = None
+
+
+*      **Associativity: bind obeys a kind of associativity**. Like this:
+
+               (u >>= f) >>= g  ==  u >>= (fun x -> f x >>= g)
+
+       If you don't understand why the lambda form is necessary (the
+       "fun x -> ..." part), you need to look again at the type of `bind`.
+
+       Wadler and others try to make this look nicer by phrasing it like this,
+       where U, V, and W are schematic for any expressions with the relevant monadic type:
+
+               (U >>= fun x -> V) >>= fun y -> W  ==  U >>= fun x -> (V >>= fun y -> W)
+
+       Some examples of associativity in the Option monad (bear in
+       mind that in the Ocaml implementation of integer division, 2/3
+       evaluates to zero, throwing away the remainder):
+
+               # Some 3 >>= unit >>= unit;;
+               - : int option = Some 3
+               # Some 3 >>= (fun x -> unit x >>= unit);;
+               - : int option = Some 3
+
+               # Some 3 >>= divide 6 >>= divide 2;;
+               - : int option = Some 1
+               # Some 3 >>= (fun x -> divide 6 x >>= divide 2);;
+               - : int option = Some 1
+
+               # Some 3 >>= divide 2 >>= divide 6;;
+               - : int option = None
+               # Some 3 >>= (fun x -> divide 2 x >>= divide 6);;
+               - : int option = None
+
+       Of course, associativity must hold for *arbitrary* functions of
+       type `'a -> 'b m`, where `m` is the monad type.  It's easy to
+       convince yourself that the `bind` operation for the Option monad
+       obeys associativity by dividing the inputs into cases: if `u`
+       matches `None`, both computations will result in `None`; if
+       `u` matches `Some x`, and `f x` evalutes to `None`, then both
+       computations will again result in `None`; and if the value of
+       `f x` matches `Some y`, then both computations will evaluate
+       to `g y`.
+
+*      **Right identity: unit is a right identity for bind.**  That is,
+       `u >>= unit == u` for all monad objects `u`.  For instance,
+
+               # Some 3 >>= unit;;
+               - : int option = Some 3
+               # None >>= unit;;
+               - : 'a option = None
+
+
+-------------------------
+
+If you studied algebra, you'll remember that a *monoid* is an
+associative operation with a left and right identity.  For instance,
+the natural numbers along with multiplication form a monoid with 1
+serving as the left and right identity.  That is, `1 * u == u == u * 1` for all
+`u`, and `(u * v) * w == u * (v * w)` for all `u`, `v`, and `w`.  As
+presented here, a monad is not exactly a monoid, because (unlike the
+arguments of a monoid operation) the two arguments of the bind are of
+different types.  But it's possible to make the connection between
+monads and monoids much closer. This is discussed in [Monads in Category
+
+See also:
+
+
+
+Here are some papers that introduced monads into functional programming:
+
+*      [Eugenio Moggi, Notions of Computation and Monads](http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf): Information and Computation 93 (1) 1991. Would be very difficult reading for members of this seminar. However, the following two papers should be accessible.
+
+invited talk, *19'th Symposium on Principles of Programming Languages*, ACM Press, Albuquerque, January 1992.
+<!--   This paper explores the use monads to structure functional programs. No prior knowledge of monads or category theory is required.
+       Monads increase the ease with which programs may be modified. They can mimic the effect of impure features such as exceptions, state, and continuations; and also provide effects not easily achieved with such features. The types of a program reflect which effects occur.
+       The first section is an extended example of the use of monads. A simple interpreter is modified to support various extra features: error messages, state, output, and non-deterministic choice. The second section describes the relation between monads and continuation-passing style. The third section sketches how monads are used in a compiler for Haskell that is written in Haskell.-->
+
+in M. Broy, editor, *Marktoberdorf Summer School on Program Design
+Calculi*, Springer Verlag, NATO ASI Series F: Computer and systems
+sciences, Volume 118, August 1992. Also in J. Jeuring and E. Meijer,
+editors, *Advanced Functional Programming*, Springer Verlag,
+LNCS 925, 1995. Some errata fixed August 2001.
+<!--   The use of monads to structure functional programs is described. Monads provide a convenient framework for simulating effects found in other languages, such as global state, exception handling, output, or non-determinism. Three case studies are looked at in detail: how monads ease the modification of a simple evaluator; how monads act as the basis of a datatype of arrays subject to in-place update; and how monads can be used to build parsers.-->
+
+
+There's a long list of monad tutorials on the [[Offsite Reading]] page. (Skimming the titles is somewhat amusing.) If you are confused by monads, make use of these resources. Read around until you find a tutorial pitched at a level that's helpful for you.
+
+In the presentation we gave above---which follows the functional programming conventions---we took `unit`/return and `bind` as the primitive operations. From these a number of other general monad operations can be derived. It's also possible to take some of the others as primitive. The [Monads in Category
+
+Here are some of the other general monad operations. You don't have to master these; they're collected here for your reference.
+
+You may sometimes see:
+
+       u >> v
+
+That just means:
+
+       u >>= fun _ -> v
+
+that is:
+
+       bind u (fun _ -> v)
+
+You could also do `bind u (fun x -> v)`; we use the `_` for the function argument to be explicit that that argument is never going to be used.
+
+The `lift` operation we asked you to define for last week's homework is a common operation. The second argument to `bind` converts `'a` values into `'b m` values---that is, into instances of the monadic type. What if we instead had a function that merely converts `'a` values into `'b` values, and we want to use it with our monadic type? Then we "lift" that function into an operation on the monad. For example:
+
+       # let even x = (x mod 2 = 0);;
+       val g : int -> bool = <fun>
+
+`even` has the type `int -> bool`. Now what if we want to convert it into an operation on the Option/Maybe monad?
+
+       # let lift g = fun u -> bind u (fun x -> Some (g x));;
+       val lift : ('a -> 'b) -> 'a option -> 'b option = <fun>
+
+`lift even` will now be a function from `int option`s to `bool option`s. We can
+also define a lift operation for binary functions:
+
+       # let lift2 g = fun u v -> bind u (fun x -> bind v (fun y -> Some (g x y)));;
+       val lift2 : ('a -> 'b -> 'c) -> 'a option -> 'b option -> 'c option = <fun>
+
+`lift2 (+)` will now be a function from `int option`s  and `int option`s to `int option`s. This should look familiar to those who did the homework.
+
+The `lift` operation (just `lift`, not `lift2`) is sometimes also called the `map` operation. (In Haskell, they say `fmap` or `<\$>`.) And indeed when we're working with the List monad, `lift f` is exactly `List.map f`!
+
+Wherever we have a well-defined monad, we can define a lift/map operation for that monad. The examples above used `Some (g x)` and so on; in the general case we'd use `unit (g x)`, using the specific `unit` operation for the monad we're working with.
+
+In general, any lift/map operation can be relied on to satisfy these laws:
+
+       * lift id = id
+       * lift (compose f g) = compose (lift f) (lift g)
+
+where `id` is `fun x -> x` and `compose f g` is `fun x -> f (g x)`. If you think about the special case of the map operation on lists, this should make sense. `List.map id lst` should give you back `lst` again. And you'd expect these
+two computations to give the same result:
+
+       List.map (fun x -> f (g x)) lst
+       List.map f (List.map g lst)
+
+Another general monad operation is called `ap` in Haskell---short for "apply." (They also use `<*>`, but who can remember that?) This works like this:
+
+       ap [f] [x; y] = [f x; f y]
+       ap (Some f) (Some x) = Some (f x)
+
+and so on. Here are the laws that any `ap` operation can be relied on to satisfy:
+
+       ap (unit id) u = u
+       ap (ap (ap (unit compose) u) v) w = ap u (ap v w)
+       ap (unit f) (unit x) = unit (f x)
+       ap u (unit x) = ap (unit (fun f -> f x)) u
+
+Another general monad operation is called `join`. This is the operation that takes you from an iterated monad to a single monad. Remember when we were explaining the `bind` operation for the List monad, there was a step where
+we went from:
+
+       [; [1;2]; [1;3]; [1;2;4]]
+
+to:
+
+       [1; 1; 2; 1; 3; 1; 2; 4]
+
+That is the `join` operation.
+
+All of these operations can be defined in terms of `bind` and `unit`; or alternatively, some of them can be taken as primitive and `bind` can be defined in terms of them. Here are various interdefinitions:
+
+       lift f u = u >>= compose unit f
+       lift f u = ap (unit f) u
+       lift2 f u v = u >>= (fun x -> v >>= (fun y -> unit (f x y)))
+       lift2 f u v = ap (lift f u) v = ap (ap (unit f) u) v
+       ap u v = u >>= (fun f -> lift f v)
+       ap u v = lift2 id u v
+       join m2 = m2 >>= id
+       u >>= f = join (lift f u)
+       u >> v = u >>= (fun _ -> v)
+       u >> v = lift2 (fun _ -> id) u v
+
+
+
+-------------
+
+We're going to be using monads for a number of different things in the
+weeks to come.  One major application will be the State monad,
+which will enable us to model mutation: variables whose values appear
+to change as the computation progresses.  Later, we will study the