author jim Mon, 23 Feb 2015 19:17:05 +0000 (14:17 -0500) committer Linux User Mon, 23 Feb 2015 19:17:05 +0000 (14:17 -0500)

index 7530534..6aa5d75 100644 (file)
@@ -238,23 +238,6 @@ Reduce the following forms, if possible:
Using the mapping specified in this week's notes, translate the following lambda terms into combinatory logic:

-
-Let's say that for any lambda term T, [T] is the equivalent Combinatory Logic term. Then we define the [.] mapping as follows.
-
- 1. [a]          =   a
- 2. [(\aX)]      =   @a[X]
- 3. [(XY)]       =   ([X][Y])
-
-Wait, what is that @a ... business? Well, that's another operation on (a variable and) a CL expression, that we can define like this:
-
- 4. @aa          =   I
- 5. @aX          =   KX           if a is not in X
- 6. @a(Xa)       =   X            if a is not in X
- 7. @a(XY)       =   S(@aX)(@aY)
-
-
-
-
<ol start=19>
<li><code>[\x x] = @x x = I</code>
<li><code>[\x y. x] = @x [\y. x] = @x. (@y x) = @x (Kx) = S (@x K) (@x x) = S (KK) I</code>; in general expressions of this form <code>S(K<i>M</i>)I</code> will behave just like <code><i>M</i></code> for any expression <code><i>M</i></code>