author jim Fri, 20 Feb 2015 18:14:19 +0000 (13:14 -0500) committer Linux User Fri, 20 Feb 2015 18:14:19 +0000 (13:14 -0500)

index 441d773..fd9816d 100644 (file)
@@ -47,10 +47,6 @@ For instance, `fact 0 ~~> 1`, `fact 1 ~~> 1`, `fact 2 ~~> 2`, `fact 3 ~~>
fac 4

6.  For this question, we want to implement **sets** of numbers in terms of lists of numbers, where we make sure as we construct those lists that they never contain a single number more than once. (It would be even more efficient if we made sure that the lists were always sorted, but we won't try to implement that refinement here.) To enforce the idea of modularity, let's suppose you don't know the details of how the lists are implemented. You just are given the functions defined below for them (but pretend you don't see the actual definitions). These define lists in terms of [[one of the new encodings discussed last week|/topics/week3_lists#v5-lists]].
-    <!--
-    let head = \xs. xs (\y ys. y) err in
-    let tail = \xs. xs (\y ys. ys) empty in
-    -->

; all functions from the previous question, plus
; `num_cmp x y lt eq gt` returns lt when x<y, eq when x==y, gt when x>y
@@ -66,6 +62,8 @@ For instance, `fact 0 ~~> 1`, `fact 1 ~~> 1`, `fact 2 ~~> 2`, `fact 3 ~~>
let empty = \f n. n in
let cons = \x xs. \f n. f x xs in
let empty? = \xs. xs (\y ys. false) true in
+        let tail = \xs. xs (\y ys. ys) empty in
+        let append = Y (\append. \xs zs. xs (\y ys. (cons y (append ys zs))) zs) in
let take_while = Y (\take_while. \p xs. xs (\y ys. (p y) (cons y (take_while p ys)) empty) empty) in
let drop_while = Y (\drop_while. \p xs. xs (\y ys. (p y) (drop_while p ys) xs) empty) in
...
@@ -74,7 +72,7 @@ For instance, `fact 0 ~~> 1`, `fact 1 ~~> 1`, `fact 2 ~~> 2`, `fact 3 ~~>

Using those resources, define a `set_cons` and a `set_equal?` function. The first should take a number argument `x` and a set argument `xs` (implemented as a list of numbers assumed to have no repeating elements), and return a (possibly new) set argument which contains `x`. (But make sure `x` doesn't appear in the result twice!) The `set_equal?` function should take two set arguments `xs` and `ys` and say whether they represent the same set. (Be careful, the lists `[1, 2]` and `[2, 1]` are different lists but do represent the same set. Hence, you can't just use the `list_equal?` function you defined in last week's homework.)

-    Here are some tips for getting started. Use `drop_while` and `num_equal?` to define a `mem?` function that returns `true` if number `x` is a member of a list of numbers `xs`, else returns `false`. Also use `take_while` and `drop_while` to define a `without` function that returns a copy of a list of numbers `xs` that omits the first occurrence of a number `x`, if there be such. You may find these functions `mem?` and `without` useful in defining `set_cons` and `set_equal?`. Also, for `set_equal?`, you are probably going to want to define the function recursively... as now you know how to do.
+    Here are some tips for getting started. Use `drop_while`, `num_equal?`, and `empty?` to define a `mem?` function that returns `true` if number `x` is a member of a list of numbers `xs`, else returns `false`. Also use `take_while`, `drop_while`, `num_equal?`, `tail` and `append` to define a `without` function that returns a copy of a list of numbers `xs` that omits the first occurrence of a number `x`, if there be such. You may find these functions `mem?` and `without` useful in defining `set_cons` and `set_equal?`. Also, for `set_equal?`, you are probably going to want to define the function recursively... as now you know how to do.