author jim Mon, 23 Feb 2015 06:00:16 +0000 (01:00 -0500) committer Linux User Mon, 23 Feb 2015 06:00:16 +0000 (01:00 -0500)

index e0ecf97..57b6d4d 100644 (file)
@@ -2,21 +2,22 @@

## Lists and List Comprehensions

-1. In Kapulet, what does `[ [x, 2*x] | x from [1, 2, 3] ]` evaluate to?
+1.  In Kapulet, what does `[ [x, 2*x] | x from [1, 2, 3] ]` evaluate to?

-2. What does `[ 10*x + y | y from , x from [1, 2, 3] ]` evalaute to?
+2.  What does `[ 10*x + y | y from , x from [1, 2, 3] ]` evalaute to?

-3. Using either Kapulet's or Haskell's list comprehension syntax, write an expression that transforms `[3, 1, 0, 2]` into `[3, 3, 3, 1, 2, 2]`. [[Here is a hint|assignment3 hint1]], if you need it.
+3.  Using either Kapulet's or Haskell's list comprehension syntax, write an expression that transforms `[3, 1, 0, 2]` into `[3, 3, 3, 1, 2, 2]`. [[Here is a hint|assignment3 hint1]], if you need it.

-4. Last week you defined `head` in terms of `fold_right`. Your solution should be straightforwardly translatable into one that uses our proposed right-fold encoding of lists in the Lambda Calculus. Now define `empty?` in the Lambda Calculus. (It should require only small modifications to your solution for `head`.)
+4.  Last week you defined `head` in terms of `fold_right`. Your solution should be straightforwardly translatable into one that uses our proposed right-fold encoding of lists in the Lambda Calculus. Now define `empty?` in the Lambda Calculus. (It should require only small modifications to your solution for `head`.)

-5. If we encode lists in terms of their *left*-folds, instead, `[a, b, c]` would be encoded as `\f z. f (f (f z a) b) c`. The empty list `[]` would still be encoded as `\f z. z`. What should `cons` be, for this encoding?
+5.  If we encode lists in terms of their *left*-folds, instead, `[a, b, c]` would be encoded as `\f z. f (f (f z a) b) c`. The empty list `[]` would still be encoded as `\f z. z`. What should `cons` be, for this encoding?

-6. Continuing to encode lists in terms of their left-folds, what should `last` be, where `last [a, b, c]` should result in `c`. Let `last []` result in whatever `err` is bound to.
+6.  Continuing to encode lists in terms of their left-folds, what should `last` be, where `last [a, b, c]` should result in `c`. Let `last []` result in whatever `err` is bound to.

-7. Continuing to encode lists in terms of their left-folds, how should we write `head`? This is challenging. [[Here is a solution|assignment3 hint2]], if you need help.
+7.  Continuing to encode lists in terms of their left-folds, how should we write `head`? This is challenging. [[Here is a solution|assignment3 hint2]], if you need help.
+
+8.  Suppose you have two lists of integers, `left` and `right`. You want to determine whether those lists are equal, that is, whether they have all the same members in the same order. How would you implement such a list comparison? You can write it in Scheme or Kapulet using `letrec`, or if you want more of a challenge, in the Lambda Calculus using your preferred encoding for lists. If you write it in Scheme, don't rely on applying the built-in comparison operator `equal?` to the lists themselves. (Nor on the operator `eqv?`, which might not do what you expect.) You can however rely on the comparison operator `=` which accepts only number arguments. If you write it in the Lambda Calculus, you can use your implementation of `leq`, requested below, to write an equality operator for Church-encoded numbers. [[Here is a hint|assignment3 hint3]], if you need it.

-8. Suppose you have two lists of integers, `left` and `right`. You want to determine whether those lists are equal, that is, whether they have all the same members in the same order. How would you implement such a list comparison? You can write it in Scheme or Kapulet using `letrec`, or if you want more of a challenge, in the Lambda Calculus using your preferred encoding for lists. If you write it in Scheme, don't rely on applying the built-in comparison operator `equal?` to the lists themselves. (Nor on the operator `eqv?`, which might not do what you expect.) You can however rely on the comparison operator `=` which accepts only number arguments. If you write it in the Lambda Calculus, you can use your implementation of `leq`, requested below, to write an equality operator for Church-encoded numbers. [[Here is a hint|assignment3 hint3]], if you need it.

## Numbers