author Chris Barker Sat, 4 Dec 2010 16:35:38 +0000 (11:35 -0500) committer Chris Barker Sat, 4 Dec 2010 16:35:38 +0000 (11:35 -0500)

index ba990d1..52b8508 100644 (file)
@@ -3,11 +3,13 @@
------------------------------

-This topic develops an idea based on a detailed suggestion of Ken
-Shan's.  We'll build a series of functions that operate on trees,
-doing various things, including replacing leaves, counting nodes, and
-converting a tree to a list of leaves.  The end result will be an
-application for continuations.
+This topic develops an idea based on a suggestion of Ken Shan's.
+We'll build a series of functions that operate on trees, doing various
+with a State monad, replacing leaves with a List monad, and converting
+a tree into a list of leaves with a Continuation monad.  It will turn
+out that the continuation monad can simulate the behavior of each of

From an engineering standpoint, we'll build a tree transformer that
deals in monads.  We can modify the behavior of the system by swapping
@@ -30,7 +32,7 @@ We'll be using trees where the nodes are integers, e.g.,

let t1 = Node (Node (Leaf 2, Leaf 3),
Node (Leaf 5, Node (Leaf 7,
-                                             Leaf 11)))
+                                           Leaf 11)))
.
___|___
|     |
@@ -71,10 +73,11 @@ structure of the tree unchanged.  For instance:
14   22

We could have built the doubling operation right into the `tree_map`
-code.  However, because we've left what to do to each leaf as a parameter, we can
-decide to do something else to the leaves without needing to rewrite
-`tree_map`.  For instance, we can easily square each leaf instead by
-supplying the appropriate `int -> int` operation in place of `double`:
+code.  However, because we've made what to do to each leaf a
+parameter, we can decide to do something else to the leaves without
+needing to rewrite `tree_map`.  For instance, we can easily square
+each leaf instead by supplying the appropriate `int -> int` operation
+in place of `double`:

let square i = i * i;;
tree_map square t1;;
@@ -106,14 +109,25 @@ updated tree.
f 7  f 11

That is, we want to transform the ordinary tree `t1` (of type `int
-tree`) into a reader object of type `(int -> int) -> int tree`: something
-that, when you apply it to an `int -> int` function `f` returns an `int
-tree` in which each leaf `i` has been replaced with `f i`.
-
-With previous readers, we always knew which kind of environment to
-expect: either an assignment function (the original calculator
-simulation), a world (the intensionality monad), an integer (the
-Jacobson-inspired link monad), etc.  In the present case, we expect that our "environment" will be some function of type `int -> int`. "Looking up" some `int` in the environment will return us the `int` that comes out the other side of that function.
+tree`) into a reader monadic object of type `(int -> int) -> int
+tree`: something that, when you apply it to an `int -> int` function
+`f` returns an `int tree` in which each leaf `i` has been replaced
+with `f i`.
+
+[Application note: this kind of reader object could provide a model
+for Kaplan's characters.  It turns an ordinary tree into one that
+expects contextual information (here, the `&lambda; f`) that can be
+used to compute the content of indexicals embedded arbitrarily deeply
+in the tree.]
+
+which kind of environment to expect: either an assignment function, as
+in the original calculator simulation; a world, as in the
+monad; etc.  In the present case, we expect that our "environment"
+will be some function of type `int -> int`. "Looking up" some `int` in
+the environment will return us the `int` that comes out the other side
+of that function.

type 'a reader = (int -> int) -> 'a;;  (* mnemonic: e for environment *)
let reader_unit (a : 'a) : 'a reader = fun _ -> a;;
@@ -218,14 +232,21 @@ Then we can count the number of leaves in the tree:
___|___
|     |
.     .
-       _|__  _|__
+       _|__  _|__         , 5
|  |  |  |
2  3  5  .
_|__
|  |
7  11

-Why does this work? Because the operation `fun a -> fun s -> (a, s+1)` takes an `int` and wraps it in an `int state` monadic box that increments the state. When we give that same operations to our `tree_monadize` function, it then wraps an `int tree` in a box, one that does the same state-incrementing for each of its leaves.
+Note that the value returned is a pair consisting of a tree and an
+integer, 5, which represents the count of the leaves in the tree.
+
+Why does this work? Because the operation `fun a -> fun s -> (a, s+1)`
+takes an `int` and wraps it in an `int state` monadic box that
+increments the state. When we give that same operations to our
+`tree_monadize` function, it then wraps an `int tree` in a box, one
+that does the same state-incrementing for each of its leaves.

One more revealing example before getting down to business: replacing
`state` everywhere in `tree_monadize` with `list` gives us
@@ -240,11 +261,11 @@ Unlike the previous cases, instead of turning a tree into a function
from some input to a result, this transformer replaces each `int` with
a list of `int`'s. We might also have done this with a Reader monad, though then our environments would need to be of type `int -> int list`. Experiment with what happens if you supply the `tree_monadize` based on the List monad an operation like `fun -> [ i; [2*i; 3*i] ]`. Use small trees for your experiment.

-
-<!--
-FIXME: We don't make it clear why the fun has to be int -> int list list, instead of int -> int list
--->
-
+[Why is the argument to tree_monadize `int -> int list list` instead
+of `int -> int list`?  Well, as usual, the List monad bind operation
+will erase the outer list box, so if we want to replace the leaves
+with lists, we have to nest the replacement lists inside a disposable
+box.]

Now for the main point.  What if we wanted to convert a tree to a list
of leaves?
@@ -311,7 +332,8 @@ The Binary Tree monad
---------------------

Of course, by now you may have realized that we have discovered a new