spawned off 'using contin to solve same fringe'
[lambda.git] / using_continuations_to_solve_same_fringe.mdwn
diff --git a/using_continuations_to_solve_same_fringe.mdwn b/using_continuations_to_solve_same_fringe.mdwn
new file mode 100644 (file)
index 0000000..b65add6
--- /dev/null
@@ -0,0 +1,130 @@
+Using continuations to solve the same fringe problem
+----------------------------------------------------
+
+We've seen two solutions to the same fringe problem so far.  
+The problem, recall, is to take two trees and decide whether they have
+the same leaves in the same order.
+
+<pre>
+ ta            tb          tc
+ .             .           .
+_|__          _|__        _|__
+|  |          |  |        |  |
+1  .          .  3        1  .
+  _|__       _|__           _|__
+  |  |       |  |           |  |
+  2  3       1  2           3  2
+
+let ta = Node (Leaf 1, Node (Leaf 2, Leaf 3));;
+let tb = Node (Node (Leaf 1, Leaf 2), Leaf 3);;
+let tc = Node (Leaf 1, Node (Leaf 3, Leaf 2));;
+</pre>
+
+So `ta` and `tb` are different trees that have the same fringe, but
+`ta` and `tc` are not.
+
+The simplest solution is to map each tree to a list of its leaves,
+then compare the lists.  But because we will have computed the entire
+fringe before starting the comparison, if the fringes differ in an
+early position, we've wasted our time examining the rest of the trees.
+
+The second solution was to use tree zippers and mutable state to
+simulate coroutines (see [[coroutines and aborts]]).  In that
+solution, we pulled the zipper on the first tree until we found the
+next leaf, then stored the zipper structure in the mutable variable
+while we turned our attention to the other tree.  Because we stopped
+as soon as we find the first mismatched leaf, this solution does not
+have the flaw just mentioned of the solution that maps both trees to a
+list of leaves before beginning comparison.
+
+Since zippers are just continuations reified, we expect that the
+solution in terms of zippers can be reworked using continuations, and
+this is indeed the case.  Before we can arrive at a solution, however,
+we must define a data structure called a stream:
+
+    type 'a stream = End | Next of 'a * (unit -> 'a stream);;
+
+A stream is like a list in that it contains a series of objects (all
+of the same type, here, type `'a`).  The first object in the stream
+corresponds to the head of a list, which we pair with a stream
+representing the rest of a the list.  There is a special stream called
+`End` that represents a stream that contains no (more) elements,
+analogous to the empty list `[]`.  
+
+Actually, we pair each element not with a stream, but with a thunked
+stream, that is, a function from the unit type to streams.  The idea
+is that the next element in the stream is not computed until we forced
+the thunk by applying it to the unit:
+
+<pre>
+# let rec make_int_stream i = Next (i, fun () -> make_int_stream (i + 1));;
+val make_int_stream : int -> int stream = <fun>
+# let int_stream = make_int_stream 1;;
+val int_stream : int stream = Next (1, <fun>)         (* First element: 1 *)
+# match int_stream with Next (i, rest) -> rest;;      
+- : unit -> int stream = <fun>                        (* Rest: a thunk *)
+
+(* Force the thunk to compute the second element *)
+# (match int_stream with Next (i, rest) -> rest) ();;
+- : int stream = Next (2, <fun>)      
+</pre>
+
+You can think of `int_stream` as a functional object that provides
+access to an infinite sequence of integers, one at a time.  It's as if
+we had written `[1;2;...]` where `...` meant "continue indefinitely".
+
+So, with streams in hand, we need only rewrite our continuation tree
+monadizer so that instead of mapping trees to lists, it maps them to 
+streams.  Instead of 
+
+       # tree_monadize (fun a k -> a :: k a) t1 (fun t -> []);;
+       - : int list = [2; 3; 5; 7; 11]
+
+as above, we have 
+
+        # tree_monadize (fun i k -> Next (i, fun () -> k ())) t1 (fun _ -> End);;
+        - : int stream = Next (2, <fun>)
+
+We can see the first element in the stream, the first leaf (namely,
+2), but in order to see the next, we'll have to force a thunk.
+
+Then to complete the same-fringe function, we simply convert both
+trees into leaf-streams, then compare the streams element by element.
+The code is enitrely routine, but for the sake of completeness, here it is:
+
+<pre>
+let rec compare_streams stream1 stream2 =
+    match stream1, stream2 with 
+    | End, End -> true (* Done!  Fringes match. *)
+    | Next (next1, rest1), Next (next2, rest2) when next1 = next2 -> compare_streams (rest1 ()) (rest2 ())
+    | _ -> false;;
+
+let same_fringe t1 t2 =
+  let stream1 = tree_monadize (fun i k -> Next (i, fun () -> k ())) t1 (fun _ -> End) in 
+  let stream2 = tree_monadize (fun i k -> Next (i, fun () -> k ())) t2 (fun _ -> End) in 
+  compare_streams stream1 stream2;;
+</pre>
+
+Notice the forcing of the thunks in the recursive call to
+`compare_streams`.  So indeed:
+
+<pre>
+# same_fringe ta tb;;
+- : bool = true
+# same_fringe ta tc;;
+- : bool = false
+</pre>
+
+Now, this implementation is a bit silly, since in order to convert the
+trees to leaf streams, our tree_monadizer function has to visit every
+node in the tree.  But if we needed to compare each tree to a large
+set of other trees, we could arrange to monadize each tree only once,
+and then run compare_streams on the monadized trees.
+
+By the way, what if you have reason to believe that the fringes of
+your trees are more likely to differ near the right edge than the left
+edge?  If we reverse evaluation order in the tree_monadizer function,
+as shown above when we replaced leaves with their ordinal position,
+then the resulting streams would produce leaves from the right to the
+left.
+