publishing eval CL
[lambda.git] / topics / _week7_eval_cl.mdwn
diff --git a/topics/_week7_eval_cl.mdwn b/topics/_week7_eval_cl.mdwn
deleted file mode 100644 (file)
index 65b0200..0000000
+++ /dev/null
@@ -1,388 +0,0 @@
-<!-- λ Λ ∀ ≡ α β ω Ω -->
-
-[[!toc levels=2]]
-
-# Reasoning about evaluation order in Combinatory Logic
-
-We've discussed [[evaluation order|topics/week3_evaluation_order]]
-before, primarily in connection with the untyped lambda calculus.
-Whenever a term contains more than one redex, we have to choose which
-one to reduce, and this choice can make a difference.  For instance,
-recall that 
-
-    Ω == ωω == (\x.xx)(\x.xx), so
-
-    ((\x.I)Ω) == ((\x.I)((\x.xx)(\x.xx)))
-                   *      *
-
-There are two redexes in this term; we've marked the operative lambda
-with a star.  If we reduce the leftmost redex first, the term reduces
-to the normal form `I` in one step.  But if we reduce the left most
-redex instead, the "reduced" form is `(\x.I)Ω` again, and we are in
-danger of entering an infinite loop.
-
-Thanks to the recent introduction of sum types (disjoint union), we
-are now in a position to gain a deeper understanding of evaluation
-order by reasoning explicitly about evaluation by writing a program
-that evaluates terms.
-
-One thing we'll see is that it is all too easy for the evaluation
-order properties of an evaluator to depend on the evaluation order
-properties of the programming language in which the evaluator is
-written.  We would like to write an evaluator in which the order of
-evaluation is insensitive to the evaluator language.  The goal is to
-find an order-insensitive way to reason about evaluation order.  We
-will not fully succeed in this first attempt, but we will make good
-progress.
-
-The first evaluator we will develop will evaluate terms in Combinatory
-Logic.  This significantly simplifies the discussion, since we won't
-need to worry about variables or substitution.  As we develop and
-extend our evaluator in future weeks, we'll switch to lambdas, but for
-now, working with the simplicity of Combinatory Logic will make it
-easier to highlight evaluation order issues.
-
-A brief review of Combinatory Logic: a term in CL is the combination
-of three basic expressions, `S`, `K`, and `I`, governed by the
-following reduction rules:
-
-    Ia ~~> a
-    Kab ~~> a
-    Sabc ~~> ac(bc)
-
-where `a`, `b`, and `c` stand for an arbitrary term of CL.  We've seen
-how to embed the untyped lambda calculus in CL, so it's no surprise
-that evaluation order issues arise in CL.  To illustrate, we'll use
-the following definition:
-
-    skomega = SII
-    Skomega = skomega skomega == SII(SII)
-            ~~> I(SII)(I(SII))
-            ~~> SII(SII)
-
-We'll use the same symbol, `Ω`, for Omega and Skomega: in a lambda
-term, `Ω` refers to Omega, but in a CL term, `Ω` refers to Skomega as
-defined here.
-
-Just as in the corresponding term in the lambda calculus, CL terms can
-contain more than one redex:
-
-    KIΩ == KI(SII(SII))
-           *  *
-
-we can choose to reduce the leftmost redex by applying the reduction
-rule for `K`, in which case the term reduces to the normal form `I` in
-one step; or we can choose to reduce the Skomega part, by applying the
-reduction rule `S`, in which case we do not get a normal form, and
-we're headed towards an infinite loop.
-
-With sum types, we can define CL terms in OCaml as follows:
-
-    type term = I | K | S | App of (term * term)
-
-    let skomega = App (App (App (S, I), I), App (App (S, I), I))
-
-This type definition says that a term in CL is either one of the three
-simple expressions (`I`, `K`, or `S`), or else a pair of CL
-expressions.  `App` stands for Functional Application.  With this type
-definition, we can encode skomega, as well as other terms whose
-reduction behavior we want to try to control.
-
-Using pattern matching, it is easy to code the one-step reduction
-rules for CL:
-
-    let reduce_one_step (t:term):term = match t with
-        App(I,a) -> a
-      | App(App(K,a),b) -> a
-      | App(App(App(S,a),b),c) -> App(App(a,c),App(b,c))
-      | _ -> t
-
-    # reduce_one_step (App(App(K,S),I));;
-    - : term = S
-    # reduce_one_step skomega;;
-    - : term = App (App (I, App (App (S, I), I)), App (I, App (App (S, I), I)))
-
-The definition of `reduce_one_step` explicitly says that it expects
-its input argument `t` to have type `term`, and the second `:term`
-says that the type of the output it delivers as a result will be of
-type `term`.
-
-The type constructor `App` obscures things a bit, but it's still
-possible to see how the one-step reduction function is just the
-reduction rules for CL.  The OCaml interpreter shows us that the
-function faithfully recognizes that `KSI ~~> S`, and `skomega ~~>
-I(SII)(I(SII))`.
-
-We can now say precisely what it means to be a redex in CL.
-
-    let is_redex (t:term):bool = not (t = reduce_one_step t)
-
-    # is_redex K;;
-    - : bool = false
-    # is_redex (App(K,I));;
-    - : bool = false
-    # is_redex (App(App(K,I),S));;
-    - : bool = true
-    # is_redex skomega;;
-    - : book = true
-
-Warning: this definition relies on the accidental fact that the
-one-step reduction of a CL term is never identical to the original
-term.  This would not work for the untyped lambda calculus, since
-`((\x.xx)(\x.xx)) ~~> ((\x.xx)(\x.xx))` in one step.
-
-Note that in order to decide whether two terms are equal, OCaml has to
-recursively compare the elements of complex CL terms.  It is able to
-figure out how to do this because we provided an explicit definition
-of the datatype `term`.
-
-As you would expect, a term in CL is in normal form when it contains
-no redexes (analogously for head normal form, weak head normal form, etc.)
-
-In order to fully reduce a term, we need to be able to reduce redexes
-that are not at the top level of the term.
-Because we need to process subparts, and because the result after
-processing a subpart may require further processing, the recursive
-structure of our evaluation function has to be somewhat subtle.  To
-truly understand, you will need to do some sophisticated thinking
-about how recursion works.  
-
-We'll develop our full reduction function in two stages.  Once we have
-it working, we'll then consider a variant.  
-
-    let rec reduce_stage1 (t:term):term = 
-      if (is_redex t) then reduce_stage1 (reduce_one_step t)
-                      else t
-
-If the input is a redex, we ship it off to `reduce_one_step` for
-processing.  But just in case the result of the one-step reduction is
-itself a redex, we recursively call `reduce_stage1`.  The recursion
-will continue until the result is no longer a redex.  We're aiming at
-allowing the evaluator to recognize that
-
-    I (I K) ~~> I K ~~> K
-
-When trying to understand how recursive functions work, it can be
-extremely helpful to examining an execution trace of inputs and
-outputs.
-
-    # #trace reduce_stage1;;
-    reduce_stage1 is now traced.
-    # reduce_stage1 (App (I, App (I, K)));;
-    reduce_stage1 <-- App (I, App (I, K))
-      reduce_stage1 <-- App (I, K)
-        reduce_stage1 <-- K
-        reduce_stage1 --> K
-      reduce_stage1 --> K
-    reduce_stage1 --> K
-    - : term = K
-
-In the trace, "`<--`" shows the input argument to a call to
-`reduce_stage1`, and "`-->`" shows the output result.
-
-Since the initial input (`I(IK)`) is a redex, the result after the
-one-step reduction is `IK`.  We recursively call `reduce_stage1` on
-this input.  Since `IK` is itself a redex, the result after one-step
-reduction is `K`.  We recursively call `reduce_stage1` on this input.  Since
-`K` is not a redex, the recursion bottoms out, and we return the
-result.
-
-But this function doesn't do enough reduction.  We want to recognize
-the following reduction path:
-
-    I I K ~~> I K ~~> K
-
-But the reduction function as written above does not deliver this result:
-
-    # reduce_stage1 (App (App (I, I), K));;
-    - : term = App (App (I, I), K)
-
-Because the top-level term is not a redex to start with,
-`reduce_stage1` returns it without any evaluation.  What we want is to
-evaluate the subparts of a complex term.  We'll do this by evaluating
-the subparts of the top-level expression.
-
-    let rec reduce (t:term):term = match t with
-        I -> I
-      | K -> K
-      | S -> S
-      | App (a, b) -> 
-          let t' = App (reduce a, reduce b) in
-            if (is_redex t') then reduce 2 (reduce_one_step t')
-                             else t'
-
-Since we need access to the subterms, we do pattern matching on the
-input.  If the input is simple (the first three `match` cases), we
-return it without further processing.  But if the input is complex, we
-first process the subexpressions, and only then see if we have a redex
-at the top level.  To understand how this works, follow the trace
-carefully:
-
-    # reduce (App(App(I,I),K));;
-    reduce <-- App (App (I, I), K)
-
-      reduce <-- K          ; first main recursive call
-      reduce --> K
-
-      reduce <-- App (I, I)  ; second main recursive call
-        reduce <-- I
-        reduce --> I
-        reduce <-- I
-        reduce --> I
-        reduce <-- I
-        reduce --> I
-      reduce --> I
-
-      reduce <-- K           ; third 
-      reduce --> K
-    reduce --> K
-    - : term = K
-
-Ok, there's a lot going on here.  Since the input is complex, the
-first thing the function does is construct `t'`.  In order to do this,
-it must reduce the two main subexpressions, `II` and `K`.  
-
-There are three recursive calls to the `reduce` function, each of
-which gets triggered during the processing of this example.  They have
-been marked in the trace.  
-
-The don't quite go in the order in which they appear in the code,
-however!  We see from the trace that it begins with the right-hand
-expression, `K`.  We didn't explicitly tell it to begin with the
-right-hand subexpression, so control over evaluation order is starting
-to spin out of our control.  (We'll get it back later, don't worry.)
-
-In any case, in the second main recursive call, we evaluate `II`.  The
-result is `I`.  
-
-At this point, we have constructed `t' == App(I,K)`.  Since that's a
-redex, we ship it off to reduce_one_step, getting the term `K` as a
-result.  The third recursive call checks that there is no more
-reduction work to be done (there isn't), and that's our final result.
-
-You can see in more detail what is going on by tracing both reduce
-and reduce_one_step, but that makes for some long traces.
-
-So we've solved our first problem: reduce recognizes that `IIK ~~>
-K`, as desired.
-
-Because the OCaml interpreter evaluates each subexpression in the
-course of building `t'`, however, it will always evaluate the right
-hand subexpression, whether it needs to or not.  And sure enough,
-
-    # reduce (App(App(K,I),skomega));;
-      C-c C-cInterrupted.
-
-Running the evaluator with this input leads to an infinite loop, and
-the only way to get out is to kill the interpreter with control-c.
-
-Instead of performing the leftmost reduction first, and recognizing 
-that this term reduces to the normal form `I`, we get lost endlessly
-trying to reduce skomega.
-
-## Laziness is hard to overcome
-
-To emphasize that our evaluation order here is at the mercy of the
-evaluation order of OCaml, here is the exact same program translated
-into Haskell.  We'll put them side by side to emphasize the exact parallel.
-
-<pre>
-OCaml                                                          Haskell
-==========================================================     =========================================================
-
-type term = I | S | K | App of (term * term)                   data Term = I | S | K | App Term Term deriving (Eq, Show)      
-                                                                                                                             
-let skomega = App (App (App (S,I), I), App (App (S,I), I))     skomega = (App (App (App S I) I) (App (App S I) I))                      
-                                                                                                                             
-                                                               reduce_one_step :: Term -> Term                                      
-let reduce_one_step (t:term):term = match t with               reduce_one_step t = case t of                                      
-    App(I,a) -> a                                                App I a -> a                                                      
-  | App(App(K,a),b) -> a                                         App (App K a) b -> a                                              
-  | App(App(App(S,a),b),c) -> App(App(a,c),App(b,c))             App (App (App S a) b) c -> App (App a c) (App b c)                      
-  | _ -> t                                                       _ -> t                                                      
-                                                                                                                             
-                                                               is_redex :: Term -> Bool                                      
-let is_redex (t:term):bool = not (t = reduce_one_step t)       is_redex t = not (t == reduce_one_step t)                      
-                                                                                                                             
-                                                               reduce :: Term -> Term                                              
-let rec reduce (t:term):term = match t with                    reduce t = case t of                                              
-    I -> I                                                       I -> I                                                      
-  | K -> K                                                       K -> K                                                      
-  | S -> S                                                       S -> S                                                      
-  | App (a, b) ->                                                 App a b ->                                                       
-      let t' = App (reduce a, reduce b) in                          let t' = App (reduce a) (reduce b) in                      
-        if (is_redex t') then reduce (reduce_one_step t')             if (is_redex t') then reduce (reduce_one_step t')      
-                         else t'                                                       else t'                                
-</pre>
-
-There are some differences in the way types are made explicit, and in
-the way terms are specified (`App(a,b)` for Ocaml versus `App a b` for
-Haskell).  But the two programs are essentially identical.
-
-Yet the Haskell program finds the normal form for `KIΩ`:
-
-    *Main> reduce (App (App K I) skomega)
-    I
-
-Woa!  First of all, this is wierd.  Haskell's evaluation strategy is
-called "lazy".  Apparently, Haskell is so lazy that even after we've
-asked it to construct t' by evaluating `reduce a` and `reduce b`, it
-doesn't bother computing `reduce b`.  Instead, it waits to see if we
-ever really need to use the result.
-
-So the program as written does NOT fully determine evaluation order
-behavior.  At this stage, we have defined an evaluation order that
-still depends on the evaluation order of the underlying interpreter.
-
-There are two questions we could ask: 
-
-* Can we adjust the OCaml evaluator to exhibit lazy behavior?  
-
-* Can we adjust the Haskell evaluator to exhibit eager behavior?  
-
-The answer to the first question is easy and interesting, and we'll
-give it right away.  The answer to the second question is also
-interesting, but not easy.  There are various tricks available in
-Haskell we could use (such as the `seq` operator, or the `deepseq`
-operator), but a fully general, satisifying resolution will have to
-wait until we have Continuation Passing Style transforms.
-
-The answer to the first question (Can we adjust the OCaml evaluator to
-exhibit lazy behavior?) is quite simple:
-
-<pre>
-let rec reduce_lazy (t:term):term = match t with
-    I -> I
-  | K -> K
-  | S -> S
-  | App (a, b) -> 
-      let t' = App (reduce_lazy a, b) in
-        if (is_redex t') then reduce_lazy (reduce_one_step t')
-                         else t'
-</pre>
-
-There is only one small difference: instead of setting `t'` to `App
-(reduce a, reduce b)`, we omit one of the recursive calls, and have
-`App (reduce a, b)`.  That is, we don't evaluate the right-hand
-subexpression at all.  Ever!  The only way to get evaluated is to
-somehow get into functor position.
-
-    # reduce3 (App(App(K,I),skomega));;
-    - : term = I
-    # reduce3 skomega;;
-    C-c C-cInterrupted.
-
-The evaluator now has no trouble finding the normal form for `KIΩ`,
-but evaluating skomega still gives an infinite loop.
-
-We can now clarify the larger question at the heart of
-this discussion: 
-
-*How can we can we specify the evaluation order of a computational
-system in a way that is completely insensitive to the evaluation order
-of the specification language?*
-
-As a final note, we should mention that the evaluators given here are
-absurdly inefficient computationally.  Some computer scientists have
-trouble even looking at code this inefficient, but the emphasis here
-is on getting the concepts across as simply as possible.