tweaks
[lambda.git] / exercises / assignment7.mdwn
index ea387b9..e9cf823 100644 (file)
@@ -42,8 +42,13 @@ Instead, we're going to give you almost the complete program, with a few gaps
 in it that you have to complete. You have to understand enough to
 add the last pieces to make the program function.
 
-We're still writing up the (substantial) exposition of this, and will post a link
-to it here soon.
+You can find the skeleton code [[here|/code/untyped_evaluator.ml]].
+
+We've also prepared a much fuller version, that has user-friendly input
+and printing of results. We'll provide a link to that shortly. It
+will be easiest for you to understand that code if you've
+completed the gaps in the simplified skeleton linked above.
+
 
 ## Evaluation in the untyped lambda calculus: environments
 
@@ -61,8 +66,8 @@ since it amounts to evaluating terms relative to an assignment
 function. The difference between the substitute-and-repeat approach
 above, and this approach, is one huge step towards monads.
 
-We're still writing up the exposition of this, too, and will post a link
-to it here soon.
+The skeleton code for this is at the [[same link as before|/code/untyped_evaluator.ml]].
+This part of the exercise is the "V2" part of that code.
 
 
 ## Monads
@@ -70,18 +75,18 @@ to it here soon.
 Mappables (functors), MapNables (applicative functors), and Monads
 (composables) are ways of lifting computations from unboxed types into
 boxed types.  Here, a "boxed type" is a type function with one unsaturated
-hole (which may have several occurrences). We can think of the box type
-as a function from a type to a type. Call this type function M, and let P, Q, R, and S be schematic variables over types.
+hole (which may have several occurrences, as in `(α,α) tree`). We can think of the box type
+as a function from a type to a type.
 
-Recall that a monad requires a singleton function `mid : P-> MP`, and a
-composition operator like `>=> : (P-><u>Q</u>) -> (Q-><u>R</u>) -> (P-><u>R</u>)`.
+Recall that a monad requires a singleton function <code>mid : P-> <u>P</u></code>, and a
+composition operator like <code>&gt;=&gt; : (P-><u>Q</u>) -> (Q-><u>R</u>) -> (P-><u>R</u>)</code>.
 
 As we said in the notes, we'll move freely back and forth between using `>=>` and using `<=<` (aka `mcomp`), which
 is just `>=>` with its arguments flipped. `<=<` has the virtue that it corresponds more
 closely to the ordinary mathematical symbol `○`. But `>=>` has the virtue
 that its types flow more naturally from left to right.
 
-Anyway, `mid` and (let's say) `<=<` have to obey the following Monad Laws:
+Anyway, `mid` and (let's say) `<=<` have to obey the Monad Laws:
 
     mid <=< k = k
     k <=< mid = k 
@@ -102,7 +107,7 @@ suitable for `mid` and `<=<`:
 conceptual world neat and tidy (for instance, think of [[our discussion
 of Kaplan's Plexy|topics/week6_plexy]]).  As we learned in class, there is a natural monad
 for the Option type. Using the vocabulary of OCaml, let's say that
-"`'a option`" is the type of a boxed `'a`, whatever type `'a` is.
+`'a option` is the type of a boxed `'a`, whatever type `'a` is.
 More specifically,
 
         type 'a option = None | Some 'a
@@ -114,8 +119,8 @@ More specifically,
 Show that your composition operator obeys the Monad Laws.
 
 2.  Do the same with lists.  That is, given an arbitrary type
-`'a`, let the boxed type be `['a]` or `'a list`, that is, lists of objects of type `'a`.  The singleton
-is `\p. [p]`, and the composition operator is:
+`'a`, let the boxed type be `['a]` or `'a list`, that is, lists of values of type `'a`.  The `mid`
+is the singleton function `\p. [p]`, and the composition operator is:
 
         let (>=>) (j : 'a -> 'b list) (k : 'b -> 'c list) : 'a -> 'c list =
           fun a -> List.flatten (List.map k (j a))