index 6b4c55f..0a6fa2d 100644 (file)
@@ -5,46 +5,71 @@ week in which they were introduced.

## Topics by content ##

-* [[Basics of functional programming|topics/week1]]
+*   [[What is computation?|topics/week3_what_is_computation]]
+
+*   Functional Programming
+
+    *   [[Introduction|topics/week1 kapulet intro]]
+    *   [["Rosetta Stone" page #1 for Kaupulet, Scheme, OCaml, Haskell|rosetta1]]
+    *   [[List Comprehensions|topics/week3 lists#comprehensions]]
+    *   Usefulness of `()`
+    *   More tips on using Scheme
+
+*   Order, "static versus dynamic"
+
+    *    [[Order in programming languages and natural language|topics/week1 order]]
+    *    Reduction Strategies and Normal Forms in the Lambda Calculus
+    *   Usefulness of `()`
+
+*   The Lambda Calculus
+
+    *   [[Introduction to the Lambda Calculus|topics/week2 lambda intro]]
+    *   Encoding data types in the Lambda Calculus
+        *   [[Booleans|topics/week2 encodings#booleans]]
+        *   [[Tuples|topics/week2 encodings#tuples]]
+        *   [[Lists|topics/week2 encodings#lists]], v1 (as right-folds)
+        *   [[Numbers|topics/week2 encodings#numbers]], v1 ("Church's encoding")
+        *   [[Arithmetic with Church numbers|topics/week3_church_arithmetic]]
+        *   [[How to get the `tail` of v1 lists?|topics/week3 lists#tails]]
+        *   Some other list encodings
+    *    Reduction Strategies and Normal Forms
+
+
+*    [[Combinatory Logic|topics/week3 combinatory logic]]

-* [[Order: static versus dynamic|topics/week1 order]]

## Topics by week ##

-Week 1:
+Week 1:

-* [[Order in programming languages and natural language|topics/order]]
+*   [[Order in programming languages and natural language|topics/week1 order]]
This discussion considers conjunction in a language that recognized presupposition failure.
-* [[Introduction to functional programming|topics/week1]]
+*   [[Introduction to functional programming|topics/week1 kapulet intro]]
Basics of functional programming: `let`, `case`, pattern matching, and
recursion.  Definitions of factorial.
-* [[Homework for week 1|exercises/assignment1]]
-
-
-<!--
-Once we get up and running, the central focii of the course will be
-**continuations**, **types**, and **monads**. One of the on-going themes will
-concern evaluation order and issues about how computations (inferences,
-derivations) unfold in (for instance) time.  The key analytic technique is to
-form a static, order-independent model of a dynamic process. We'll be
-discussing this in much more detail as the course proceeds.
-
-The logical systems we'll be looking at include:
-
-*      the "pure"/untyped lambda calculus
-*      combinatorial logic
-*      the simply-typed lambda calculus
-*      polymorphic types with System F
-*      some discussion of dependent types
-*      if time permits, "indeterministic" or "preemptively parallel" computation and linear logic
-
-
-Other keywords:
-       recursion using the Y-combinator
-       evaluation-order stratgies
-       normalizing properties
-       the Curry-Howard isomorphism(s)
-       monads in category theory and computation
--->
+
+Week 2:
+
+*   [[Introduction to the Lambda Calculus|topics/week2 lambda intro]]
+*   [[Encoding Booleans, Tuples, Lists, and Numbers|topics/week2 encodings]]
+*   [[Homework for week 2|exercises/assignment2]]
+
+Week 3:
+
+*We will continue to develop these notes over the next few days. Expect some of the notes already posted to be expanded, and more notes to appear.*
+
+*   [[Arithmetic with Church numbers|topics/week3_church_arithmetic]]
+*   [[What is computation?|topics/week3_what_is_computation]]
+*   [[More on Lists|topics/week3 lists]]
+Introduces list comprehensions, discusses how to get the `tail` of lists in the Lambda Calculus (and will discuss some other list encodings)
+*   [[Combinatory Logic|topics/week3 combinatory logic]]
+*   Reduction Strategies and Normal Forms
+*   Usefulness of `()`
+*   [[Homework for week 3|exercises/assignment3]]
+