add Unreliable Guide OCaml Modules
[lambda.git] / assignment9.mdwn
diff --git a/assignment9.mdwn b/assignment9.mdwn
deleted file mode 100644 (file)
index 2277a92..0000000
+++ /dev/null
@@ -1,131 +0,0 @@
-Using continuations to solve the same-fringe problem
-----------------------------------------------------
-
-The problem
------------
-
-We've seen two solutions to the same fringe problem so far.  
-The problem, recall, is to take two trees and decide whether they have
-the same leaves in the same order.
-
-<pre>
- ta            tb          tc
- .             .           .
-_|__          _|__        _|__
-|  |          |  |        |  |
-1  .          .  3        1  .
-  _|__       _|__           _|__
-  |  |       |  |           |  |
-  2  3       1  2           3  2
-
-let ta = Node (Leaf 1, Node (Leaf 2, Leaf 3));;
-let tb = Node (Node (Leaf 1, Leaf 2), Leaf 3);;
-let tc = Node (Leaf 1, Node (Leaf 3, Leaf 2));;
-</pre>
-
-So `ta` and `tb` are different trees that have the same fringe, but
-`ta` and `tc` are not.
-
-The simplest solution is to map each tree to a list of its leaves,
-then compare the lists.  But because we will have computed the entire
-fringe before starting the comparison, if the fringes differ in an
-early position, we've wasted our time examining the rest of the trees.
-
-The second solution was to use tree zippers and mutable state to
-simulate coroutines (see [[coroutines and aborts]]).  In that
-solution, we pulled the zipper on the first tree until we found the
-next leaf, then stored the zipper structure in the mutable variable
-while we turned our attention to the other tree.  Because we stopped
-as soon as we find the first mismatched leaf, this solution does not
-have the flaw just mentioned of the solution that maps both trees to a
-list of leaves before beginning comparison.
-
-Since zippers are just continuations reified, we expect that the
-solution in terms of zippers can be reworked using continuations, and
-this is indeed the case.  Your assignment is to show how.
-
-TO-DO LIST for solving the problem
-----------------------------------
-
-1.  Review the simple but inefficient solution (easy).
-2.  Understand the zipper/mutable state solution in [[coroutines and aborts]] (harder).
-
-3.  Two obvious approaches: 
-
-a.  Review the list-zipper/list-continuation example given in
-    class in [[from list zippers to continuations]]; then
-    figure out how to re-functionalize the zippers used in the zipper
-    solution.
-
-b.  Review the tree_monadizer application of continuations that maps a
-tree to a list of leaves in [[manipulating trees with monads]].  Spend
-some time trying to understand exactly what it does.  Suggestion:
-compute the transformation for a tree with two leaves, performing all
-beta reduction by hand using the definitions for bind_continuation and
-so on.  If you take this route, study the description of streams (a
-particular kind of data structure) below.  The goal will be to arrange
-for the continuation-flavored tree_monadizer to transform a tree into
-a stream instead of into a list.  Once you've done that, completing
-the same-fringe problem will be easy. 
-
--------------------------------------
-
-Whichever method you choose, here are some goals to consider.
-
-1.  Make sure that your solution gives the right results on the trees
-given above.
-
-2.  Make sure your function works on trees that contain only a single
-leaf, and when the two trees have different numbers of leaves.
-
-3.  Figure out a way to prove that your solution satisfies the
-requirements of the problem, in particular, that when the trees differ
-in an early position, your code does not waste time visiting the rest
-of the tree.  One way to do this is to add print statements to your
-functions so that every time you visit a leaf (say), a message is
-printed on the output.  
-
-4.  What if you had some reason to believe that the trees you were
-going to compare were more likely to differ in the rightmost region?
-What would you have to change in your solution so that it compared the
-fringe from right to left?
-
-Streams
--------
-
-A stream is like a list in that it contains a series of objects (all
-of the same type, here, type `'a`).  It differs from a list in that
-the tail of the list is left uncomputed until needed.  We will turn
-the stream on and off by thunking it (see class notes for [[week6]] 
-on thunks, as well as [[assignment5]]). 
-
-    type 'a stream = End | Next of 'a * (unit -> 'a stream);;
-
-The first object in the stream corresponds to the head of a list,
-which we pair with a stream representing the rest of a the list.
-There is a special stream called `End` that represents a stream that
-contains no (more) elements, analogous to the empty list `[]`.
-
-Actually, we pair each element not with a stream, but with a thunked
-stream, that is, a function from the unit type to streams.  The idea
-is that the next element in the stream is not computed until we forced
-the thunk by applying it to the unit:
-
-<pre>
-# let rec make_int_stream i = Next (i, fun () -> make_int_stream (i + 1));;
-val make_int_stream : int -> int stream = [fun]
-# let int_stream = make_int_stream 1;;
-val int_stream : int stream = Next (1, [fun])         (* First element: 1 *)
-# match int_stream with Next (i, rest) -> rest;;      
-- : unit -> int stream = [fun]                        (* Rest: a thunk *)
-
-(* Force the thunk to compute the second element *)
-# (match int_stream with Next (i, rest) -> rest) ();;
-- : int stream = Next (2, [fun])      
-</pre>
-
-You can think of `int_stream` as a functional object that provides
-access to an infinite sequence of integers, one at a time.  It's as if
-we had written `[1;2;...]` where `...` meant "continue indefinitely".
-