index c60f50e..3e93256 100644 (file)
@@ -1,3 +1,6 @@
+For these assignments, you'll probably want to use our [[lambda evaluator]] to check your work. This accepts any grammatical lambda expression and reduces it to normal form, when possible.
+
+
More Lambda Practice
--------------------

@@ -30,6 +33,36 @@ Reduce to beta-normal forms:
<LI>`(\x y z. x z (y z)) (\u v. u)`
</OL>

+Combinatory Logic
+-----------------
+
+Reduce the following forms, if possible:
+
+<OL start=16>
+<LI> `Kxy`
+<LI> `KKxy`
+<LI> `KKKxy`
+<LI> `SKKxy`
+<LI> `SIII`
+<LI> `SII(SII)`
+
+<LI> Give Combinatory Logic combinators that behave like our boolean functions.
+  You'll need combinators for `true`, `false`, `neg`, `and`, `or`, and `xor`.
+</OL>
+
+Using the mapping specified in the lecture notes,
+translate the following lambda terms into combinatory logic:
+
+<OL start=23>
+<LI> `\x.x`
+<LI> `\xy.x`
+<LI> `\xy.y`
+<LI> `\xy.yx`
+<LI> `\x.xx`
+<LI> `\xyz.x(yz)`
+<LI> For each translation, how many I's are there?  Give a rule for
+   describing what each I corresponds to in the original lambda term.
+</OL>

Lists and Numbers
-----------------
@@ -88,7 +121,7 @@ For these exercises, assume that `LIST` is the result of evaluating:

should evaluate to a list containing just those of `a`, `b`, `c`, `d`, and `e` such that `f` applied to them evaluates to `true`.

-<LI>How would you implement map using the either the version 1 or the version 2 implementation of lists?
+<LI>What goes wrong when we try to apply these techniques using the version 1 or version 2 implementation of lists?

<LI>Our version 3 implementation of the numbers are usually called "Church numerals". If `m` is a Church numeral, then `m s z` applies the function `s` to the result of applying `s` to ... to `z`, for a total of *m* applications of `s`, where *m* is the number that `m` represents or encodes.