cat theory tweaks
[lambda.git] / advanced_topics / monads_in_category_theory.mdwn
index 0f38135..d5c0941 100644 (file)
@@ -267,14 +267,14 @@ Summarizing then, the monad laws can be expressed as:
        (iii.1) (unit G') <=< &gamma;  =  &gamma;
                when &gamma; is a natural transformation from some FG' to MG'
 
        (iii.1) (unit G') <=< &gamma;  =  &gamma;
                when &gamma; is a natural transformation from some FG' to MG'
 
-       (iii.2) &gamma;  =  &gamma; <=< (unit G)
+       (iii.2)                     &gamma;  =  &gamma; <=< (unit G)
                when &gamma; is a natural transformation from G to some MR'G
 </pre>
 
 
 
                when &gamma; is a natural transformation from G to some MR'G
 </pre>
 
 
 
-The standard category-theory presentation of the monad laws
------------------------------------------------------------
+Getting to the standard category-theory presentation of the monad laws
+----------------------------------------------------------------------
 In category theory, the monad laws are usually stated in terms of `unit` and `join` instead of `unit` and `<=<`.
 
 <!--
 In category theory, the monad laws are usually stated in terms of `unit` and `join` instead of `unit` and `<=<`.
 
 <!--
@@ -288,22 +288,29 @@ Let's remind ourselves of some principles:
 
 *      functors "distribute over composition", that is for any morphisms `f` and `g` in `F`'s source category: <code>F(g &#8728; f) = F(g) &#8728; F(f)</code>
 
 
 *      functors "distribute over composition", that is for any morphisms `f` and `g` in `F`'s source category: <code>F(g &#8728; f) = F(g) &#8728; F(f)</code>
 
-*      if <code>&eta;</code> is a natural transformation from `F` to `G`, then for every <code>f:C1&rarr;C2</code> in `F` and `G`'s source category <b>C</b>: <code>&eta;[C2] &#8728; F(f) = G(f) &#8728; &eta;[C1]</code>.
+*      if <code>&eta;</code> is a natural transformation from `G` to `H`, then for every <code>f:C1&rarr;C2</code> in `G` and `H`'s source category <b>C</b>: <code>&eta;[C2] &#8728; G(f) = H(f) &#8728; &eta;[C1]</code>.
+
+*      <code>(&eta; F)[E] = &eta;[F(E)]</code> 
+
+*      <code>(K &eta;)[E} = K(&eta;[E])</code>
+
+*      <code>((&phi; -v- &eta;) F) = ((&phi; F) -v- (&eta; F))</code>
 
 Let's use the definitions of naturalness, and of composition of natural transformations, to establish two lemmas.
 
 
 
 Let's use the definitions of naturalness, and of composition of natural transformations, to establish two lemmas.
 
 
-Recall that join is a natural transformation from the (composite) functor `MM` to `M`. So for elements `C1` in <b>C</b>, `join[C1]` will be a morphism from `MM(C1)` to `M(C1)`. And for any morphism <code>f:C1&rarr;C2</code> in <b>C</b>:
+Recall that `join` is a natural transformation from the (composite) functor `MM` to `M`. So for elements `C1` in <b>C</b>, `join[C1]` will be a morphism from `MM(C1)` to `M(C1)`. And for any morphism <code>f:C1&rarr;C2</code> in <b>C</b>:
 
 <pre>
        (1) join[C2] &#8728; MM(f)  =  M(f) &#8728; join[C1]
 </pre>
 
 
 <pre>
        (1) join[C2] &#8728; MM(f)  =  M(f) &#8728; join[C1]
 </pre>
 
-Next, consider the composite transformation <code>((join MG') -v- (MM &gamma;))</code>.
+Next, let <code>&gamma;</code> be a transformation from `G` to `MG'`, and
+ consider the composite transformation <code>((join MG') -v- (MM &gamma;))</code>.
 
 
-*      <code>&gamma;</code> is a transformation from `G` to `MG'`, and assigns elements `C1` in <b>C</b> a morphism <code>&gamma;\*: G(C1) &rarr; MG'(C1)</code>. <code>(MM &gamma;)</code> is a transformation that instead assigns `C1` the morphism <code>MM(&gamma;\*)</code>.
+*      <code>&gamma;</code> assigns elements `C1` in <b>C</b> a morphism <code>&gamma;\*:G(C1) &rarr; MG'(C1)</code>. <code>(MM &gamma;)</code> is a transformation that instead assigns `C1` the morphism <code>MM(&gamma;\*)</code>.
 
 
-*      `(join MG')` is a transformation from `MMMG'` to `MMG'` that assigns `C1` the morphism `join[MG'(C1)]`.
+*      `(join MG')` is a transformation from `MM(MG')` to `M(MG')` that assigns `C1` the morphism `join[MG'(C1)]`.
 
 Composing them:
 
 
 Composing them:
 
@@ -311,17 +318,17 @@ Composing them:
        (2) ((join MG') -v- (MM &gamma;)) assigns to C1 the morphism join[MG'(C1)] &#8728; MM(&gamma;*).
 </pre>
 
        (2) ((join MG') -v- (MM &gamma;)) assigns to C1 the morphism join[MG'(C1)] &#8728; MM(&gamma;*).
 </pre>
 
-Next, consider the composite transformation <code>((M &gamma;) -v- (join G))</code>.
+Next, consider the composite transformation <code>((M &gamma;) -v- (join G))</code>:
 
 <pre>
 
 <pre>
-       (3) This assigns to C1 the morphism M(&gamma;*) &#8728; join[G(C1)].
+       (3) ((M &gamma;) -v- (join G)) assigns to C1 the morphism M(&gamma;*) &#8728; join[G(C1)].
 </pre>
 
 So for every element `C1` of <b>C</b>:
 
 <pre>
        ((join MG') -v- (MM &gamma;))[C1], by (2) is:
 </pre>
 
 So for every element `C1` of <b>C</b>:
 
 <pre>
        ((join MG') -v- (MM &gamma;))[C1], by (2) is:
-       join[MG'(C1)] &#8728; MM(&gamma;*), which by (1), with f=&gamma;*: G(C1)&rarr;MG'(C1) is:
+       join[MG'(C1)] &#8728; MM(&gamma;*), which by (1), with f=&gamma;*:G(C1)&rarr;MG'(C1) is:
        M(&gamma;*) &#8728; join[G(C1)], which by 3 is:
        ((M &gamma;) -v- (join G))[C1]
 </pre>
        M(&gamma;*) &#8728; join[G(C1)], which by 3 is:
        ((M &gamma;) -v- (join G))[C1]
 </pre>
@@ -329,33 +336,34 @@ So for every element `C1` of <b>C</b>:
 So our **(lemma 1)** is:
 
 <pre>
 So our **(lemma 1)** is:
 
 <pre>
-       ((join MG') -v- (MM &gamma;))  =  ((M &gamma;) -v- (join G)), where &gamma; is a transformation from G to MG'.
+       ((join MG') -v- (MM &gamma;))  =  ((M &gamma;) -v- (join G)),
+       where as we said &gamma; is a natural transformation from G to MG'.
 </pre>
 
 
 </pre>
 
 
-Next recall that unit is a natural transformation from `1C` to `M`. So for elements `C1` in <b>C</b>, `unit[C1]` will be a morphism from `C1` to `M(C1)`. And for any morphism <code>f:a&rarr;b</code> in <b>C</b>:
+Next recall that `unit` is a natural transformation from `1C` to `M`. So for elements `C1` in <b>C</b>, `unit[C1]` will be a morphism from `C1` to `M(C1)`. And for any morphism <code>f:C1&rarr;C2</code> in <b>C</b>:
 
 <pre>
 
 <pre>
-       (4) unit[b] &#8728; f = M(f) &#8728; unit[a]
+       (4) unit[C2] &#8728; f = M(f) &#8728; unit[C1]
 </pre>
 
 </pre>
 
-Next consider the composite transformation <code>((M &gamma;) -v- (unit G))</code>:
+Next, consider the composite transformation <code>((M &gamma;) -v- (unit G))</code>:
 
 <pre>
 
 <pre>
-       (5) This assigns to C1 the morphism M(&gamma;*) &#8728; unit[G(C1)].
+       (5) ((M &gamma;) -v- (unit G)) assigns to C1 the morphism M(&gamma;*) &#8728; unit[G(C1)].
 </pre>
 
 </pre>
 
-Next consider the composite transformation <code>((unit MG') -v- &gamma;)</code>.
+Next, consider the composite transformation <code>((unit MG') -v- &gamma;)</code>:
 
 <pre>
 
 <pre>
-       (6) This assigns to C1 the morphism unit[MG'(C1)] &#8728; &gamma;*.
+       (6) ((unit MG') -v- &gamma;) assigns to C1 the morphism unit[MG'(C1)] &#8728; &gamma;*.
 </pre>
 
 So for every element C1 of <b>C</b>:
 
 <pre>
        ((M &gamma;) -v- (unit G))[C1], by (5) =
 </pre>
 
 So for every element C1 of <b>C</b>:
 
 <pre>
        ((M &gamma;) -v- (unit G))[C1], by (5) =
-       M(&gamma;*) &#8728; unit[G(C1)], which by (4), with f=&gamma;*: G(C1)&rarr;MG'(C1) is:
+       M(&gamma;*) &#8728; unit[G(C1)], which by (4), with f=&gamma;*:G(C1)&rarr;MG'(C1) is:
        unit[MG'(C1)] &#8728; &gamma;*, which by (6) =
        ((unit MG') -v- &gamma;)[C1]
 </pre>
        unit[MG'(C1)] &#8728; &gamma;*, which by (6) =
        ((unit MG') -v- &gamma;)[C1]
 </pre>
@@ -363,130 +371,231 @@ So for every element C1 of <b>C</b>:
 So our **(lemma 2)** is:
 
 <pre>
 So our **(lemma 2)** is:
 
 <pre>
-       (((M &gamma;) -v- (unit G))  =  ((unit MG') -v- &gamma;)), where &gamma; is a transformation from G to MG'.
+       (((M &gamma;) -v- (unit G))  =  ((unit MG') -v- &gamma;)),
+       where as we said &gamma; is a natural transformation from G to MG'.
 </pre>
 
 
 Finally, we substitute <code>((join G') -v- (M &gamma;) -v- &phi;)</code> for <code>&gamma; &lt;=&lt; &phi;</code> in the monad laws. For simplicity, I'll omit the "-v-".
 
 <pre>
 </pre>
 
 
 Finally, we substitute <code>((join G') -v- (M &gamma;) -v- &phi;)</code> for <code>&gamma; &lt;=&lt; &phi;</code> in the monad laws. For simplicity, I'll omit the "-v-".
 
 <pre>
-       for all &phi;,&gamma;,&rho; in T, where &phi; is a transformation from F to MF', &gamma; is a transformation from G to MG', R is a transformation from R to MR', and F'=G and G'=R:
+       For all &rho;, &gamma;, &phi; in T,
+       where &phi; is a transformation from F to MF',
+       &gamma; is a transformation from G to MG',
+       &rho; is a transformation from R to MR',
+       and F'=G and G'=R:
 
 
-       (i) &gamma; <=< &phi; etc are also in T
+            (i) &gamma; <=< &phi; etc are also in T
        ==>
        ==>
-       (i') ((join G') (M &gamma;) &phi;) etc are also in T
+           (i') ((join G') (M &gamma;) &phi;) etc are also in T
+
 
 
 
 
-       (ii) (&rho; <=< &gamma;) <=< &phi;  =  &rho; <=< (&gamma; <=< &phi;)
+           (ii) (&rho; <=< &gamma;) <=< &phi;  =  &rho; <=< (&gamma; <=< &phi;)
        ==>
        ==>
-                (&rho; <=< &gamma;) is a transformation from G to MR', so:
-                       (&rho; <=< &gamma;) <=< &phi; becomes: (join R') (M (&rho; <=< &gamma;)) &phi;
-                                                       which is: (join R') (M ((join R') (M &rho;) &gamma;)) &phi;
-                       substituting in (ii), and helping ourselves to associativity on the rhs, we get:
+                    (&rho; <=< &gamma;) is a transformation from G to MR', so
+                        (&rho; <=< &gamma;) <=< &phi; becomes: ((join R') (M (&rho; <=< &gamma;)) &phi;)
+                                                       which is: ((join R') (M ((join R') (M &rho;) &gamma;)) &phi;)
 
 
-            ((join R') (M ((join R') (M &rho;) &gamma;)) &phi;) = ((join R') (M &rho;) (join G') (M &gamma;) &phi;)
-                     ---------------------
-                       which by the distributivity of functors over composition, and helping ourselves to associativity on the lhs, yields:
-                    ------------------------
-            ((join R') (M join R') (MM &rho;) (M &gamma;) &phi;) = ((join R') (M &rho;) (join G') (M &gamma;) &phi;)
-                                                             ---------------
-                       which by lemma 1, with &rho; a transformation from G' to MR', yields:
-                                                             -----------------
-            ((join R') (M join R') (MM &rho;) (M &gamma;) &phi;) = ((join R') (join MR') (MM &rho;) (M &gamma;) &phi;)
+                        similarly, &rho; <=< (&gamma; <=< &phi;) is:
+                                                       ((join R') (M &rho;) ((join G') (M &gamma;) &phi;))
 
 
-                       which will be true for all &rho;,&gamma;,&phi; just in case:
+                        substituting these into (ii), and helping ourselves to associativity on the rhs, we get:
+                ((join R') (M ((join R') (M &rho;) &gamma;)) &phi;) = ((join R') (M &rho;) (join G') (M &gamma;) &phi;)
+    
+                        which by the distributivity of functors over composition, and helping ourselves to associativity on the lhs, yields:
+                ((join R') (M join R') (MM &rho;) (M &gamma;) &phi;) = ((join R') (M &rho;) (join G') (M &gamma;) &phi;)
+  
+                        which by lemma 1, with &rho; a transformation from G' to MR', yields:
+                ((join R') (M join R') (MM &rho;) (M &gamma;) &phi;) = ((join R') (join MR') (MM &rho;) (M &gamma;) &phi;)
 
 
-             ((join R') (M join R')) = ((join R') (join MR')), for any R'.
+                        which will be true for all &rho;,&gamma;,&phi; only when:
+                ((join R') (M join R')) = ((join R') (join MR')), for any R'.
 
 
-                       which will in turn be true just in case:
+                        which will in turn be true when:
+       (ii') (join (M join)) = (join (join M))
 
 
-       (ii') (join (M join)) = (join (join M))
 
 
 
 
-       (iii.1) (unit F') <=< &phi;  =  &phi;
+        (iii.1) (unit G') <=< &gamma;  =  &gamma;
+                when &gamma; is a natural transformation from some FG' to MG'
        ==>
        ==>
-                       (unit F') is a transformation from F' to MF', so:
-                               (unit F') <=< &phi; becomes: (join F') (M unit F') &phi;
-                                                  which is: (join F') (M unit F') &phi;
-                               substituting in (iii.1), we get:
-                       ((join F') (M unit F') &phi;) = &phi;
+                        (unit G') is a transformation from G' to MG', so:
+                        (unit G') <=< &gamma; becomes: ((join G') (M unit G') &gamma;)
 
 
-                       which will be true for all &phi; just in case:
+                        substituting in (iii.1), we get:
+                        ((join G') (M unit G') &gamma;) = &gamma;
 
 
-                ((join F') (M unit F')) = the identity transformation, for any F'
-
-                       which will in turn be true just in case:
+                        which will be true for all &gamma; just in case:
+                ((join G') (M unit G')) = the identity transformation, for any G'
 
 
+                        which will in turn be true just in case:
        (iii.1') (join (M unit) = the identity transformation
 
 
        (iii.1') (join (M unit) = the identity transformation
 
 
-       (iii.2) &phi;  =  &phi; <=< (unit F)
+
+
+        (iii.2) &gamma;  =  &gamma; <=< (unit G)
+                when &gamma; is a natural transformation from G to some MR'G
        ==>
        ==>
-                       &phi; is a transformation from F to MF', so:
-                               unit <=< &phi; becomes: (join F') (M &phi;) unit
-                               substituting in (iii.2), we get:
-                       &phi; = ((join F') (M &phi;) (unit F))
-                                                  --------------
-                               which by lemma (2), yields:
-                            ------------
-                       &phi; = ((join F') ((unit MF') &phi;)
+                        unit <=< &gamma; becomes: ((join R'G) (M &gamma;) unit)
+                       
+                        substituting in (iii.2), we get:
+                        &gamma; = ((join R'G) (M &gamma;) (unit G))
+               
+                        which by lemma 2, yields:
+                        &gamma; = ((join R'G) ((unit MR'G) &gamma;)
+
+                         which will be true for all &gamma; just in case:
+                ((join R'G) (unit MR'G)) = the identity transformation, for any R'G
+
+                        which will in turn be true just in case:
+       (iii.2') (join (unit M)) = the identity transformation
+</pre>
 
 
-                               which will be true for all &phi; just in case:
 
 
-               ((join F') (unit MF')) = the identity transformation, for any F'
+Collecting the results, our monad laws turn out in this format to be:
 
 
-                               which will in turn be true just in case:
+<pre>
+       For all &rho;, &gamma;, &phi; in T,
+       where &phi; is a transformation from F to MF',
+       &gamma; is a transformation from G to MG',
+       &rho; is a transformation from R to MR',
+       and F'=G and G'=R:
+
+           (i') ((join G') (M &gamma;) &phi;) etc also in T
+
+          (ii') (join (M join)) = (join (join M))
+
+       (iii.1') (join (M unit)) = the identity transformation
 
        (iii.2') (join (unit M)) = the identity transformation
 </pre>
 
 
 
        (iii.2') (join (unit M)) = the identity transformation
 </pre>
 
 
-Collecting the results, our monad laws turn out in this format to be:
 
 
+Getting to the functional programming presentation of the monad laws
+--------------------------------------------------------------------
+In functional programming, `unit` is sometimes called `return` and the monad laws are usually stated in terms of `unit`/`return` and an operation called `bind` which is interdefinable with `<=<` or with `join`.
+
+The base category <b>C</b> will have types as elements, and monadic functions as its morphisms. The source and target of a morphism will be the types of its argument and its result. (As always, there can be multiple distinct morphisms from the same source to the same target.)
+
+A monad `M` will consist of a mapping from types `'t` to types `M('t)`, and a mapping from functions <code>f:C1&rarr;C2</code> to functions <code>M(f):M(C1)&rarr;M(C2)</code>. This is also known as <code>lift<sub>M</sub> f</code> for `M`, and is pronounced "function f lifted into the monad M." For example, where `M` is the list monad, `M` maps every type `'t` into the type `'t list`, and maps every function <code>f:x&rarr;y</code> into the function that maps `[x1,x2...]` to `[y1,y2,...]`.
+
+
+In functional programming, instead of working with natural transformations we work with "monadic values" and polymorphic functions "into the monad" in question.
+
+A "monadic value" is any member of a type M('t), for any type 't. For example, a list is a monadic value for the list monad. We can think of these monadic values as the result of applying some function <code>(&phi; : F('t) &rarr; M(F'('t)))</code> to an argument `a` of type `F('t)`.
+
+
+Let `'t` be a type variable, and `F` and `F'` be functors, and let `phi` be a polymorphic function that takes arguments of type `F('t)` and yields results of type `MF'('t)` in the monad `M`. An example with `M` being the list monad:
+
+<pre>
+       let phi = fun ((_:char, x y) -> [(1,x,y),(2,x,y)]
 </pre>
 </pre>
-       when &phi; a transformation from F to MF', &gamma; a transformation from F' to MG', &rho; a transformation from G' to MR' all in T:
 
 
-       (i') ((join G') (M &gamma;) &phi;) etc also in T
+Here phi is defined when `'t = 't1*'t2`, `F('t1*'t2) = char * 't1 * 't2`, and `F'('t1 * 't2) = int * 't1 * 't2`.
 
 
-       (ii') (join (M join)) = (join (join M))
 
 
-       (iii.1') (join (M unit)) = the identity transformation
+Now where `gamma` is another function into monad `M` of type <code>F'('t) &rarr; MG'('t)</code>, we define:
+
+<pre>
+       gamma =<< phi a  =def. ((join G') -v- (M gamma)) (phi a)
 
 
-       (iii.2')(join (unit M)) = the identity transformation
+                        = ((join G') -v- (M gamma) -v- phi) a
+                                        = (gamma <=< phi) a
 </pre>
 
 </pre>
 
+Hence:
 
 
+<pre>
+       gamma <=< phi = fun a -> (gamma =<< phi a)
+</pre>
 
 
-7. The functional programming presentation of the monad laws
-------------------------------------------------------------
-In functional programming, unit is usually called "return" and the monad laws are usually stated in terms of return and an operation called "bind" which is interdefinable with <=< or with join.
+`gamma =<< phi a` is called the operation of "binding" the function gamma to the monadic value `phi a`, and is usually written as `phi a >>= gamma`.
 
 
-Additionally, whereas in category-theory one works "monomorphically", in functional programming one usually works with "polymorphic" functions.
+With these definitions, our monadic laws become:
 
 
-The base category <b>C</b> will have types as elements, and monadic functions as its morphisms. The source and target of a morphism will be the types of its argument and its result. (As always, there can be multiple distinct morphisms from the same source to the same target.)
 
 
-A monad M will consist of a mapping from types C1 to types M(C1), and a mapping from functions f:C1&rarr;C2 to functions M(f):M(C1)&rarr;M(C2). This is also known as "fmap f" or "liftM f" for M, and is called "function f lifted into the monad M." For example, where M is the list monad, M maps every type X into the type "list of Xs", and maps every function f:x&rarr;y into the function that maps [x1,x2...] to [y1,y2,...].
+<pre>
+       Where phi is a polymorphic function from type F('t) -> M F'('t)
+       and gamma is a polymorphic function from type G('t) -> M G' ('t)
+       and rho is a polymorphic function from type R('t) -> M R' ('t)
+       and F' = G and G' = R, 
+       and a ranges over values of type F('t) for some type 't,
+       and b ranges over values of type G('t):
+
+             (i) &gamma; <=< &phi; is defined,
+                         and is a natural transformation from F to MG'
+       ==>
+               (i'') fun a -> gamma =<< phi a is defined,
+                         and is a function from type F('t) -> M G' ('t)
+
 
 
 
 
+            (ii) (&rho; <=< &gamma;) <=< &phi;  =  &rho; <=< (&gamma; <=< &phi;)
+       ==>
+                         (fun a -> (rho <=< gamma) =<< phi a)  =  (fun a -> rho =<< (gamma <=< phi) a)
+                         (fun a -> (fun b -> rho =<< gamma b) =<< phi a)  =  (fun a -> rho =<< (gamma =<< phi a))
 
 
+          (ii'') (fun b -> rho =<< gamma b) =<< phi a  =  rho =<< (gamma =<< phi a)
 
 
-A natural transformation t assigns to each type C1 in <b>C</b> a morphism t[C1]: C1&rarr;M(C1) such that, for every f:C1&rarr;C2:
-       t[C2] &#8728; f = M(f) &#8728; t[C1]
 
 
-The composite morphisms said here to be identical are morphisms from the type C1 to the type M(C2).
 
 
+         (iii.1) (unit G') <=< &gamma;  =  &gamma;
+                 when &gamma; is a natural transformation from some FG' to MG'
 
 
+                         (unit G') <=< gamma  =  gamma
+                         when gamma is a function of type FQ'('t) -> M G'('t)
 
 
-In functional programming, instead of working with natural transformations we work with "monadic values" and polymorphic functions "into the monad" in question.
+                         fun b -> (unit G') =<< gamma b  =  gamma
+
+                         (unit G') =<< gamma b  =  gamma b
+
+                         As below, return will map arguments c of type G'('t)
+                         to the monadic value (unit G') b, of type M G'('t).
+
+       (iii.1'') return =<< gamma b  =  gamma b
+
+
+
+         (iii.2) &gamma;  =  &gamma; <=< (unit G)
+                 when &gamma; is a natural transformation from G to some MR'G
+       ==>
+                         gamma  =  gamma <=< (unit G)
+                         when gamma is a function of type G('t) -> M R' G('t)
+
+                         gamma  =  fun b -> gamma =<< ((unit G) b)
+
+                         Let return be a polymorphic function mapping arguments
+                         of any type 't to M('t). In particular, it maps arguments
+                         b of type G('t) to the monadic value (unit G) b, of
+                         type M G('t).
+
+                         gamma  =  fun b -> gamma =<< return b
+
+       (iii.2'') gamma b  =  gamma =<< return b
+</pre>
+
+Summarizing (ii''), (iii.1''), (iii.2''), these are the monadic laws as usually stated in the functional programming literature:
+
+*      `fun b -> rho =<< gamma b) =<< phi a  =  rho =<< (gamma =<< phi a)`
+
+       Usually written reversed, and with a monadic variable `u` standing in
+       for `phi a`:
+
+       `u >>= (fun b -> gamma b >>= rho)  =  (u >>= gamma) >>= rho`
 
 
-For an example of the latter, let &phi; be a function that takes arguments of some (schematic, polymorphic) type C1 and yields results of some (schematic, polymorphic) type M(C2). An example with M being the list monad, and C2 being the tuple type schema int * C1:
+*      `return =<< gamma b  =  gamma b`
 
 
-       let &phi; = fun c &rarr; [(1,c), (2,c)]
+       Usually written reversed, and with `u` standing in for `phi a`:
 
 
-&phi; is polymorphic: when you apply it to the int 0 you get a result of type "list of int * int": [(1,0), (2,0)]. When you apply it to the char 'e' you get a result of type "list of int * char": [(1,'e'), (2,'e')].
+       `u >>= return  =  u`
 
 
-However, to keep things simple, we'll work instead with functions whose type is settled. So instead of the polymorphic &phi;, we'll work with (&phi; : C1 &rarr; M(int * C1)). This only accepts arguments of type C1. For generality, I'll talk of functions with the type (&phi; : C1 &rarr; M(C1')), where we assume that C1' is a function of C1.
+*      `gamma b  =  gamma =<< return b`
 
 
-A "monadic value" is any member of a type M(C1), for any type C1. For example, a list is a monadic value for the list monad. We can think of these monadic values as the result of applying some function (&phi; : C1 &rarr; M(C1')) to an argument of type C1.
+       Usually written reversed:
 
 
+       `return b >>= gamma  =  gamma b`