bfb97ae4b70ca404e85ee82bb6cf161a5b3014c0
1 We assume here that you've already gotten [Schema and OCaml installed on your computer](/how_to_get_the_programming_languages_running_on_your_computer/).
4 ## Programming in the pure untyped lambda calculus ##
6 There are several ways to do this, and we're still thinking out loud in this space about which method we should recommend you use.
8 1.      To get started, Chris has a nice [Lambda Tutorial](http://homepages.nyu.edu/~cb125/Lambda)
9 webpage introducing the untyped lambda calculus. This page has embedded Javascript
10 code that enables you to type lambda expressions into your web browser page
11 and click a button to "execute" (that is, reduce or normalize) it.
13         To do more than a few simple exercises, though, you'll need something more complex.
15 2.      One option is to use a short Scheme macro, like the one [linked at the bottom of Chris' webpage](http://homepages.nyu.edu/~cb125/Lambda/lambda.scm).
16 You can use this by loading into a Scheme interpreter (EXPLAIN HOW...) and then (STEP BY STEP...).
18         Here's Chris' explanation of the macro:
20                 (define (reduce f)                                                          ; 1
21                   ((lambda (value) (if (equal? value f) f (reduce value)))                  ; 2
22                    (let r ((f f) (g ()))                                                    ; 3
23                          (cond ((not (pair? f))                                                 ; 4
24                                         (if (null? g) f (if (eq? f (car g)) (cadr g) (r f (caddr g))))) ; 5
25                                    ((and (pair? (car f)) (= 2 (length f)) (eq? 'lambda (caar f)))   ; 6
27                                    ((and (not (null? g)) (= 3 (length f)) (eq? 'lambda (car f)))    ; 8
28                                         (cons 'lambda (r (cdr f) (list (cadr f) (delay (cadr f)) g))))  ; 9
29                                    (else (map (lambda (x) (r x g)) f))))))                          ;10
31                 If you have a Scheme interpreter, you can call the function like this:
33                 (reduce '(((lambda x (lambda y (x y))) 2) 3))
34                 ;Value: (2 3)
36                 (reduce '((lambda x (lambda y (x y))) 2))
37                 ;Value: (lambda #[promise 2] (2 #[promise 2]))
39                 Comments: f is the form to be evaluated, and g is the local assignment
40                 function; g has the structure (variable value g2), where g2 contains the rest
41                 of the assignments. The named let function r executes one pass through a form.
42                 The arguments to r are a form f, and an assignment function g. Line 2: continue
43                 to process the form until there are no more conversions left. Line 4
44                 (substitution): If f is atomic [or if it is a promise], check to see if matches
45                 any variable in g and if so replace it with the new value. Line 6 (beta
46                 reduction): if f has the form ((lambda variable body) argument), it is a lambda
47                 form being applied to an argument, so perform lambda conversion. Remember to
48                 evaluate the argument too! Line 8 (alpha reduction): if f has the form (lambda
49                 variable body), replace the variable and its free occurences in the body with a
50                 unique object to prevent accidental variable collision. [In this implementation
51                 a unique object is constructed by building a promise. Note that the identity of
52                 the original variable can be recovered if you ever care by forcing the
53                 promise.] Line 10: recurse down the subparts of f.
56 3.      Oleg Kiselyov has a [richer lambda interpreter](http://okmij.org/ftp/Scheme/#lambda-calc) in Scheme. Here's how he describes it
57 (I've made some trivial changes to the text):
59                 A practical Lambda-calculator in Scheme
61                 The code below implements a normal-order interpreter for the untyped
62                 lambda-calculus. The interpret permits "shortcuts" of terms. The shortcuts are
63                 not first class and do not alter the semantics of the lambda-calculus. Yet they
64                 make complex terms easier to define and apply.
66                 The code also includes a few convenience tools: tracing of all reduction,
67                 comparing two terms modulo alpha-renaming, etc.
69                 This calculator implements a normal-order evaluator for the untyped
70                 lambda-calculus with shortcuts. Shortcuts are distinguished constants that
71                 represent terms. An association between a shortcut symbol and a term must be
72                 declared before any term that contains the shortcut could be evaluated. The
73                 declaration of a shortcut does not cause the corresponding term to be
74                 evaluated. Therefore shortcut's term may contain other shortcuts -- or even yet
75                 to be defined ones. Shortcuts make programming in lambda-calculus remarkably
76                 more convenient.
78                 Besides terms to reduce, this lambda-calculator accepts a set of commands,
79                 which add even more convenience. Commands define new shortcuts, activate
80                 tracing of all reductions, compare terms modulo alpha-conversion, print all
81                 defined shortcuts and evaluation flags, etc. Terms to evaluate and commands are
82                 entered at a read-eval-print-loop (REPL) "prompt" -- or "included" from a file
83                 by a special command.
85                 Examples
87                 First we define a few shortcuts:
89                          (X Define %c0 (L s (L z z)))                     ; Church numeral 0
90                          (X Define %succ (L n (L s (L z (s (n z z))))))   ; Successor
91                          (X Define* %c1 (%succ %c0))
92                          (X Define* %c2 (%succ %c1))
93                          (X Define %add (L m (L n (L s (L z (m s (n s z))))))) ; Add two numerals
96                 REPL reduces the term and prints the answer: (L f (L x (f (f (f x))))).
98                          (X equal? (%succ %c0) %c1)
99                          (X equal?* (%succ %c0) %c1)
101                 The REPL executes the above commands and prints the answer: #f and #t,
102                 correspondingly. The second command reduces the terms before comparing them.
104         See also <http://okmij.org/ftp/Computation/lambda-calc.html>.
107 4.      Oleg also provides another lambda interpreter [written in
109 Jim converted this to OCaml and bundled it with a syntax extension that makes
110 it easier to write pure untyped lambda expressions in OCaml. You don't have to
111 know much OCaml yet to use it. Using it looks like this:
113                 let zero = <<fun s z -> z>>
114                 let succ = <<fun n s z -> s (n s z)>>
115                 let one = << \$succ\$ \$zero\$ >>
116                 let two = << \$succ\$ \$one\$ >>
117                 let add = <<fun m n -> n \$succ\$ m>>
118                 (* or *)
119                 let add = <<fun m n -> fun s z -> m s (n s z)>>
121                 church_to_int << \$add\$ \$one\$ \$two\$ >>;;
122                 - : int = 3
125 5.      To play around with a **typed lambda calculus**, which we'll look at later
126 in the course, have a look at the [Penn Lambda Calculator](http://www.ling.upenn.edu/lambda/).
127 This requires installing Java, but provides a number of tools for evaluating
128 lambda expressions and other linguistic forms. (Mac users will most likely