df0bbbabfd1b9cec822e77490b6f6f04719c5be0
1 [[!toc levels=2]]
3 **Chris:** I'll be working on this page heavily until 11--11:30 or so. Sorry not to do it last night, I crashed.
6 #Recursion: fixed points in the Lambda Calculus#
8 Sometimes when you type in a web search, Google will suggest
9 alternatives.  For instance, if you type in "Lingusitics", it will ask
10 you "Did you mean Linguistics?".  But the engineers at Google have
11 added some playfulness to the system.  For instance, if you search for
12 "anagram", Google asks you "Did you mean: nag a ram?"  And if you
13 [search for "recursion"](http://www.google.com/search?q=recursion), Google asks: "Did you mean: recursion?"
15 ##What is the "rec" part of "letrec" doing?##
17 How could we compute the length of a list? Without worrying yet about what Lambda Calculus encoding we're using for the list, the basic idea is to define this recursively:
19 >   the empty list has length 0
21 >   any non-empty list has length 1 + (the length of its tail)
23 In OCaml, you'd define that like this:
25     let rec length = fun xs ->
26                        if xs == [] then 0 else 1 + length (tail xs)
27     in ... (* here you go on to use the function "length" *)
29 In Scheme you'd define it like this:
31     (letrec [(length  (lambda (xs)
32                         (if (null? xs) 0
33                                        (+ 1 (length (cdr xs))) )))]
34             ... ; here you go on to use the function "length"
35     )
37 Some comments on this:
39 1. `null?` is Scheme's way of saying `empty?`. That is, `(null? xs)` returns true (which Scheme writes as `#t`) iff `xs` is the empty list (which Scheme writes as `'()` or `(list)`).
41 2. `cdr` is function that gets the tail of a Scheme list. (By definition, it's the function for getting the second member of a [[dotted pair|week3_unit#imp]]. As we discussed in notes for last week, it just turns out to return the tail of a list because of the particular way Scheme implements lists.)
43 3.  We alternate between `[ ]`s and `( )`s in the Scheme code just to make it more readable. These have no syntactic difference.
46 The main question for us to dwell on here is: What are the `let rec` in the OCaml code and the `letrec` in the Scheme code?
48 Answer: These work a lot like `let` expressions, except that they let you use the variable `length` *inside* the body of the function being bound to it---with the understanding that it will there be bound to *the same function* that you're *then* in the process of binding `length` to. So our recursively-defined function works the way we'd expect it to. Here is OCaml:
50     let rec length = fun xs ->
51                        if xs == [] then 0 else 1 + length (tail xs)
52     in length [20; 30]
53     (* this evaluates to 2 *)
55 Here is Scheme:
57     (letrec [(length (lambda (xs)
58                        (if (null? xs) 0
59                                       (+ 1 (length (cdr xs))) )))]
60       (length (list 20 30)))
61     ; this evaluates to 2
63 If you instead use an ordinary `let` (or `let*`), here's what would happen, in OCaml:
65     let length = fun xs ->
66                    if xs == [] then 0 else 1 + length (tail xs)
67     in length [20; 30]
68     (* fails with error "Unbound value length" *)
70 Here's Scheme:
72     (let* [(length (lambda (xs)
73                      (if (null? xs) 0
74                                     (+ 1 (length (cdr xs))) )))]
75       (length (list 20 30)))
76     ; fails with error "reference to undefined identifier: length"
78 Why? Because we said that constructions of this form:
80     let
81       length match/= A
82     in B
84 really were just another way of saying:
86     (\length. B) A
88 and so the occurrences of `length` in A *aren't bound by the `\length` that wraps B*. Those occurrences are free.
90 We can verify this by wrapping the whole expression in a more outer binding of `length` to some other function, say the constant function from any list to the integer `99`:
92     let length = fun xs -> 99
93     in let length = fun xs ->
94                       if xs == [] then 0 else 1 + length (tail xs)
95     in length [20; 30]
96     (* evaluates to 1 + 99 *)
98 Here the use of `length` in `1 + length (tail xs)` can clearly be seen to be bound by the outermost `let`.
100 And indeed, if you tried to define `length` in the Lambda Calculus, how would you do it?
102     \xs. (empty? xs) 0 (succ (length (tail xs)))
104 We've defined all of `empty?`, `0`, `succ`, and `tail` in earlier discussion. But what about `length`? That's not yet defined! In fact, that's the very formula we're trying here to specify.
106 What we really want to do is something like this:
108     \xs. (empty? xs) 0 (succ (... (tail xs)))
110 where this very same formula occupies the `...` position:
112     \xs. (empty? xs) 0 (succ (\xs. (empty? xs) 0 (succ (... (tail xs)))
113                                    (tail xs)))
115 but as you can see, we'd still have to plug the formula back into itself again, and again, and again... No dice.
117 So how could we do it? And how do OCaml and Scheme manage to do it, with their `let rec` and `letrec`?
119 1.  OCaml and Scheme do it using a trick. Well, not a trick. Actually an impressive, conceptually deep technique, which we haven't yet developed. Since we want to build up all the techniques we're using by hand, then, we shouldn't permit ourselves to rely on `let rec` or `letrec` until we thoroughly understand what's going on under the hood.
121 2.  If you tried this in Scheme:
123         (define length (lambda (xs)
124                          (if (null? xs) 0
125                                         (+ 1 (length (cdr xs))) )))
127         (length (list 20 30))
129     You'd find that it works! This is because `define` in Scheme is really shorthand for `letrec`, not for plain `let` or `let*`. So we should regard this as cheating, too.
131 3.  In fact, it *is* possible to define the `length` function in the Lambda Calculus despite these obstacles. This depends on using the "version 3" encoding of lists, and exploiting its internal structure: that it takes a function and a base value and returns the result of folding that function over the list, with that base value. So we could use this as a definition of `length`:
133         \xs. xs (\x sofar. successor sofar) 0
135     What's happening here? We start with the value `0`, then we apply the function `\x sofar. successor sofar` to the two arguments <code>x<sub>n</sub></code> and `0`, where <code>x<sub>n</sub></code> is the last element of the list. This gives us `successor 0`, or `1`. That's the value we've accumuluted "so far." Then we go apply the function `\x sofar. successor sofar` to the two arguments <code>x<sub>n-1</sub></code> and the value `1` that we've accumulated "so far." This gives us `two`. We continue until we get to the start of the list. The value we've then built up "so far" will be the length of the list.
137 We can use similar techniques to define many recursive operations on
138 lists and numbers. The reason we can do this is that our "version 3,"
139 fold-based encoding of lists, and Church's encodings of
140 numbers, have a internal structure that *mirrors* the common recursive
141 operations we'd use lists and numbers for.  In a sense, the recursive
142 structure of the `length` operation is built into the data
143 structure we are using to represent the list.  The non-recursive
144 version of length exploits this embedding of the recursion into
145 the data type.
147 This is one of the themes of the course: using data structures to
148 encode the state of some recursive operation.  See discussions of the
149 [[zipper]] technique, and [[defunctionalization]].
151 As we said before, it does take some ingenuity to define functions like `tail` or `predecessor` for these encodings. However it can be done. (And it's not *that* difficult.) Given those functions, we can go on to define other functions like numeric equality, subtraction, and so on, just by exploiting the structure already present in our encodings of lists and numbers.
153 With sufficient ingenuity, a great many functions can be defined in the same way. For example, the factorial function is straightforward. The function which returns the nth term in the Fibonacci series is a bit more difficult, but also achievable.
155 ##Some functions require full-fledged recursive definitions##
157 However, some computable functions are just not definable in this
158 way. We can't, for example, define a function that tells us, for
159 whatever function `f` we supply it, what is the smallest integer `x`
160 where `f x` is `true`.  (You may be thinking: but that
161 smallest-integer function is not a proper algorithm, since it is not
162 guaranteed to halt in any finite amount of time for every argument.
163 This is the famous [[!wikipedia Halting problem]].  But the fact that
164 an implementation may not terminate doesn't mean that such a function
165 isn't well-defined.  The point of interest here is that its definition
166 requires recursion in the function definition.)
168 Neither do the resources we've so far developed suffice to define the
169 [[!wikipedia Ackermann function]]:
171     A(m,n) =
172       | when m == 0 -> n + 1
173       | else when n == 0 -> A(m-1,1)
174       | else -> A(m-1, A(m,n-1))
176     A(0,y) = y+1
177     A(1,y) = 2+(y+3) - 3
178     A(2,y) = 2(y+3) - 3
179     A(3,y) = 2^(y+3) - 3
180     A(4,y) = 2^(2^(2^...2)) [where there are y+3 2s] - 3
181     ...
183 Many simpler functions always *could* be defined using the resources we've so far developed, although those definitions won't always be very efficient or easily intelligible.
185 But functions like the Ackermann function require us to develop a more general technique for doing recursion---and having developed it, it will often be easier to use it even in the cases where, in principle, we didn't have to.
187 ##Using fixed-point combinators to define recursive functions##
189 ###Fixed points###
191 In general, a **fixed point** of a function `f` is any value `x`
192 such that `f x` is equivalent to `x`. For example,
193 consider the squaring function `square` that maps natural numbers to their squares.
194 `square 2 = 4`, so `2` is not a fixed point.  But `square 1 = 1`, so `1` is a
195 fixed point of the squaring function.
197 There are many beautiful theorems guaranteeing the existence of a
198 fixed point for various classes of interesting functions.  For
199 instance, imainge that you are looking at a map of Manhattan, and you
200 are standing somewhere in Manhattan.  The the [[!wikipedia Brouwer
201 fixed-point theorem]] guarantees that there is a spot on the map that is
202 directly above the corresponding spot in Manhattan.  It's the spot
203 where the blue you-are-here dot should be.
205 Whether a function has a fixed point depends on the set of arguments
206 it is defined for.  For instance, consider the successor function `succ`
207 that maps each natural number to its successor.  If we limit our
208 attention to the natural numbers, then this function has no fixed
209 point.  (See the discussion below concerning a way of understanding
210 the successor function on which it does have a fixed point.)
212 In the Lambda Calculus, we say a fixed point of a term `f` is any term `X` such that:
214     X <~~> f X
216 You should be able to immediately provide a fixed point of the
217 identity combinator I.  In fact, you should be able to provide a
218 whole bunch of distinct fixed points.
220 With a little thought, you should be able to provide a fixed point of
221 the false combinator, KI.  Here's how to find it: recall that KI
222 throws away its first argument, and always returns I.  Therefore, if
223 we give it I as an argument, it will throw away the argument, and
224 return I.  So KII ~~> I, which is all it takes for I to qualify as a
225 fixed point of KI.
227 What about K?  Does it have a fixed point?  You might not think so,
228 after trying on paper for a while.
230 However, it's a theorem of the Lambda Calculus that every formula has
231 a fixed point. In fact, it will have infinitely many, non-equivalent
232 fixed points. And we don't just know that they exist: for any given
233 formula, we can explicit define many of them.
235 Yes, as we've mentioned, even the formula that you're using the define
236 the successor function will have a fixed point. Isn't that weird?
237 Think about how it might be true.  We'll return to this point below.
239 ###How fixed points help define recursive functions###
241 Recall our initial, abortive attempt above to define the `length` function in the Lambda Calculus. We said "What we really want to do is something like this:
243     \xs. if empty? xs then 0 else succ (... (tail xs))
245 where this very same formula occupies the `...` position."
247 Imagine replacing the `...` with some function that computes the
248 length function.  Call that function `length`.  Then we have
250     \xs. if empty? xs then 0 else succ (length (tail xs))
252 At this point, we have a definition of the length function, though
253 it's not complete, since we don't know what value to use for the
254 symbol `length`.  Technically, it has the status of an unbound
255 variable.
257 Imagine now binding the mysterious variable, and calling the resulting
258 function `h`:
260     h := \length \xs. if empty? xs then 0 else succ (length (tail xs))
262 Now we have no unbound variables, and we have complete non-recursive
263 definitions of each of the other symbols.
265 So `h` takes an argument, and returns a function that accurately
266 computes the length of a list---as long as the argument we supply is
267 already the length function we are trying to define.  (Dehydrated
268 water: to reconstitute, just add water!)
270 Here is where the discussion of fixed points becomes relevant.  Saying
271 that `h` is looking for an argument (call it `LEN`) that has the same
272 behavior as the result of applying `h` to `LEN` is just another way of
273 saying that we are looking for a fixed point for `h`.
275     h LEN <~~> LEN
277 Replacing `h` with its definition, we have
279     (\xs. if empty? xs then 0 else succ (LEN (tail xs))) <~~> LEN
281 If we can find a value for `LEN` that satisfies this constraint, we'll
282 have a function we can use to compute the length of an arbitrary list.
283 All we have to do is find a fixed point for `h`.
285 The strategy we will present will turn out to be a general way of
286 finding a fixed point for any lambda term.
288 ##Deriving Y, a fixed point combinator##
290 How shall we begin?  Well, we need to find an argument to supply to
291 `h`.  The argument has to be a function that computes the length of a
292 list.  The function `h` is *almost* a function that computes the
293 length of a list.  Let's try applying `h` to itself.  It won't quite
294 work, but examining the way in which it fails will lead to a solution.
296     h h <~~> \xs. if empty? xs then 0 else 1 + h (tail xs)
298 The problem is that in the subexpression `h (tail list)`, we've
299 applied `h` to a list, but `h` expects as its first argument the
300 length function.
302 So let's adjust h, calling the adjusted function H:
304     H = \h \xs. if empty? xs then 0 else 1 + ((h h) (tail xs))
306 This is the key creative step.  Instead of applying `h` to a list, we
307 apply it first to itself.  After applying `h` to an argument, it's
308 ready to apply to a list, so we've solved the problem just noted.
309 We're not done yet, of course; we don't yet know what argument to give
310 to `H` that will behave in the desired way.
312 So let's reason about `H`.  What exactly is H expecting as its first
313 argument?  Based on the excerpt `(h h) (tail l)`, it appears that
314 `H`'s argument, `h`, should be a function that is ready to take itself
315 as an argument, and that returns a function that takes a list as an
316 argument.  `H` itself fits the bill:
318     H H <~~> (\h \xs. if empty? xs then 0 else 1 + ((h h) (tail xs))) H
319         <~~> \xs. if empty? xs then 0 else 1 + ((H H) (tail xs))
320         == \xs. if empty? xs then 0 else 1 + ((\xs. if empty? xs then 0 else 1 + ((H H) (tail xs))) (tail xs))
321         <~~> \xs. if empty? xs then 0
322                     else 1 + (if empty? (tail xs) then 0 else 1 + ((H H) (tail (tail xs))))
324 We're in business!
326 How does the recursion work?
327 We've defined `H` in such a way that `H H` turns out to be the length function.
328 In order to evaluate `H H`, we substitute `H` into the body of the
329 lambda term.  Inside the lambda term, once the substitution has
330 occurred, we are once again faced with evaluating `H H`.  And so on.
332 We've got the infinite regress we desired, defined in terms of a
333 finite lambda term with no undefined symbols.
335 Since `H H` turns out to be the length function, we can think of `H`
336 by itself as half of the length function (which is why we called it
337 `H`, of course).  Can you think up a recursion strategy that involves
338 "dividing" the recursive function into equal thirds `T`, such that the
339 length function <~~> T T T?
341 We've starting with a particular recursive definition, and arrived at
342 a fixed point for that definition.
343 What's the general recipe?
345 1.   Start with any recursive definition `h` that takes itself as an arg: `h := \fn ... fn ...`
346 2.   Next, define `H := \f . h (f f)`
347 3.   Then compute `H H = ((\f . h (f f)) (\f . h (f f)))`
348 4.   That's the fixed point, the recursive function we're trying to define
350 So here is a general method for taking an arbitrary h-style recursive function
351 and returning a fixed point for that function:
353      Y := \h. ((\f.h(ff))(\f.h(ff)))
355 Test:
357     Yh == ((\f.h(ff))(\f.h(ff)))
358        <~~> h((\f.h(ff))(\f.h(ff)))
359        == h(Yh)
361 That is, Yh is a fixed point for h.
363 Works!
365 Let's do one more example to illustrate.  We'll do `K`, since we
366 wondered above whether it had a fixed point.
368 Before we begin, we can reason a bit about what the fixed point must
369 be like.  We're looking for a fixed point for `K`, i.e., `\xy.x`.  `K`
370 ignores its second argument.  That means that no matter what we give
371 `K` as its first argument, the result will ignore the next argument
372 (that is, `KX` ignores its first argument, no matter what `X` is).  So
373 if `KX <~~> X`, `X` had also better ignore its first argument.  But we
374 also have `KX == (\xy.x)X ~~> \y.X`.  This means that if `X` ignores
375 its first argument, then `\y.X` will ignore its first two arguments.
376 So once again, if `KX <~~> X`, `X` also had better ignore at least its
377 first two arguments.  Repeating this reasoning, we realize that `X`
378 must be a function that ignores an infinite series of arguments.
379 Our expectation, then, is that our recipe for finding fixed points
380 will build us a function that somehow manages to ignore an infinite
381 series of arguments.
383     h := \xy.x
384     H := \f.h(ff) == \f.(\xy.x)(ff) ~~> \fy.ff
385     H H := (\fy.ff)(\fy.ff) ~~> \y.(\fy.ff)(\fy.ff)
387 Let's check that it is in fact a fixed point:
389     K(H H) == (\xy.x)((\fy.ff)(\fy.ff)
390            ~~> \y.(\fy.ff)(\fy.ff)
392 Yep, `H H` and `K(H H)` both reduce to the same term.
394 To see what this fixed point does, let's reduce it a bit more:
396     H H == (\fy.ff)(\fy.ff)
397         ~~> \y.(\fy.ff)(\fy.ff)
398         ~~> \yy.(\fy.ff)(\fy.ff)
399         ~~> \yyy.(\fy.ff)(\fy.ff)
401 Sure enough, this fixed point ignores an endless, infinite series of
402 arguments.  It's a write-only memory, a black hole.
404 Now that we have one fixed point, we can find others, for instance,
406     (\fy.fff)(\fy.fff)
407     ~~> \y.(\fy.fff)(\fy.fff)(\fy.fff)
408     ~~> \yy.(\fy.fff)(\fy.fff)(\fy.fff)(\fy.fff)
409     ~~> \yyy.(\fy.fff)(\fy.fff)(\fy.fff)(\fy.fff)(\fy.fff)
411 Continuing in this way, you can now find an infinite number of fixed
412 points, all of which have the crucial property of ignoring an infinite
413 series of arguments.
415 ##What is a fixed point for the successor function?##
417 As we've seen, the recipe just given for finding a fixed point worked
418 great for our `h`, which we wrote as a definition for the length
419 function.  But the recipe doesn't make any assumptions about the
420 internal structure of the function it works with.  That means it can
421 find a fixed point for literally any function whatsoever.
423 In particular, what could the fixed point for the
424 successor function possibly be like?
426 Well, you might think, only some of the formulas that we might give to the `successor` as arguments would really represent numbers. If we said something like:
428     successor make-pair
430 who knows what we'd get back? Perhaps there's some non-number-representing formula such that when we feed it to `successor` as an argument, we get the same formula back.
432 Yes! That's exactly right. And which formula this is will depend on the particular way you've implemented the successor function.
434 One (by now obvious) upshot is that the recipes that enable us to name
435 fixed points for any given formula aren't *guaranteed* to give us
436 *terminating* fixed points. They might give us formulas X such that
437 neither `X` nor `f X` have normal forms. (Indeed, what they give us
438 for the square function isn't any of the Church numerals, but is
439 rather an expression with no normal form.) However, if we take care we
440 can ensure that we *do* get terminating fixed points. And this gives
441 us a principled, fully general strategy for doing recursion. It lets
442 us define even functions like the Ackermann function, which were until
443 now out of our reach. It would also let us define arithmetic and list
444 functions on the "version 1" and "version 2" encodings, where it
445 wasn't always clear how to force the computation to "keep going."
447 ###Varieties of fixed-point combinators###
449 OK, so how do we make use of this?
451 Many fixed-point combinators have been discovered. (And some
452 fixed-point combinators give us models for building infinitely many
453 more, non-equivalent fixed-point combinators.)
455 Two of the simplest:
457 <pre><code>&Theta;&prime; &equiv; (\u f. f (\n. u u f n)) (\u f. f (\n. u u f n))
458 Y&prime; &equiv; \f. (\u. f (\n. u u n)) (\u. f (\n. u u n))</code></pre>
460 <code>&Theta;&prime;</code> has the advantage that <code>f (&Theta;&prime; f)</code> really *reduces to* <code>&Theta;&prime; f</code>. Whereas <code>f (Y&prime; f)</code> is only *convertible with* <code>Y&prime; f</code>; that is, there's a common formula they both reduce to. For most purposes, though, either will do.
462 You may notice that both of these formulas have eta-redexes inside them: why can't we simplify the two `\n. u u f n` inside <code>&Theta;&prime;</code> to just `u u f`? And similarly for <code>Y&prime;</code>?
464 Indeed you can, getting the simpler:
466 <pre><code>&Theta; &equiv; (\u f. f (u u f)) (\u f. f (u u f))
467 Y &equiv; \f. (\u. f (u u)) (\u. f (u u))</code></pre>
469 I stated the more complex formulas for the following reason: in a language whose evaluation order is *call-by-value*, the evaluation of <code>&Theta; (\self. BODY)</code> and `Y (\self. BODY)` will in general not terminate. But evaluation of the eta-unreduced primed versions will.
471 Of course, if you define your `\self. BODY` stupidly, your formula will never terminate. For example, it doesn't matter what fixed point combinator you use for <code>&Psi;</code> in:
473 <pre><code>&Psi; (\self. \n. self n)</code></pre>
475 When you try to evaluate the application of that to some argument `M`, it's going to try to give you back:
477     (\n. self n) M
479 where `self` is equivalent to the very formula `\n. self n` that contains it. So the evaluation will proceed:
481     (\n. self n) M ~~>
482     self M ~~>
483     (\n. self n) M ~~>
484     self M ~~>
485     ...
487 You've written an infinite loop!
489 However, when we evaluate the application of our:
491 <pre><code>&Psi; (\self (\xs. (empty? xs) 0 (succ (self (tail xs))) ))</code></pre>
493 to some list `L`, we're not going to go into an infinite evaluation loop of that sort. At each cycle, we're going to be evaluating the application of:
495     \xs. (empty? xs) 0 (succ (self (tail xs)))
497 to *the tail* of the list we were evaluating its application to at the previous stage. Assuming our lists are finite (and the encodings we're using don't permit otherwise), at some point one will get a list whose tail is empty, and then the evaluation of that formula to that tail will return `0`. So the recursion eventually bottoms out in a base value.
499 ##Fixed-point Combinators Are a Bit Intoxicating##
501 ![tatoo](/y-combinator-fixed.jpg)
503 There's a tendency for people to say "Y-combinator" to refer to fixed-point combinators generally. We'll probably fall into that usage ourselves. Speaking correctly, though, the Y-combinator is only one of many fixed-point combinators.
505 I used <code>&Psi;</code> above to stand in for an arbitrary fixed-point combinator. I don't know of any broad conventions for this. But this seems a useful one.
507 As we said, there are many other fixed-point combinators as well. For example, Jan Willem Klop pointed out that if we define `L` to be:
509     \a b c d e f g h i j k l m n o p q s t u v w x y z r. (r (t h i s i s a f i x e d p o i n t c o m b i n a t o r))
511 then this is a fixed-point combinator:
513     L L L L L L L L L L L L L L L L L L L L L L L L L L
516 ##Watching Y in action##
518 For those of you who like to watch ultra slow-mo movies of bullets
519 piercing apples, here's a stepwise computation of the application of a
520 recursive function.  We'll use a function `sink`, which takes one
521 argument.  If the argument is boolean true (i.e., `\x y.x`), it
522 returns itself (a copy of `sink`); if the argument is boolean false
523 (`\x y. y`), it returns `I`.  That is, we want the following behavior:
525     sink false ~~> I
526     sink true false ~~> I
527     sink true true false ~~> I
528     sink true true true false ~~> I
530 So we make `sink = Y (\f b. b f I)`:
532     1. sink false
533     2. Y (\fb.bfI) false
534     3. (\f. (\h. f (h h)) (\h. f (h h))) (\fb.bfI) false
535     4. (\h. [\fb.bfI] (h h)) (\h. [\fb.bfI] (h h)) false
536     5. [\fb.bfI] ((\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))) false
537     6. (\b.b[(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))]I)  false
538     7. false [(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))] I
539              --------------------------------------------
540     8. I
542 So far so good.  The crucial thing to note is that as long as we
543 always reduce the outermost redex first, we never have to get around
544 to computing the underlined redex: because `false` ignores its first
545 argument, we can throw it away unreduced.
547 Now we try the next most complex example:
549     1. sink true false
550     2. Y (\fb.bfI) true false
551     3. (\f. (\h. f (h h)) (\h. f (h h))) (\fb.bfI) true false
552     4. (\h. [\fb.bfI] (h h)) (\h. [\fb.bfI] (h h)) true false
553     5. [\fb.bfI] ((\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))) true false
554     6. (\b.b[(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))]I)  true false
555     7. true [(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))] I false
556     8. [(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))] false
558 We've now arrived at line (4) of the first computation, so the result
559 is again I.
561 You should be able to see that `sink` will consume as many `true`s as
562 we throw at it, then turn into the identity function after it
563 encounters the first `false`.
565 The key to the recursion is that, thanks to Y, the definition of
566 `sink` contains within it the ability to fully regenerate itself as
567 many times as is necessary.  The key to *ending* the recursion is that
568 the behavior of `sink` is sensitive to the nature of the input: if the
569 input is the magic function `false`, the self-regeneration machinery
570 will be discarded, and the recursion will stop.
572 That's about as simple as recursion gets.
574 ##Application to the truth teller/liar paradoxes##
576 ###Base cases, and their lack###
578 As any functional programmer quickly learns, writing a recursive
579 function divides into two tasks: figuring out how to handle the
580 recursive case, and remembering to insert a base case.  The
581 interesting and enjoyable part is figuring out the recursive pattern,
582 but the base case cannot be ignored, since leaving out the base case
583 creates a program that runs forever.  For instance, consider computing
584 a factorial: `n!` is `n * (n-1) * (n-2) * ... * 1`.  The recursive
585 case says that the factorial of a number `n` is `n` times the
586 factorial of `n-1`.  But if we leave out the base case, we get
588     3! = 3 * 2! = 3 * 2 * 1! = 3 * 2 * 1 * 0! = 3 * 2 * 1 * 0 * -1! ...
590 That's why it's crucial to declare that 0! = 1, in which case the
591 recursive rule does not apply.  In our terms,
593     fac = Y (\fac n. zero? n 1 (fac (predecessor n)))
595 If `n` is 0, `fac` reduces to 1, without computing the recursive case.
597 Curry originally called `Y` the paradoxical combinator, and discussed
598 it in connection with certain well-known paradoxes from the philosophy
599 literature.  The truth teller paradox has the flavor of a recursive
600 function without a base case: the truth-teller paradox (and related
603 (1)    This sentence is true.
605 If we assume that the complex demonstrative "this sentence" can refer
606 to (1), then the proposition expressed by (1) will be true just in
607 case the thing referred to by *this sentence* is true.  Thus (1) will
608 be true just in case (1) is true, and (1) is true just in case (1) is
609 true, and so on.  If (1) is true, then (1) is true; but if (1) is not
610 true, then (1) is not true.
612 Without pretending to give a serious analysis of the paradox, let's
613 assume that sentences can have for their meaning boolean functions
614 like the ones we have been working with here.  Then the sentence *John
615 is John* might denote the function `\x y. x`, our `true`.
617 Then (1) denotes a function from whatever the referent of *this
618 sentence* is to a boolean.  So (1) denotes `\f. f true false`, where
619 the argument `f` is the referent of *this sentence*.  Of course, if
620 `f` is a boolean, `f true false <~~> f`, so for our purposes, we can
621 assume that (1) denotes the identity function `I`.
623 If we use (1) in a context in which *this sentence* refers to the
624 sentence in which the demonstrative occurs, then we must find a
625 meaning `m` such that `I m = I`.  But since in this context `m` is the
626 same as the meaning `I`, so we have `m = I m`.  In other words, `m` is
627 a fixed point for the denotation of the sentence (when used in the
628 appropriate context).
630 That means that in a context in which *this sentence* refers to the
631 sentence in which it occurs, the sentence denotes a fixed point for
632 the identity function.  Here's a fixed point for the identity
633 function:
635 <pre><code>Y I
636 (\f. (\h. f (h h)) (\h. f (h h))) I
637 (\h. I (h h)) (\h. I (h h)))
638 (\h. (h h)) (\h. (h h)))
639 &omega; &omega;
640 &Omega
641 </code></pre>
643 Oh.  Well!  That feels right.  The meaning of *This sentence is true*
644 in a context in which *this sentence* refers to the sentence in which
645 it occurs is <code>&Omega;</code>, our prototypical infinite loop...
649 (2)  This sentence is false.
651 Used in a context in which *this sentence* refers to the utterance of
652 (2) in which it occurs, (2) will denote a fixed point for `\f.neg f`,
653 or `\f l r. f r l`, which is the `C` combinator.  So in such a
654 context, (2) might denote
656      Y C
657      (\f. (\h. f (h h)) (\h. f (h h))) I
658      (\h. C (h h)) (\h. C (h h)))
659      C ((\h. C (h h)) (\h. C (h h)))
660      C (C ((\h. C (h h))(\h. C (h h))))
661      C (C (C ((\h. C (h h))(\h. C (h h)))))
662      ...
664 And infinite sequence of `C`s, each one negating the remainder of the
665 sequence.  Yep, that feels like a reasonable representation of the
668 See Barwise and Etchemendy's 1987 OUP book, [The Liar: an essay on
669 truth and circularity](http://tinyurl.com/2db62bk) for an approach
670 that is similar, but expressed in terms of non-well-founded sets
671 rather than recursive functions.
673 ##However...##
675 You should be cautious about feeling too comfortable with
676 these results.  Thinking again of the truth-teller paradox, yes,
677 <code>&Omega;</code> is *a* fixed point for `I`, and perhaps it has
678 some a privileged status among all the fixed points for `I`, being the
679 one delivered by Y and all (though it is not obvious why Y should have
680 any special status).
682 But one could ask: look, literally every formula is a fixed point for
683 `I`, since
685     X <~~> I X
687 for any choice of X whatsoever.
689 So the Y combinator is only guaranteed to give us one fixed point out
690 of infinitely many---and not always the intuitively most useful
691 one. (For instance, the squaring function has `0` as a fixed point,
692 since `0 * 0 = 0`, and `1` as a fixed point, since `1 * 1 = 1`, but `Y
693 (\x. mul x x)` doesn't give us `0` or `1`.) So with respect to the
694 truth-teller paradox, why in the reasoning we've
695 just gone through should we be reaching for just this fixed point at
696 just this juncture?
698 One obstacle to thinking this through is the fact that a sentence
699 normally has only two truth values.  We might consider instead a noun
700 phrase such as
702 (3)  the entity that this noun phrase refers to
704 The reference of (3) depends on the reference of the embedded noun
705 phrase *this noun phrase*.  It's easy to see that any object is a
706 fixed point for this referential function: if this pen cap is the
707 referent of *this noun phrase*, then it is the referent of (3), and so
708 for any object.
710 The chameleon nature of (3), by the way (a description that is equally
711 good at describing any object), makes it particularly well suited as a
712 gloss on pronouns such as *it*.  In the system of