5fb5409ac0e72109ae92e004370d8e75ee9c9eef
1 [[!toc]]
3 **Chris:** I'll be working on this page heavily until 11--11:30 or so. Sorry not to do it last night, I crashed.
6 #Recursion: fixed points in the lambda calculus##
8 Sometimes when you type in a web search, Google will suggest
9 alternatives.  For instance, if you type in "Lingusitics", it will ask
10 you "Did you mean Linguistics?".  But the engineers at Google have
11 added some playfulness to the system.  For instance, if you search for
12 "anagram", Google asks you "Did you mean: nag a ram?"  And if you
15 ##What is the "rec" part of "letrec" doing?##
17 How could we compute the length of a list? Without worrying yet about what lambda-calculus implementation we're using for the list, the basic idea would be to define this recursively:
19 >       the empty list has length 0
21 >       any non-empty list has length 1 + (the length of its tail)
23 In OCaml, you'd define that like this:
25         let rec length = fun lst ->
26                 if lst == [] then 0 else 1 + length (tail lst)
27         in ... (* here you go on to use the function "length" *)
29 In Scheme you'd define it like this:
31         (letrec [(length
32                                 (lambda (lst) (if (null? lst) 0 [+ 1 (length (cdr lst))] )) )]
33                 ... ; here you go on to use the function "length"
34         )
38 1. `null?` is Scheme's way of saying `isempty`. That is, `(null? lst)` returns true (which Scheme writes as `#t`) iff `lst` is the empty list (which Scheme writes as `'()` or `(list)`).
40 2. `cdr` is function that gets the tail of a Scheme list. (By definition, it's the function for getting the second member of an ordered pair. It just turns out to return the tail of a list because of the particular way Scheme implements lists.)
42 3.      I use `length` instead of the convention we've been following so far of hyphenated names, as in `make-list`, because we're discussing OCaml code here, too, and OCaml doesn't permit the hyphenated variable names. OCaml requires variables to always start with a lower-case letter (or `_`), and then continue with only letters, numbers, `_` or `'`. Most other programming languages are similar. Scheme is very relaxed, and permits you to use `-`, `?`, `/`, and all sorts of other crazy characters in your variable names.
44 4.      I alternate between `[ ]`s and `( )`s in the Scheme code just to make it more readable. These have no syntactic difference.
47 The main question for us to dwell on here is: What are the `let rec` in the OCaml code and the `letrec` in the Scheme code?
49 Answer: These work like the `let` expressions we've already seen, except that they let you use the variable `length` *inside* the body of the function being bound to it---with the understanding that it will there refer to the same function that you're then in the process of binding to `length`. So our recursively-defined function works the way we'd expect it to. In OCaml:
51         let rec length = fun lst ->
52                 if lst == [] then 0 else 1 + length (tail lst)
53         in length [20; 30]
54         (* this evaluates to 2 *)
56 In Scheme:
58         (letrec [(length
59                                 (lambda (lst) (if (null? lst) 0 [+ 1 (length (cdr lst))] )) )]
60                         (length (list 20 30)))
61         ; this evaluates to 2
63 If you instead use an ordinary `let` (or `let*`), here's what would happen, in OCaml:
65         let length = fun lst ->
66                 if lst == [] then 0 else 1 + length (tail lst)
67         in length [20; 30]
68         (* fails with error "Unbound value length" *)
70 Here's Scheme:
72         (let* [(length
73                                 (lambda (lst) (if (null? lst) 0 [+ 1 (length (cdr lst))] )) )]
74                         (length (list 20 30)))
75         ; fails with error "reference to undefined identifier: length"
77 Why? Because we said that constructions of this form:
79         let length = A
80                 in B
82 really were just another way of saying:
84         (\length. B) A
86 and so the occurrences of `length` in A *aren't bound by the `\length` that wraps B*. Those occurrences are free.
88 We can verify this by wrapping the whole expression in a more outer binding of `length` to some other function, say the constant function from any list to the integer 99:
90         let length = fun lst -> 99
91         in let length = fun lst ->
92                         if lst == [] then 0 else 1 + length (tail lst)
93         in length [20; 30]
94         (* evaluates to 1 + 99 *)
96 Here the use of `length` in `1 + length (tail lst)` can clearly be seen to be bound by the outermost `let`.
98 And indeed, if you tried to define `length` in the lambda calculus, how would you do it?
100         \lst. (isempty lst) zero (add one (length (extract-tail lst)))
102 We've defined all of `isempty`, `zero`, `add`, `one`, and `extract-tail` in earlier discussion. But what about `length`? That's not yet defined! In fact, that's the very formula we're trying here to specify.
104 What we really want to do is something like this:
106         \lst. (isempty lst) zero (add one (... (extract-tail lst)))
108 where this very same formula occupies the `...` position:
110         \lst. (isempty lst) zero (add one (
111                 \lst. (isempty lst) zero (add one (... (extract-tail lst)))
112                         (extract-tail lst)))
114 but as you can see, we'd still have to plug the formula back into itself again, and again, and again... No dice.
116 So how could we do it? And how do OCaml and Scheme manage to do it, with their `let rec` and `letrec`?
118 1.      OCaml and Scheme do it using a trick. Well, not a trick. Actually an impressive, conceptually deep technique, which we haven't yet developed. Since we want to build up all the techniques we're using by hand, then, we shouldn't permit ourselves to rely on `let rec` or `letrec` until we thoroughly understand what's going on under the hood.
120 2.      If you tried this in Scheme:
122                 (define length
123                                 (lambda (lst) (if (null? lst) 0 [+ 1 (length (cdr lst))] )) )
125                 (length (list 20 30))
127         You'd find that it works! This is because `define` in Scheme is really shorthand for `letrec`, not for plain `let` or `let*`. So we should regard this as cheating, too.
129 3.      In fact, it *is* possible to define the `length` function in the lambda calculus despite these obstacles. This depends on using the "version 3" implementation of lists, and exploiting its internal structure: that it takes a function and a base value and returns the result of folding that function over the list, with that base value. So we could use this as a definition of `length`:
131                 \lst. lst (\x sofar. successor sofar) zero
133         What's happening here? We start with the value zero, then we apply the function `\x sofar. successor sofar` to the two arguments <code>x<sub>n</sub></code> and `zero`, where <code>x<sub>n</sub></code> is the last element of the list. This gives us `successor zero`, or `one`. That's the value we've accumuluted "so far." Then we go apply the function `\x sofar. successor sofar` to the two arguments <code>x<sub>n-1</sub></code> and the value `one` that we've accumulated "so far." This gives us `two`. We continue until we get to the start of the list. The value we've then built up "so far" will be the length of the list.
135 We can use similar techniques to define many recursive operations on
136 lists and numbers. The reason we can do this is that our "version 3,"
137 fold-based implementation of lists, and Church's implementations of
138 numbers, have a internal structure that *mirrors* the common recursive
139 operations we'd use lists and numbers for.  In a sense, the recursive
140 structure of the `length` operation is built into the data
141 structure we are using to represent the list.  The non-recursive
142 version of length exploits this embedding of the recursion into
143 the data type.
145 This is one of the themes of the course: using data structures to
146 encode the state of some recursive operation.  See discussions of the
147 [[zipper]] technique, and [[defunctionalization]].
149 As we said before, it does take some ingenuity to define functions like `extract-tail` or `predecessor` for these implementations. However it can be done. (And it's not *that* difficult.) Given those functions, we can go on to define other functions like numeric equality, subtraction, and so on, just by exploiting the structure already present in our implementations of lists and numbers.
151 With sufficient ingenuity, a great many functions can be defined in the same way. For example, the factorial function is straightforward. The function which returns the nth term in the Fibonacci series is a bit more difficult, but also achievable.
153 ##Some functions require full-fledged recursive definitions##
155 However, some computable functions are just not definable in this
156 way. We can't, for example, define a function that tells us, for
157 whatever function `f` we supply it, what is the smallest integer `x`
158 where `f x` is `true`.  (You may be thinking: but that
159 smallest-integer function is not a proper algorithm, since it is not
160 guaranteed to halt in any finite amount of time for every argument.
161 This is the famous [[!wikipedia Halting problem]].  But the fact that
162 an implementation may not terminate doesn't mean that such a function
163 isn't well-defined.  The point of interest here is that its definition
164 requires recursion in the function definition.)
166 Neither do the resources we've so far developed suffice to define the
167 [[!wikipedia Ackermann function]]:
169         A(m,n) =
170                 | when m == 0 -> n + 1
171                 | else when n == 0 -> A(m-1,1)
172                 | else -> A(m-1, A(m,n-1))
174         A(0,y) = y+1
175         A(1,y) = 2+(y+3) - 3
176         A(2,y) = 2(y+3) - 3
177         A(3,y) = 2^(y+3) - 3
178         A(4,y) = 2^(2^(2^...2)) [where there are y+3 2s] - 3
179         ...
181 Many simpler functions always *could* be defined using the resources we've so far developed, although those definitions won't always be very efficient or easily intelligible.
183 But functions like the Ackermann function require us to develop a more general technique for doing recursion---and having developed it, it will often be easier to use it even in the cases where, in principle, we didn't have to.
185 ##Using fixed-point combinators to define recursive functions##
187 ###Fixed points###
189 In general, a **fixed point** of a function `f` is any value `x`
190 such that `f x` is equivalent to `x`. For example,
191 consider the squaring function `square` that maps natural numbers to their squares.
192 `square 2 = 4`, so `2` is not a fixed point.  But `square 1 = 1`, so `1` is a
193 fixed point of the squaring function.
195 There are many beautiful theorems guaranteeing the existence of a
196 fixed point for various classes of interesting functions.  For
197 instance, imainge that you are looking at a map of Manhattan, and you
198 are standing somewhere in Manhattan.  The the [[!wikipedia Brouwer
199 fixed-point theorem]] guarantees that there is a spot on the map that is
200 directly above the corresponding spot in Manhattan.  It's the spot
201 where the blue you-are-here dot should be.
203 Whether a function has a fixed point depends on the set of arguments
204 it is defined for.  For instance, consider the successor function `succ`
205 that maps each natural number to its successor.  If we limit our
206 attention to the natural numbers, then this function has no fixed
207 point.  (See the discussion below concerning a way of understanding
208 the successor function on which it does have a fixed point.)
210 In the lambda calculus, we say a fixed point of a term `f` is any term `X` such that:
212         X <~~> f X
214 You should be able to immediately provide a fixed point of the
215 identity combinator I.  In fact, you should be able to provide a
216 whole bunch of distinct fixed points.
218 With a little thought, you should be able to provide a fixed point of
219 the false combinator, KI.  Here's how to find it: recall that KI
220 throws away its first argument, and always returns I.  Therefore, if
221 we give it I as an argument, it will throw away the argument, and
222 return I.  So KII ~~> I, which is all it takes for I to qualify as a
223 fixed point of KI.
225 What about K?  Does it have a fixed point?  You might not think so,
226 after trying on paper for a while.
228 However, it's a theorem of the lambda calculus that every formula has
229 a fixed point. In fact, it will have infinitely many, non-equivalent
230 fixed points. And we don't just know that they exist: for any given
231 formula, we can explicit define many of them.
233 Yes, as we've mentioned, even the formula that you're using the define
234 the successor function will have a fixed point. Isn't that weird?
235 Think about how it might be true.  We'll return to this point below.
237 ###How fixed points help define recursive functions###
239 Recall our initial, abortive attempt above to define the `length` function in the lambda calculus. We said "What we really want to do is something like this:
241         \list. if empty list then zero else add one (... (tail lst))
243 where this very same formula occupies the `...` position."
245 Imagine replacing the `...` with some function that computes the
246 length function.  Call that function `length`.  Then we have
248         \list. if empty list then zero else add one (length (tail lst))
250 At this point, we have a definition of the length function, though
251 it's not complete, since we don't know what value to use for the
252 symbol `length`.  Technically, it has the status of an unbound
253 variable.
255 Imagine now binding the mysterious variable, and calling the resulting
256 function `h`:
258         h := \length \list . if empty list then zero else add one (length (tail list))
260 Now we have no unbound variables, and we have complete non-recursive
261 definitions of each of the other symbols.
263 So `h` takes an argument, and returns a function that accurately
264 computes the length of a list---as long as the argument we supply is
265 already the length function we are trying to define.  (Dehydrated
266 water: to reconstitute, just add water!)
268 Here is where the discussion of fixed points becomes relevant.  Saying
269 that `h` is looking for an argument (call it `LEN`) that has the same
270 behavior as the result of applying `h` to `LEN` is just another way of
271 saying that we are looking for a fixed point for `h`.
273     h LEN <~~> LEN
275 Replacing `h` with its definition, we have
277     (\list . if empty list then zero else add one (LEN (tail list))) <~~> LEN
279 If we can find a value for `LEN` that satisfies this constraint, we'll
280 have a function we can use to compute the length of an arbitrary list.
281 All we have to do is find a fixed point for `h`.
283 The strategy we will present will turn out to be a general way of
284 finding a fixed point for any lambda term.
286 ##Deriving Y, a fixed point combinator##
288 How shall we begin?  Well, we need to find an argument to supply to
289 `h`.  The argument has to be a function that computes the length of a
290 list.  The function `h` is *almost* a function that computes the
291 length of a list.  Let's try applying `h` to itself.  It won't quite
292 work, but examining the way in which it fails will lead to a solution.
294     h h <~~> \list . if empty list then zero else 1 + h (tail list)
296 The problem is that in the subexpression `h (tail list)`, we've
297 applied `h` to a list, but `h` expects as its first argument the
298 length function.
302     H = \h \list . if empty list then zero else one plus ((h h) (tail list))
304 This is the key creative step.  Instead of applying `h` to a list, we
305 apply it first to itself.  After applying `h` to an argument, it's
306 ready to apply to a list, so we've solved the problem just noted.
307 We're not done yet, of course; we don't yet know what argument to give
308 to `H` that will behave in the desired way.
310 So let's reason about `H`.  What exactly is H expecting as its first
311 argument?  Based on the excerpt `(h h) (tail l)`, it appears that
312 `H`'s argument, `h`, should be a function that is ready to take itself
313 as an argument, and that returns a function that takes a list as an
314 argument.  `H` itself fits the bill:
316     H H <~~> (\h \list . if empty list then zero else 1 + ((h h) (tail list))) H
317         <~~> \list . if empty list then zero else 1 + ((H H) (tail list))
318         == \list . if empty list then zero else 1 + ((\list . if empty list then zero else 1 + ((H H) (tail list))) (tail list))
319         <~~> \list . if empty list then zero
320                     else 1 + (if empty (tail list) then zero else 1 + ((H H) (tail (tail list))))
324 How does the recursion work?
325 We've defined `H` in such a way that `H H` turns out to be the length function.
326 In order to evaluate `H H`, we substitute `H` into the body of the
327 lambda term.  Inside the lambda term, once the substitution has
328 occurred, we are once again faced with evaluating `H H`.  And so on.
330 We've got the infinite regress we desired, defined in terms of a
331 finite lambda term with no undefined symbols.
333 Since `H H` turns out to be the length function, we can think of `H`
334 by itself as half of the length function (which is why we called it
335 `H`, of course).  Can you think up a recursion strategy that involves
336 "dividing" the recursive function into equal thirds `T`, such that the
337 length function <~~> T T T?
339 We've starting with a particular recursive definition, and arrived at
340 a fixed point for that definition.
341 What's the general recipe?
343 1.   Start with any recursive definition `h` that takes itself as an arg: `h := \fn ... fn ...`
344 2.   Next, define `H := \f . h (f f)`
345 3.   Then compute `H H = ((\f . h (f f)) (\f . h (f f)))`
346 4.   That's the fixed point, the recursive function we're trying to define
348 So here is a general method for taking an arbitrary h-style recursive function
349 and returning a fixed point for that function:
351      Y := \h. ((\f.h(ff))(\f.h(ff)))
353 Test:
355     Yh == ((\f.h(ff))(\f.h(ff)))
356        <~~> h((\f.h(ff))(\f.h(ff)))
357        == h(Yh)
359 That is, Yh is a fixed point for h.
361 Works!
363 Let's do one more example to illustrate.  We'll do `K`, since we
364 wondered above whether it had a fixed point.
366 Before we begin, we can reason a bit about what the fixed point must
367 be like.  We're looking for a fixed point for `K`, i.e., `\xy.x`.  `K`
368 ignores its second argument.  That means that no matter what we give
369 `K` as its first argument, the result will ignore the next argument
370 (that is, `KX` ignores its first argument, no matter what `X` is).  So
371 if `KX <~~> X`, `X` had also better ignore its first argument.  But we
372 also have `KX == (\xy.x)X ~~> \y.X`.  This means that if `X` ignores
373 its first argument, then `\y.X` will ignore its first two arguments.
374 So once again, if `KX <~~> X`, `X` also had better ignore at least its
375 first two arguments.  Repeating this reasoning, we realize that `X`
376 must be a function that ignores an infinite series of arguments.
377 Our expectation, then, is that our recipe for finding fixed points
378 will build us a function that somehow manages to ignore an infinite
379 series of arguments.
381     h := \xy.x
382     H := \f.h(ff) == \f.(\xy.x)(ff) ~~> \fy.ff
383     H H := (\fy.ff)(\fy.ff) ~~> \y.(\fy.ff)(\fy.ff)
385 Let's check that it is in fact a fixed point:
387     K(H H) == (\xy.x)((\fy.ff)(\fy.ff)
388            ~~> \y.(\fy.ff)(\fy.ff)
390 Yep, `H H` and `K(H H)` both reduce to the same term.
392 To see what this fixed point does, let's reduce it a bit more:
394     H H == (\fy.ff)(\fy.ff)
395         ~~> \y.(\fy.ff)(\fy.ff)
396         ~~> \yy.(\fy.ff)(\fy.ff)
397         ~~> \yyy.(\fy.ff)(\fy.ff)
399 Sure enough, this fixed point ignores an endless, infinite series of
400 arguments.  It's a write-only memory, a black hole.
402 Now that we have one fixed point, we can find others, for instance,
404     (\fy.fff)(\fy.fff)
405     ~~> \y.(\fy.fff)(\fy.fff)(\fy.fff)
406     ~~> \yy.(\fy.fff)(\fy.fff)(\fy.fff)(\fy.fff)
407     ~~> \yyy.(\fy.fff)(\fy.fff)(\fy.fff)(\fy.fff)(\fy.fff)
409 Continuing in this way, you can now find an infinite number of fixed
410 points, all of which have the crucial property of ignoring an infinite
411 series of arguments.
413 ##What is a fixed point for the successor function?##
415 As we've seen, the recipe just given for finding a fixed point worked
416 great for our `h`, which we wrote as a definition for the length
417 function.  But the recipe doesn't make any assumptions about the
418 internal structure of the function it works with.  That means it can
419 find a fixed point for literally any function whatsoever.
421 In particular, what could the fixed point for the
422 successor function possibly be like?
424 Well, you might think, only some of the formulas that we might give to the `successor` as arguments would really represent numbers. If we said something like:
426         successor make-pair
428 who knows what we'd get back? Perhaps there's some non-number-representing formula such that when we feed it to `successor` as an argument, we get the same formula back.
430 Yes! That's exactly right. And which formula this is will depend on the particular way you've implemented the successor function.
432 One (by now obvious) upshot is that the recipes that enable us to name
433 fixed points for any given formula aren't *guaranteed* to give us
434 *terminating* fixed points. They might give us formulas X such that
435 neither `X` nor `f X` have normal forms. (Indeed, what they give us
436 for the square function isn't any of the Church numerals, but is
437 rather an expression with no normal form.) However, if we take care we
438 can ensure that we *do* get terminating fixed points. And this gives
439 us a principled, fully general strategy for doing recursion. It lets
440 us define even functions like the Ackermann function, which were until
441 now out of our reach. It would also let us define arithmetic and list
442 functions on the "version 1" and "version 2" implementations, where it
443 wasn't always clear how to force the computation to "keep going."
445 ###Varieties of fixed-point combinators###
447 OK, so how do we make use of this?
449 Many fixed-point combinators have been discovered. (And some
450 fixed-point combinators give us models for building infinitely many
451 more, non-equivalent fixed-point combinators.)
453 Two of the simplest:
455 <pre><code>&Theta;&prime; &equiv; (\u f. f (\n. u u f n)) (\u f. f (\n. u u f n))
456 Y&prime; &equiv; \f. (\u. f (\n. u u n)) (\u. f (\n. u u n))</code></pre>
458 <code>&Theta;&prime;</code> has the advantage that <code>f (&Theta;&prime; f)</code> really *reduces to* <code>&Theta;&prime; f</code>. Whereas <code>f (Y&prime; f)</code> is only *convertible with* <code>Y&prime; f</code>; that is, there's a common formula they both reduce to. For most purposes, though, either will do.
460 You may notice that both of these formulas have eta-redexes inside them: why can't we simplify the two `\n. u u f n` inside <code>&Theta;&prime;</code> to just `u u f`? And similarly for <code>Y&prime;</code>?
462 Indeed you can, getting the simpler:
464 <pre><code>&Theta; &equiv; (\u f. f (u u f)) (\u f. f (u u f))
465 Y &equiv; \f. (\u. f (u u)) (\u. f (u u))</code></pre>
467 I stated the more complex formulas for the following reason: in a language whose evaluation order is *call-by-value*, the evaluation of <code>&Theta; (\self. BODY)</code> and `Y (\self. BODY)` will in general not terminate. But evaluation of the eta-unreduced primed versions will.
469 Of course, if you define your `\self. BODY` stupidly, your formula will never terminate. For example, it doesn't matter what fixed point combinator you use for <code>&Psi;</code> in:
471 <pre><code>&Psi; (\self. \n. self n)</code></pre>
473 When you try to evaluate the application of that to some argument `M`, it's going to try to give you back:
475         (\n. self n) M
477 where `self` is equivalent to the very formula `\n. self n` that contains it. So the evaluation will proceed:
479         (\n. self n) M ~~>
480         self M ~~>
481         (\n. self n) M ~~>
482         self M ~~>
483         ...
485 You've written an infinite loop!
487 However, when we evaluate the application of our:
489 <pre><code>&Psi; (\self (\lst. (isempty lst) zero (add one (self (extract-tail lst))) ))</code></pre>
491 to some list `L`, we're not going to go into an infinite evaluation loop of that sort. At each cycle, we're going to be evaluating the application of:
493         \lst. (isempty lst) zero (add one (self (extract-tail lst)))
495 to *the tail* of the list we were evaluating its application to at the previous stage. Assuming our lists are finite (and the implementations we're using don't permit otherwise), at some point one will get a list whose tail is empty, and then the evaluation of that formula to that tail will return `zero`. So the recursion eventually bottoms out in a base value.
497 ##Fixed-point Combinators Are a Bit Intoxicating##
499 ![tatoo](/y-combinator-fixed.jpg)
501 There's a tendency for people to say "Y-combinator" to refer to fixed-point combinators generally. We'll probably fall into that usage ourselves. Speaking correctly, though, the Y-combinator is only one of many fixed-point combinators.
503 I used <code>&Psi;</code> above to stand in for an arbitrary fixed-point combinator. I don't know of any broad conventions for this. But this seems a useful one.
505 As we said, there are many other fixed-point combinators as well. For example, Jan Willem Klop pointed out that if we define `L` to be:
507         \a b c d e f g h i j k l m n o p q s t u v w x y z r. (r (t h i s i s a f i x e d p o i n t c o m b i n a t o r))
509 then this is a fixed-point combinator:
511         L L L L L L L L L L L L L L L L L L L L L L L L L L
514 ##Watching Y in action##
516 For those of you who like to watch ultra slow-mo movies of bullets
517 piercing apples, here's a stepwise computation of the application of a
518 recursive function.  We'll use a function `sink`, which takes one
519 argument.  If the argument is boolean true (i.e., `\x y.x`), it
520 returns itself (a copy of `sink`); if the argument is boolean false
521 (`\x y. y`), it returns `I`.  That is, we want the following behavior:
523     sink false ~~> I
524     sink true false ~~> I
525     sink true true false ~~> I
526     sink true true true false ~~> I
528 So we make `sink = Y (\f b. b f I)`:
530     1. sink false
531     2. Y (\fb.bfI) false
532     3. (\f. (\h. f (h h)) (\h. f (h h))) (\fb.bfI) false
533     4. (\h. [\fb.bfI] (h h)) (\h. [\fb.bfI] (h h)) false
534     5. [\fb.bfI] ((\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))) false
535     6. (\b.b[(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))]I)  false
536     7. false [(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))] I
537              --------------------------------------------
538     8. I
540 So far so good.  The crucial thing to note is that as long as we
541 always reduce the outermost redex first, we never have to get around
542 to computing the underlined redex: because `false` ignores its first
543 argument, we can throw it away unreduced.
545 Now we try the next most complex example:
547     1. sink true false
548     2. Y (\fb.bfI) true false
549     3. (\f. (\h. f (h h)) (\h. f (h h))) (\fb.bfI) true false
550     4. (\h. [\fb.bfI] (h h)) (\h. [\fb.bfI] (h h)) true false
551     5. [\fb.bfI] ((\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))) true false
552     6. (\b.b[(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))]I)  true false
553     7. true [(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))] I false
554     8. [(\h. [\fb.bsI] (h h))(\h. [\fb.bsI] (h h))] false
556 We've now arrived at line (4) of the first computation, so the result
557 is again I.
559 You should be able to see that `sink` will consume as many `true`s as
560 we throw at it, then turn into the identity function after it
561 encounters the first `false`.
563 The key to the recursion is that, thanks to Y, the definition of
564 `sink` contains within it the ability to fully regenerate itself as
565 many times as is necessary.  The key to *ending* the recursion is that
566 the behavior of `sink` is sensitive to the nature of the input: if the
567 input is the magic function `false`, the self-regeneration machinery
568 will be discarded, and the recursion will stop.
570 That's about as simple as recursion gets.
572 ##Application to the truth teller/liar paradoxes##
574 ###Base cases, and their lack###
576 As any functional programmer quickly learns, writing a recursive
577 function divides into two tasks: figuring out how to handle the
578 recursive case, and remembering to insert a base case.  The
579 interesting and enjoyable part is figuring out the recursive pattern,
580 but the base case cannot be ignored, since leaving out the base case
581 creates a program that runs forever.  For instance, consider computing
582 a factorial: `n!` is `n * (n-1) * (n-2) * ... * 1`.  The recursive
583 case says that the factorial of a number `n` is `n` times the
584 factorial of `n-1`.  But if we leave out the base case, we get
586     3! = 3 * 2! = 3 * 2 * 1! = 3 * 2 * 1 * 0! = 3 * 2 * 1 * 0 * -1! ...
588 That's why it's crucial to declare that 0! = 1, in which case the
589 recursive rule does not apply.  In our terms,
591     fac = Y (\fac n. iszero n 1 (fac (predecessor n)))
593 If `n` is 0, `fac` reduces to 1, without computing the recursive case.
595 Curry originally called `Y` the paradoxical combinator, and discussed
596 it in connection with certain well-known paradoxes from the philosophy
597 literature.  The truth teller paradox has the flavor of a recursive
598 function without a base case: the truth-teller paradox (and related
601 (1)    This sentence is true.
603 If we assume that the complex demonstrative "this sentence" can refer
604 to (1), then the proposition expressed by (1) will be true just in
605 case the thing referred to by *this sentence* is true.  Thus (1) will
606 be true just in case (1) is true, and (1) is true just in case (1) is
607 true, and so on.  If (1) is true, then (1) is true; but if (1) is not
608 true, then (1) is not true.
610 Without pretending to give a serious analysis of the paradox, let's
611 assume that sentences can have for their meaning boolean functions
612 like the ones we have been working with here.  Then the sentence *John
613 is John* might denote the function `\x y. x`, our `true`.
615 Then (1) denotes a function from whatever the referent of *this
616 sentence* is to a boolean.  So (1) denotes `\f. f true false`, where
617 the argument `f` is the referent of *this sentence*.  Of course, if
618 `f` is a boolean, `f true false <~~> f`, so for our purposes, we can
619 assume that (1) denotes the identity function `I`.
621 If we use (1) in a context in which *this sentence* refers to the
622 sentence in which the demonstrative occurs, then we must find a
623 meaning `m` such that `I m = I`.  But since in this context `m` is the
624 same as the meaning `I`, so we have `m = I m`.  In other words, `m` is
625 a fixed point for the denotation of the sentence (when used in the
626 appropriate context).
628 That means that in a context in which *this sentence* refers to the
629 sentence in which it occurs, the sentence denotes a fixed point for
630 the identity function.  Here's a fixed point for the identity
631 function:
633 <pre><code>Y I
634 (\f. (\h. f (h h)) (\h. f (h h))) I
635 (\h. I (h h)) (\h. I (h h)))
636 (\h. (h h)) (\h. (h h)))
637 &omega; &omega;
638 &Omega
639 </code></pre>
641 Oh.  Well!  That feels right.  The meaning of *This sentence is true*
642 in a context in which *this sentence* refers to the sentence in which
643 it occurs is <code>&Omega;</code>, our prototypical infinite loop...
647 (2)  This sentence is false.
649 Used in a context in which *this sentence* refers to the utterance of
650 (2) in which it occurs, (2) will denote a fixed point for `\f.neg f`,
651 or `\f l r. f r l`, which is the `C` combinator.  So in such a
652 context, (2) might denote
654      Y C
655      (\f. (\h. f (h h)) (\h. f (h h))) I
656      (\h. C (h h)) (\h. C (h h)))
657      C ((\h. C (h h)) (\h. C (h h)))
658      C (C ((\h. C (h h))(\h. C (h h))))
659      C (C (C ((\h. C (h h))(\h. C (h h)))))
660      ...
662 And infinite sequence of `C`s, each one negating the remainder of the
663 sequence.  Yep, that feels like a reasonable representation of the
666 See Barwise and Etchemendy's 1987 OUP book, [The Liar: an essay on
667 truth and circularity](http://tinyurl.com/2db62bk) for an approach
668 that is similar, but expressed in terms of non-well-founded sets
669 rather than recursive functions.
671 ##However...##
673 You should be cautious about feeling too comfortable with
674 these results.  Thinking again of the truth-teller paradox, yes,
675 <code>&Omega;</code> is *a* fixed point for `I`, and perhaps it has
676 some a privileged status among all the fixed points for `I`, being the
677 one delivered by Y and all (though it is not obvious why Y should have
678 any special status).
680 But one could ask: look, literally every formula is a fixed point for
681 `I`, since
683     X <~~> I X
685 for any choice of X whatsoever.
687 So the Y combinator is only guaranteed to give us one fixed point out
688 of infinitely many---and not always the intuitively most useful
689 one. (For instance, the squaring function has zero as a fixed point,
690 since 0 * 0 = 0, and 1 as a fixed point, since 1 * 1 = 1, but `Y
691 (\x. mul x x)` doesn't give us 0 or 1.) So with respect to the
692 truth-teller paradox, why in the reasoning we've
693 just gone through should we be reaching for just this fixed point at
694 just this juncture?
696 One obstacle to thinking this through is the fact that a sentence
697 normally has only two truth values.  We might consider instead a noun
698 phrase such as
700 (3)  the entity that this noun phrase refers to
702 The reference of (3) depends on the reference of the embedded noun
703 phrase *this noun phrase*.  It's easy to see that any object is a
704 fixed point for this referential function: if this pen cap is the
705 referent of *this noun phrase*, then it is the referent of (3), and so
706 for any object.
708 The chameleon nature of (3), by the way (a description that is equally
709 good at describing any object), makes it particularly well suited as a
710 gloss on pronouns such as *it*.  In the system of