add some old files
[lambda.git] / topics / week12_abortable_traversals
diff --git a/topics/week12_abortable_traversals b/topics/week12_abortable_traversals
new file mode 100644 (file)
index 0000000..6976a51
--- /dev/null
@@ -0,0 +1,359 @@
+#Aborting a search through a list#
+
+We said that the sorted-list implementation of a set was more efficient than
+the unsorted-list implementation, because as you were searching through the
+list, you could come to a point where you knew the element wasn't going to be
+found. So you wouldn't have to continue the search.
+
+If your implementation of lists was, say v1 lists plus the Y-combinator, then
+this is exactly right. When you get to a point where you know the answer, you
+can just deliver that answer, and not branch into any further recursion. If
+you've got the right evaluation strategy in place, everything will work out
+fine.
+
+But what if we wanted to use v3 lists instead?
+
+>      Why would we want to do that? The advantage of the v3 lists and v3 (aka
+"Church") numerals is that they have their recursive capacity built into their
+very bones. So for many natural operations on them, you won't need to use a fixed
+point combinator.
+
+>      Why is that an advantage? Well, if you use a fixed point combinator, then
+the terms you get won't be strongly normalizing: whether their reduction stops
+at a normal form will depend on what evaluation order you use. Our online
+[[lambda evaluator]] uses normal-order reduction, so it finds a normal form if
+there's one to be had. But if you want to build lambda terms in, say, Scheme,
+and you wanted to roll your own recursion as we've been doing, rather than
+relying on Scheme's native `let rec` or `define`, then you can't use the
+fixed-point combinators `Y` or <code>&Theta;</code>. Expressions using them
+will have non-terminating reductions, with Scheme's eager/call-by-value
+strategy. There are other fixed-point combinators you can use with Scheme (in
+the [week 3 notes](/week3/#index7h2) they were <code>Y&prime;</code> and
+<code>&Theta;&prime;</code>. But even with them, evaluation order still
+matters: for some (admittedly unusual) evaluation strategies, expressions using
+them will also be non-terminating.
+
+>      The fixed-point combinators may be the conceptual stars. They are cool and
+mathematically elegant. But for efficiency and implementation elegance, it's
+best to know how to do as much as you can without them. (Also, that knowledge
+could carry over to settings where the fixed point combinators are in principle
+unavailable.)
+
+
+So again, what if we're using v3 lists? What options would we have then for
+aborting a search or list traversal before it runs to completion?
+
+Suppose we're searching through the list `[5;4;3;2;1]` to see if it
+contains the number `3`. The expression which represents this search would have
+something like the following form:
+
+       ..................<eq? 1 3>  ~~>
+       .................. false     ~~>
+       .............<eq? 2 3>       ~~>
+       ............. false          ~~>
+       .........<eq? 3 3>           ~~>
+       ......... true               ~~>
+       ?
+
+Of course, whether those reductions actually followed in that order would
+depend on what reduction strategy was in place. But the result of folding the
+search function over the part of the list whose head is `3` and whose tail is `[2;
+1]` will *semantically* depend on the result of applying that function to the
+more rightmost pieces of the list, too, regardless of what order the reduction
+is computed by. Conceptually, it will be easiest if we think of the reduction
+happening in the order displayed above.
+
+Once we've found a match between our sought number `3` and some member of
+the list, we'd like to avoid any further unnecessary computations and just
+deliver the answer `true` as "quickly" or directly as possible to the larger
+computation in which the search was embedded.
+
+With a Y-combinator based search, as we said, we could do this by just not
+following a recursion branch.
+
+But with the v3 lists, the fold is "pre-programmed" to continue over the whole
+list. There is no way for us to bail out of applying the search function to the
+parts of the list that have head `4` and head `5`, too.
+
+We *can* avoid *some* unneccessary computation. The search function can detect
+that the result we've accumulated so far during the fold is now `true`, so we
+don't need to bother comparing `4` or `5` to `3` for equality. That will simplify the
+computation to some degree, since as we said, numerical comparison in the
+system we're working in is moderately expensive.
+
+However, we're still going to have to traverse the remainder of the list. That
+`true` result will have to be passed along all the way to the leftmost head of
+the list. Only then can we deliver it to the larger computation in which the
+search was embedded.
+
+It would be better if there were some way to "abort" the list traversal. If,
+having found the element we're looking for (or having determined that the
+element isn't going to be found), we could just immediately stop traversing the
+list with our answer. **Continuations** will turn out to let us do that.
+
+We won't try yet to fully exploit the terrible power of continuations. But
+there's a way that we can gain their benefits here locally, without yet having
+a fully general machinery or understanding of what's going on.
+
+The key is to recall how our implementations of booleans and pairs worked.
+Remember that with pairs, we supply the pair "handler" to the pair as *an
+argument*, rather than the other way around:
+
+       pair (\x y. add x y)
+
+or:
+
+       pair (\x y. x)
+
+to get the first element of the pair. Of course you can lift that if you want:
+
+<pre><code>extract_fst &equiv; \pair. pair (\x y. x)</code></pre>
+
+but at a lower level, the pair is still accepting its handler as an argument,
+rather than the handler taking the pair as an argument. (The handler gets *the
+pair's elements*, not the pair itself, as arguments.)
+
+>      *Terminology*: we'll try to use names of the form `get_foo` for handlers, and
+names of the form `extract_foo` for lifted versions of them, that accept the
+lists (or whatever data structure we're working with) as arguments. But we may
+sometimes forget.
+
+The v2 implementation of lists followed a similar strategy:
+
+       v2list (\h t. do_something_with_h_and_t) result_if_empty
+
+If the `v2list` here is not empty, then this will reduce to the result of
+supplying the list's head and tail to the handler `(\h t.
+do_something_with_h_and_t)`.
+
+Now, what we've been imagining ourselves doing with the search through the v3
+list is something like this:
+
+
+       larger_computation (search_through_the_list_for_3) other_arguments
+
+That is, the result of our search is supplied as an argument (perhaps together
+with other arguments) to the "larger computation". Without knowing the
+evaluation order/reduction strategy, we can't say whether the search is
+evaluated before or after it's substituted into the larger computation. But
+semantically, the search is the argument and the larger computation is the
+function to which it's supplied.
+
+What if, instead, we did the same kind of thing we did with pairs and v2
+lists? That is, what if we made the larger computation a "handler" that we
+passed as an argument to the search?
+
+       the_search (\search_result. larger_computation search_result other_arguments)
+
+What's the advantage of that, you say. Other than to show off how cleverly
+you can lift.
+
+Well, think about it. Think about the difficulty we were having aborting the
+search. Does this switch-around offer us anything useful?
+
+It could.
+
+What if the way we implemented the search procedure looked something like this?
+
+At a given stage in the search, we wouldn't just apply some function `f` to the
+head at this stage and the result accumulated so far (from folding the same
+function, and a base value, to the tail at this stage)...and then pass the result
+of that application to the embedding, more leftward computation.
+
+We'd *instead* give `f` a "handler" that expects the result of the current
+stage *as an argument*, and then evaluates to what you'd get by passing that
+result leftwards up the list, as before. 
+
+Why would we do that, you say? Just more flamboyant lifting?
+
+Well, no, there's a real point here. If we give the function a "handler" that
+encodes the normal continuation of the fold leftwards through the list, we can
+also give it other "handlers" too. For example, we can also give it the underlined handler:
+
+
+       the_search (\search_result. larger_computation search_result other_arguments)
+                          ------------------------------------------------------------------
+
+This "handler" encodes the search's having finished, and delivering a final
+answer to whatever else you wanted your program to do with the result of the
+search. If you like, at any stage in the search you might just give an argument
+to *this* handler, instead of giving an argument to the handler that continues
+the list traversal leftwards. Semantically, this would amount to *aborting* the
+list traversal! (As we've said before, whether the rest of the list traversal
+really gets evaluated will depend on what evaluation order is in place. But
+semantically we'll have avoided it. Our larger computation  won't depend on the
+rest of the list traversal having been computed.)
+
+Do you have the basic idea? Think about how you'd implement it. A good
+understanding of the v2 lists will give you a helpful model.
+
+In broad outline, a single stage of the search would look like before, except
+now `f` would receive two extra, "handler" arguments. We'll reserve the name `f` for the original fold function, and use `f2` for the function that accepts two additional handler arguments. To get the general idea, you can regard these as interchangeable. If the extra precision might help, then you can pay attention to when we're talking about the handler-taking `f2` or the original `f`. You'll only be *supplying* the `f2` function; the idea will be that the behavior of the original `f` will be implicitly encoded in `f2`'s behavior.
+
+       f2 3 <sofar value that would have resulted from folding f and z over [2; 1]> <handler to continue folding leftwards> <handler to abort the traversal>
+
+`f2`'s job would be to check whether `3` matches the element we're searching for
+(here also `3`), and if it does, just evaluate to the result of passing `true` to
+the abort handler. If it doesn't, then evaluate to the result of passing
+`false` to the continue-leftwards handler.
+
+In this case, `f2` wouldn't need to consult the result of folding `f` and `z`
+over `[2; 1]`, since if we had found the element `3` in more rightward
+positions of the list, we'd have called the abort handler and this application
+of `f2` to `3` etc would never be needed. However, in other applications the
+result of folding `f` and `z` over the more rightward parts of the list would
+be needed. Consider if you were trying to multiply all the elements of the
+list, and were going to abort (with the result `0`) if you came across any
+element in the list that was zero. If you didn't abort, you'd need to know what
+the more rightward elements of the list multiplied to, because that would
+affect the answer you passed along to the continue-leftwards handler.
+
+A **version 5** list encodes the kind of fold operation we're envisaging here,
+in the same way that v3 (and [v4](/advanced_lambda/#index1h1)) lists encoded
+the simpler fold operation. Roughly, the list `[5;4;3;2;1]` would look like
+this:
+
+
+       \f2 z continue_leftwards_handler abort_handler.
+               <fold f2 and z over [4;3;2;1]>
+               (\result_of_folding_over_4321. f2 5 result_of_folding_over_4321  continue_leftwards_handler abort_handler)
+               abort_handler
+
+       ; or, expanding the fold over [4;3;2;1]:
+
+       \f2 z continue_leftwards_handler abort_handler.
+               (\continue_leftwards_handler abort_handler.
+                       <fold f2 and z over [3;2;1]>
+                       (\result_of_folding_over_321. f2 4 result_of_folding_over_321 continue_leftwards_handler abort_handler)
+                       abort_handler
+               )
+               (\result_of_folding_over_4321. f2 5 result_of_folding_over_4321  continue_leftwards_handler abort_handler)
+               abort_handler
+
+       ; and so on
+       
+Remarks: the `larger_computation` handler should be supplied as both the
+`continue_leftwards_handler` and the `abort_handler` for the leftmost
+application, where the head `5` is supplied to `f2`; because the result of this
+application should be passed to the larger computation, whether it's a "fall
+off the left end of the list" result or it's a "I'm finished, possibly early"
+result. The `larger_computation` handler also then gets passed to the next
+rightmost stage, where the head `4` is supplied to `f2`, as the `abort_handler` to
+use if that stage decides it has an early answer.
+
+Finally, notice that we're not supplying the application of `f2` to `4` etc as an argument to the application of `f2` to `5` etc---at least, not directly. Instead, we pass
+
+       (\result_of_folding_over_4321. f2 5 result_of_folding_over_4321 <one_handler> <another_handler>)
+
+*to* the application of `f2` to `4` as its "continue" handler. The application of `f2`
+to `4` can decide whether this handler, or the other, "abort" handler, should be
+given an argument and constitute its result.
+
+
+I'll say once again: we're using temporally-loaded vocabulary throughout this,
+but really all we're in a position to mean by that are claims about the result
+of the complex expression semantically depending only on this, not on that. A
+demon evaluator who custom-picked the evaluation order to make things maximally
+bad for you could ensure that all the semantically unnecessary computations got
+evaluated anyway. We don't yet know any way to prevent that. Later, we'll see
+ways to *guarantee* one evaluation order rather than another. Of
+course, in any real computing environment you'll know in advance that you're
+dealing with a fixed evaluation order and you'll be able to program efficiently
+around that.
+
+In detail, then, here's what our v5 lists will look like:
+
+       let empty = \f2 z continue_handler abort_handler. continue_handler z  in
+       let make_list = \h t. \f2 z continue_handler abort_handler.
+               t f2 z (\sofar. f2 h sofar continue_handler abort_handler) abort_handler  in
+       let isempty = \lst larger_computation. lst
+                       ; here's our f2
+                       (\hd sofar continue_handler abort_handler. abort_handler false)
+                       ; here's our z
+                       true
+                       ; here's the continue_handler for the leftmost application of f2
+                       larger_computation
+                       ; here's the abort_handler
+                       larger_computation  in
+       let extract_head = \lst larger_computation. lst
+                       ; here's our f2
+                       (\hd sofar continue_handler abort_handler. continue_handler hd)
+                       ; here's our z
+                       junk
+                       ; here's the continue_handler for the leftmost application of f2
+                       larger_computation
+                       ; here's the abort_handler
+                       larger_computation  in
+       let extract_tail = ; left as exercise
+
+These functions are used like this:
+
+       let my_list = make_list a (make_list b (make_list c empty) in
+       extract_head my_list larger_computation
+
+If you just want to see `my_list`'s head, the use `I` as the
+`larger_computation`.
+
+What we've done here does take some work to follow. But it should be within
+your reach. And once you have followed it, you'll be well on your way to
+appreciating the full terrible power of continuations.
+
+<!-- (Silly [cultural reference](http://www.newgrounds.com/portal/view/33440).) -->
+
+Of course, like everything elegant and exciting in this seminar, [Oleg
+discusses it in much more
+detail](http://okmij.org/ftp/Streams.html#enumerator-stream).
+
+>      *Comments*:
+
+>      1.      The technique deployed here, and in the v2 lists, and in our
+>      implementations of pairs and booleans, is known as 
+>      **continuation-passing style** programming.
+
+>      2.      We're still building the list as a right fold, so in a sense the
+>      application of `f2` to the leftmost element `5` is "outermost". However,
+>      this "outermost" application is getting lifted, and passed as a *handler*
+>      to the next right application. Which is in turn getting lifted, and
+>      passed to its next right application, and so on. So if you
+>      trace the evaluation of the `extract_head` function to the list `[5;4;3;2;1]`,
+>      you'll see `1` gets passed as a "this is the head sofar" answer to its
+>      `continue_handler`; then that answer is discarded and `2` is
+>      passed as a "this is the head sofar" answer to *its* `continue_handler`,
+>      and so on. All those steps have to be evaluated to finally get the result
+>      that `5` is the outer/leftmost head of the list. That's not an efficient way
+>      to get the leftmost head.
+>      
+>      We could improve this by building lists as **left folds**. What's that?
+>      
+>      Well, the right fold of `f` over a list `[a;b;c;d;e]`, using starting value z, is:
+>      
+>                      f a (f b (f c (f d (f e z))))
+>      
+>      The left fold on the other hand starts combining `z` with elements from the left. `f z a` is then combined with `b`, and so on:
+>      
+>                      f (f (f (f (f z a) b) c) d) e
+>      
+>      or, if we preferred the arguments to each `f` flipped:
+>      
+>                      f e (f d (f c (f b (f a z))))
+>      
+>      Recall we implemented v3 lists as their own right-fold functions. We could
+>      instead implement lists as their own left-fold functions. To do that with our
+>      v5 lists, we'd replace above:
+>      
+>                      let make_list = \h t. \f2 z continue_handler abort_handler.
+>                              f2 h z (\z. t f2 z continue_handler abort_handler) abort_handler
+>      
+>      Having done that, now `extract_head` can return the leftmost head
+>      directly, using its `abort_handler`:
+>      
+>                      let extract_head = \lst larger_computation. lst
+>                                      (\hd sofar continue_handler abort_handler. abort_handler hd)
+>                                      junk
+>                                      larger_computation
+>                                      larger_computation
+>      
+>      3.      To extract tails efficiently, too, it'd be nice to fuse the apparatus
+>      developed in these v5 lists with the ideas from 
+>      [v4](/advanced_lambda/#index1h1) lists. But that is left as an exercise.
+