Functional Programming Techniques for Philosophy and Linguistics

Chris Barker and Jim Pryor, NASSLLI 2016 JP's Thursday Handout

Remember Polymorphic Types?

id : $\forall \alpha$. $\alpha \rightarrow \alpha$ (we'll usually suppress prenex $\forall \alpha$ in type signatures) id = Λα. λx: α. x (will also suppress initial Λα, and the [type] applications)

Schematic Type Expressions Int $\rightarrow \alpha = \alpha$ Reader Int Set $\alpha = \alpha$ set I'll use xx and yy as variables for these. (At one point I'll use xxx as a variable for a $\lceil \frac{\alpha}{\alpha} \rceil$, with the boxes understood univocally.) *Kleisli arrow types for a given* \Box are: $\alpha \rightarrow \Box$ Contrast ordinary arrow types: $\alpha \rightarrow \beta$ I'll use j and k as variables for Kleisli arrows, and f and g for functions with ordinary types. *Endofunctors* some type operation \Box and a paired function \overline{map} : $\forall \alpha \beta$. $(\alpha \rightarrow \beta) \rightarrow |\alpha| \rightarrow |\beta|$ obeying the laws: map (id : $\alpha \rightarrow \alpha$) xx = (id : $\boxed{\alpha}$ \rightarrow $\boxed{\alpha}$) xx = xx map $(g \circ f) = (map g) \circ (map f)$ Example1: $\boxed{\alpha}_{\text{Set}}$ = Set α map_{Set} : $(\alpha \rightarrow \beta) \rightarrow \boxed{\alpha}$ _{Set} $\rightarrow \boxed{\beta}$ _{Set}, that is: $map_{s_{\text{est}}}$: ($\alpha \rightarrow \beta$) \rightarrow Set $\alpha \rightarrow$ Set β map_{Set} f xx = { f x | x \in xx } So map_{Set} succ $\{2, 3, 10\} = \{3, 4, 11\}$ Example 2: $\boxed{\alpha}$ Intensionality = World $\rightarrow \boxed{\alpha}$ map _{Intensionality} : $(\alpha \rightarrow \beta) \rightarrow \alpha$ Intensionality $\rightarrow \beta$ Intensionality, that is: map _{Intensionality} : $(\alpha \rightarrow \beta) \rightarrow (World \rightarrow \alpha) \rightarrow (World \rightarrow \beta)$ map_{Intensionality} $f xx = \lambda w$. $f (xx w)$ Other names for map: fmap, <\$>, liftA, liftM

Monads

 some type operation and a paired function \overline{map} : $\forall \alpha \underline{\beta}$. ($\alpha \rightarrow \beta$) $\rightarrow \boxed{\alpha}$ $\rightarrow \boxed{\beta}$ (as above) also a paired function *join* : $\forall \alpha$. $\boxed{\alpha}$ \rightarrow $\boxed{\alpha}$ (e.g., for \square _{Set}, this is U) also a paired function û ("up" or map0): $\forall \alpha$. $\alpha \rightarrow \alpha$ (e.g., for \square_{Set} , this is singleton) instead of map + join, you could have a single function <=< : ∀α β γ. (β ⟶ γ) ⟶ (α ⟶ β) ⟶ (α ⟶ γ) compare the type of the ordinary composition operator \circ : ∀α β γ. (β \rightarrow γ) \rightarrow (α \rightarrow β) \rightarrow (α \rightarrow γ) <=< is called "Kleisli composition." It plays the role for Kleisli arrow types $(\alpha \rightarrow |\beta|)$ that ∘ plays for ordinary arrow types $(\alpha \rightarrow \beta)$. Example: duplicate $3 = \{3, 3, 3\}$ _{multi} upto $4 = \{0, 1, 2, 3\}$ _{multi} (duplicate <=< upto) $4 = \text{join } {\{}, {\{1\}, {2, 2\}, {3, 3, 3\}}_{multi}} = {1, 2, 2, 3, 3, 3}_{multi}$ These functions (map + join + \hat{v} , or <=< + \hat{v}) have to obey laws, best stated as: $k' \leq k \leq (k \leq k) = (k' \leq k) \leq k$ \hat{U} <=< \hat{I} = \hat{I} = \hat{I} <=< \hat{U} In summary, <=< is associative and ⇧ is its identity. So *monads* are a generalization with polytypes of the algebraic notion of a *monoid*. Interdefinitions: $j \Rightarrow k = k \le j$ $xx \gg =$ ("bind") $k \equiv (k \ll i)d$ $xx \equiv (k \ll i \ll j \ll j \ll k \ll n)$ anything \equiv join (map k xx) k <=< j = join ∘ map k ∘ j = λ x. (j x >>= k) join xxx ≡ xxx >>= id map f $xx = xx \gg = \lambda x$. û (f x) map2 f xx yy = $xx \gg = \lambda x$. yy $\gg = \lambda y$. û (f x y) Compare types: û/map0 : $\forall \alpha$. α $\rightarrow |\alpha|$ lifts a value (nullary function) into map : ∀α β. (α → β) → $\boxed{\alpha}$ → $\boxed{\beta}$ lifts a unary function into map2 : ∀α β γ. (α → β → γ) → $| \alpha |$ → $| \beta |$ → $| \gamma |$ lifts a binary function into

 Other names for ⇧/map0: η, pure, return, unit (≠ our Boring type), monadic id, singleton Other names for join: μ

Other names for >>=/bind: ★

Definitions for Identity Monad

 $|a|_{\text{Identity}} = a$ $h = id$ k <=< j = k ∘ ^j $xx \gg k = k xx$ map = λ f xx. f xx (Note: map and >>= won't have the same definition *in general*: usually their types differ.)

Definitions for MaybeT Monadic Layer

type Maybe/Shortlist α = None () + One (α) $\boxed{\alpha}$ Maybe α Maybe α M $lim_{\text{lift}T} = \lambda$ xx. map_M One xx û = liftT ∘ û_M xx >>= k = \overline{xx} >>=_M λ xs. case xs of { None $\rightarrow \hat{u}_M$ None | One $x \rightarrow k x$ } Auxiliary functions for MaybeT: *zero* : $\left| \alpha \right|$; *zero* = $\hat{\text{t}}_M$ None

When M = Identity: $xx \gg =_{Mavbe} k = \text{case xx of } \{ \text{None} \rightarrow \text{None} \}$ One $x \rightarrow k x \}$ ⇧**Maybe = λx. One x**

map2_{Maybe} = λ **f** xx yy. case (xx, yy) of { (One x, One y) \rightarrow One (**f** x y) | else None}

Definitions for SetT Monadic Layer

 $|\alpha|_{\text{SetT (M)}} = |\text{Set } \alpha|_{\text{M}}$ liftT = λ xx. map_M singleton xx û = liftT ∘ û_M $xx \gg k = \overline{xx} \gg =_{M} \lambda xs$. union_M { $k x | x \in xs$ } where union_Μ : Set $\boxed{\mathsf{Set}}$ Μ \rightarrow $\boxed{\mathsf{Set}}$ Μ \parallel union_M { } $= \hat{u}$ M { } $\textsf{union}_{\mathsf{M}}$ {bb} $\qquad \qquad = \mathsf{b}\mathsf{b}$ union_M $\{bbb, bb'\}$ = map2_M (∪) bb bb' union $\frac{1}{M}$ {bb, bb', bb"} = map2 $\frac{1}{M}$ (∪) (map2 $\frac{1}{M}$ (∪) bb bb') bb" ... **Auxiliary functions for SetT:** *zero* : $| \alpha |$; *zero* = $\hat{\alpha}$ _M { } $plus : \boxed{a} \rightarrow \boxed{a} \rightarrow \boxed{a}$; *plus* = λxx yy. map2_M (∪) xx yy When M = Identity: $xx \gg =_{\text{Set}} k = U \{ k \times | x \in xx \}$ ⇧**Set = λx. {x}** $map2_{\text{Set}} = \lambda f$ xx yy. $\{ f x y \mid x \in x, y \in yy \}$

Definitions for ReaderT Monadic Layer

 $\boxed{\alpha}$ ReaderT R (M) = R $\rightarrow \boxed{\alpha}$ M lift $T = \lambda$ xx. λr . xx û = liftT ∘ û_M $xx \gg k = \lambda r$. $xx r \gg k$ λx . $k x r$ Auxiliary functions for ReaderT: $ask : [R]$; $ask = \hat{v}_M$ *localshift* : $(R \rightarrow R) \rightarrow \boxed{a} \rightarrow \boxed{a}$; *localshift* = λ f xx. xx ∘ f When $M =$ Identity: $xx \gg =$ $_{\text{Reader } R} k = \lambda r$. let $x = xx$ r; $yy = k x$ in yy r ⇧**Reader R = λx. λr. x map2**_{Reader R} = λ*f* xx yy. λr. *f* (xx r) (yy r)

Definitions for StateT Monadic Layer

 $\boxed{\alpha}_{\text{StateTS (M)}} = S \rightarrow \boxed{\alpha \times S}_{M}$ liftT = λ xx. λ s. map_M (λ x. (x, s)) xx û = liftT ∘ û_M $\overline{XX} \gg E$ k = λ s. \overline{XX} s $\gg E$ \overline{MX} , λ $(\overline{X}, \overline{S}')$. \overline{K} \overline{X} **s'** Auxiliary functions for StateT: get : $|S|$; $get = \lambda s$. \hat{v}_{M} (s, s) *modify* : $(S \rightarrow S) \rightarrow$ **Boring** ; *modify* = λ f. λ s. \hat{v}_{M} ((), f s) When M = Identity: $xx \gg = s_{\text{tate}} s$ **k** = λs . let $(x, s') = xx$ s; $yy = k x$ in yy s' ⇧**State S = λx. λs. (x, s)**

Definitions for WriterT Monadic Layer

 $\boxed{\alpha}_{\text{Writer} \times \text{M}} = \boxed{\alpha \times W}_{\text{M}}$, where W is e.g., a list of logged messages liftT = λ xx. map_M (λ x. (x, [])) xx û = liftT ∘ û_M $XX \gg E = K = XX \gg E_M \lambda(X, ws)$. $K X \gg E_M \lambda(Y, ws')$. $\hat{U}_M (y, ws \triangleleft V)$ ws') Auxiliary functions for WriterT: *tell* : W \rightarrow Boring ; *tell* = λ ws. \hat{u}_{M} ((), ws) *listen* : $\boxed{\alpha} \rightarrow \boxed{\alpha \times W}$; *listen* = λ xx. xx >>= _M λ (x, ws). \hat{v}_M ((x, ws), ws) *censor* : (W \rightarrow W) \rightarrow $\boxed{\alpha}$ \rightarrow $\boxed{\alpha}$; *censor* = λ f xx. xx >>= _M λ (x, ws). \hat{u} _M (x, f ws) When $M =$ Identity: $xx \gg = w_{\text{riter}} w$ $k =$ let $(x,ws) = xx$; $(y,ws') = k x$ in $(y,ws \lhd w s')$ ⇧**Writer W = λx. (x, [])**

Examples of Using (Simple, Single-layered) Monads

1. Safe division (CB, using Maybe monad)

```
2. \pm (JP, using Set monad)
```
…

…

```
* What is: (3 * √4) - √25, interpreting that as: (3 * ±2) - ±5?
> plusMinus x = [x, -x] :: Set Int
> :type plusMinus
plusMinus :: Int -> Set Int
> map2 (*) (up 3) (plusMinus 2)
Set [-6,6]
> map2 (-) (map2 (*) (up 3) (plusMinus 2)) (plusMinus 5)
Set [-1,-11,11,1]
```
- 3. Variable binding (CM, using Reader monad)
- 4. Running tally (JP, using State monad)

* Suppose you're trying to use the State monad to keep a running side-tally of how often certain arithmetic operations have been used in computing a complex expression. You've settled upon the design plan of using the State monad, and defining a function like this:

let counting_plus xx $yy = tick \rightarrow = \lambda$. map2 (+) xx yy

How should you define the operation *tick* to make this work? The intended behavior is that after running:

```
let zz = counting plus (up 1) (counting plus (up 2) (up 3))
 in runState zz 0
```
you should get a payload/at-issue result of 6 (that is, $1+(2+3)$) and a final sidetally of 2 (because + was used twice).

```
> let -- xx >> yy = xx >>= \ -> yy
       tick :: State Int ()
       tick = modify succ
      counting plus xx yy = tick \gg map2 (+) xx yy
       zz :: State Int Float
       zz = counting_plus (up 1) (counting_plus (up 2) (up 3))
   in runState zz 0
(6.0, 2)
```
* Instead of the design in the previous problem, suppose you had instead chosen to do things this way:

```
let counting plus' xx yy = map2 (+) xx yy \gg= tock
```
How should you define the operation *tock* to make this work, with the same behavior as before?

```
> let tock :: Float -> State Int Float
      tock = \zeta -> modify succ >> up z
      counting plus' xx yy = map2 (+) xx yy >>= tock
      zz' = counting plus' (up 1) (counting plus' (up 2) (up 3)) in runState zz' 0
(6.0, 2)
```