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Remember Polymorphic Types? 
id : ∀α. α → α    (we'll usually suppress prenex ∀α in type signatures) 
id = Λα. λx: α. x  (will also suppress initial Λα, and the [type] applications) 
 
Schematic Type Expressions 
Int → α   ≡   α  Reader Int 

Set α      ≡   α  Set 
I'll use xx and yy as variables for these. 
(At one point I'll use xxx as a variable for a  α  , with the boxes understood univocally.) 
 
Kleisli arrow types for a given     are: α →  β  
Contrast ordinary arrow types:          α ⟶	  	  	  β 
I'll use j and k as variables for Kleisli arrows, and f and g for functions with 
ordinary types. 
 
Endofunctors 
    some type operation     
    and a paired function map : ∀α β. (α ⟶	  β)	  ⟶	   α	   	  ⟶	   β  
    obeying the laws: 
    map (id : α → α) xx  =  (id :  α  →  α  ) xx  =  xx 
    map (g ∘ f)  =  (map g) ∘ (map f) 
 
    Example1:  α  Set = Set α 
                mapSet : (α ⟶	  β)	  ⟶	   α	   	  Set	  ⟶	   β  Set, that is: 
                mapSet : (α → β) → Set α → Set β 
                mapSet f xx = { f x | x ∈ xx } 
                So mapSet succ {2, 3, 10} = {3, 4, 11} 
 
    Example 2:  α  Intensionality = World → α 
                mapIntensionality : (α ⟶	  β)	  ⟶	   α	   	  Intensionality	  ⟶	   β  Intensionality, that is: 
                mapIntensionality : (α → β) → (World → α) → (World → β) 
                mapIntensionality f xx = λw. f (xx w) 
 
    Other names for map: fmap, <$>, liftA, liftM 
 



Monads 
    some type operation     
    and a paired function map : ∀α β. (α ⟶	  β)	  ⟶	   α	   	  ⟶	   β  (as above) 
    also a paired function join : ∀α.  α 	  ⟶	   α 	  	    
        (e.g., for     Set, this is U) 
    also a paired function ⇧("up" or map0): ∀α. α ⟶	   α	   	   
        (e.g., for     Set, this is singleton) 
 
    instead of map + join, you could have a single function 
        <=< : ∀α β γ. (β ⟶	  	  γ )	  ⟶	  (α ⟶	  	  β )	  ⟶	  (α	  	  ⟶	  	  γ ) 
    compare the type of the ordinary composition operator 
            ∘ : ∀α β γ. (β ⟶	  	  γ )	  ⟶	  (α ⟶	  	  β )	  ⟶	  (α	  	  ⟶	  	  γ ) 

<=< is called "Kleisli composition." It plays the role for Kleisli arrow types  
(α ⟶	  	  β  ) that ∘ plays for ordinary arrow types (α ⟶	  β). 

Example: 
        duplicate 3 = {3, 3, 3}multi 
        upto 4 = {0, 1, 2, 3}multi 
        (duplicate <=< upto) 4 = join {{}, {1}, {2, 2}, {3, 3, 3}}multi = {1, 2, 2, 3, 3, 3}multi 
 
    These functions (map + join + ⇧, or <=< + ⇧) have to obey laws, best stated as: 
        k′ <=< (k <=< j)   =   (k′ <=< k) <=< j 
              ⇧ <=< j   =  j   =  j <=< ⇧ 

In summary, <=< is associative and ⇧ is its identity. So monads are a 
generalization with polytypes of the algebraic notion of a monoid. 

 
    Interdefinitions: 
        j >=> k  ≡  k <=< j 
        xx >>= ("bind") k  ≡ (k <=< id) xx  ≡  (k <=< const xx) anything  ≡  join (map k xx) 
        k <=< j  ≡  join ∘ map k ∘ j  ≡  λx. (j x >>= k) 
        join xxx  ≡  xxx >>= id 
        map f xx  ≡  xx >>= λx. ⇧ (f x) 
        map2 f xx yy  ≡  xx >>= λx. yy >>= λy. ⇧ (f x y) 
    Compare types: 
    ⇧/map0 : ∀α.      α                 →   α	              lifts a value (nullary function) into     
       map   : ∀α β.   (α → β)        →   α	   →  β              lifts a unary function into     
       map2 : ∀α β γ. (α → β → γ) →   α	   →  β  →  γ   lifts a binary function into     
 
   Other names for ⇧/map0: η, pure, return, unit (≠ our Boring type), monadic id, singleton 
    Other names for join: μ 
    Other names for >>=/bind: ★ 



Monadic Layers 
 α  Set                                           is really  α  SetT (Identity)           = Set α 
 α  Intensionality is really  α  Reader World is really  α  ReaderT World (Identity) = World → α 
There are also monadic types like  α  ReaderT World (SetT (Identity))     = World → Set α 
     α  StateT S (SetT (Identity)) = S → Set (α × S) 
     α  SetT (StateT S (Identity)) = S → (Set α) × S 
 

Definitions for Identity Monad 

 α  Identity = α 
⇧ = id 
k <=< j = k ∘ j 
xx >>= k = k xx 
map = λf xx. f xx 
(Note: map and >>= won't have the same definition in general: usually their types differ.) 
 
Definitions for MaybeT Monadic Layer 
type Maybe/Shortlist α = None ( ) + One (α) 
 α  MaybeT (M) =  Maybe α  M 
liftT = λxx. mapM One xx 
⇧ = liftT ∘ ⇧M 
xx >>= k  =  xx >>=M λxs. case xs of { None ⟶ ⇧M None | One x ⟶ k x } 
Auxiliary functions for MaybeT: zero :  α  ; zero = ⇧M None 
When M = Identity: xx >>= Maybe k = case xx of { None ⟶ None | One x ⟶ k x } 
⇧Maybe = λx. One x 
map2Maybe = λf xx yy. case (xx, yy) of { (One x, One y) ⟶ One (f x y) | else None } 
 
Definitions for SetT Monadic Layer 

 α  SetT (M) =  Set α  M 
liftT = λxx. mapM singleton xx 
⇧ = liftT ∘ ⇧M 
xx >>= k  =  xx >>=M λxs. unionM { k x | x ∈ xs } 
    where unionM : Set  Set β  M →  Set β  M 
               unionM {  }                   = ⇧M {  } 
               unionM {bb}                 = bb 
               unionM {bb, bb′}         = map2M (∪) bb bb′ 
               unionM {bb, bb′, bb″} = map2M (∪) (map2M (∪) bb bb′) bb″ 
               ... 
Auxiliary functions for SetT: zero :  α  ; zero = ⇧M { } 
       plus :  α  →  α  →  α  ; plus = λxx yy. map2M (∪) xx yy 
When M = Identity: xx >>= Set k  =  U { k x | x ∈  xx } 
⇧Set = λx. {x} 
map2Set = λf xx yy. { f x y | x ∈  xx, y ∈  yy } 



Definitions for ReaderT Monadic Layer 

 α  ReaderT R (M) = R →  α  M 
liftT = λxx. λr. xx 
⇧ = liftT ∘ ⇧M 
xx >>= k = λr. xx r >>= M λx. k x r 
Auxiliary functions for ReaderT: ask :  R  ; ask = ⇧M 
       localshift : (R → R) →  α  →  α  ; localshift = λf xx. xx ∘ f 
When M = Identity: xx >>= Reader R k = λr. let x = xx r; yy = k x in yy r 
⇧Reader R = λx. λr. x 
map2Reader R = λf xx yy. λr. f (xx r) (yy r) 
 
Definitions for StateT Monadic Layer 

 α  StateT S (M) = S →  α × S  M 
liftT = λxx. λs. mapM (λx. (x, s)) xx 
⇧ = liftT ∘ ⇧M 
xx >>= k = λs. xx s >>= M λ(x, s′). k x s′ 
Auxiliary functions for StateT: get :  S  ; get = λs. ⇧M (s, s) 
       modify : (S → S) →  Boring  ; modify = λf. λs. ⇧M ( ( ), f s) 
When M = Identity: xx >>= State S k =  λs. let (x,s′) = xx s; yy = k x in yy s′ 
⇧State S = λx. λs. (x, s) 
 
Definitions for WriterT Monadic Layer 

 α  WriterT W (M) =  α × W  M, where W is e.g., a list of logged messages 
liftT = λxx. mapM (λx. (x, [ ] )) xx 
⇧ = liftT ∘ ⇧M 
xx >>= k = xx >>= M λ(x, ws). k x >>= M λ(y, ws′). ⇧M (y, ws ◁▷ ws′) 
Auxiliary functions for WriterT: tell : W →  Boring  ; tell = λws. ⇧M ( ( ), ws) 
       listen :  α  →  α × W  ; listen = λxx. xx >>= M λ(x, ws). ⇧M ((x, ws), ws) 
       censor : (W → W) →  α  →  α  ; censor = λf xx. xx >>= M λ(x, ws). ⇧M (x, f ws) 
When M = Identity: xx >>= Writer W k = let (x,ws) = xx; (y,ws′) = k x in (y, ws ◁▷ ws′) 
⇧Writer W = λx. (x, [ ] ) 



Examples of Using (Simple, Single-layered) Monads 

1. Safe division (CB, using Maybe monad) 
          … 
2. ± (JP, using Set monad) 

* What is: (3 * √4) - √25, interpreting that as: (3 * ±2) - ±5? 

> plusMinus x = [x, -x] :: Set Int 
> :type plusMinus 
plusMinus :: Int -> Set Int 

> map2 (*) (up 3) (plusMinus 2) 

Set [-6,6] 

> map2 (-) (map2 (*) (up 3) (plusMinus 2)) (plusMinus 5) 

Set [-1,-11,11,1] 

3. Variable binding (CM, using Reader monad) 
           … 
4. Running tally (JP, using State monad) 

* Suppose you're trying to use the State monad to keep a running side-tally of 
how often certain arithmetic operations have been used in computing a complex 
expression. You've settled upon the design plan of using the State monad, and 
defining a function like this: 

        let counting_plus  xx  yy = tick >>= λ_. map2 (+) xx yy 

How should you define the operation tick to make this work? The intended 
behavior is that after running: 

        let zz = counting_plus (up 1) (counting_plus (up 2) (up 3)) 
        in runState zz 0 

you should get a payload/at-issue result of 6 (that is, 1+(2+3)) and a final side-
tally of 2 (because + was used twice). 

> let -- xx >> yy = xx >>= \_ -> yy 
      tick :: State Int () 
      tick = modify succ 
      counting_plus xx yy = tick >> map2 (+) xx yy 
      zz :: State Int Float 
      zz = counting_plus (up 1) (counting_plus (up 2) (up 3)) 
  in runState zz 0 

(6.0, 2) 

* Instead of the design in the previous problem, suppose you had instead chosen 
to do things this way: 

        let counting_plus'  xx  yy = map2 (+) xx yy >>= tock 

How should you define the operation tock to make this work, with the same 
behavior as before? 

> let tock :: Float -> State Int Float 
      tock = \z -> modify succ >> up z 
      counting_plus' xx yy = map2 (+) xx yy >>= tock 
      zz' = counting_plus' (up 1) (counting_plus' (up 2) (up 3)) 
  in runState zz' 0 

(6.0, 2) 

 


