
Functional Programming Techniques for Philosophy and Linguistics
Chris Barker and Jim Pryor, NASSLLI 2016
JP's Thursday Handout

Remember Polymorphic Types?
id : ∀α. α → α (we'll usually suppress prenex ∀α in type signatures)
id = Λα. λx: α. x (will also suppress initial Λα, and the [type] applications)

Schematic Type Expressions
Int → α ≡ α Reader Int

Set α ≡ α Set
I'll use xx and yy as variables for these.
(At one point I'll use xxx as a variable for a α , with the boxes understood univocally.)

Kleisli arrow types for a given are: α → β
Contrast ordinary arrow types: α ⟶	 	 	 β
I'll use j and k as variables for Kleisli arrows, and f and g for functions with
ordinary types.

Endofunctors
 some type operation
 and a paired function map : ∀α β. (α ⟶	 β)	 ⟶	 α	 	 ⟶	 β
 obeying the laws:
 map (id : α → α) xx = (id : α → α) xx = xx
 map (g ∘ f) = (map g) ∘ (map f)

 Example1: α Set = Set α
 mapSet : (α ⟶	 β)	 ⟶	 α	 	 Set	 ⟶	 β Set, that is:
 mapSet : (α → β) → Set α → Set β
 mapSet f xx = { f x | x ∈ xx }
 So mapSet succ {2, 3, 10} = {3, 4, 11}

 Example 2: α Intensionality = World → α
 mapIntensionality : (α ⟶	 β)	 ⟶	 α	 	 Intensionality	 ⟶	 β Intensionality, that is:
 mapIntensionality : (α → β) → (World → α) → (World → β)
 mapIntensionality f xx = λw. f (xx w)

 Other names for map: fmap, <$>, liftA, liftM

Monads
 some type operation
 and a paired function map : ∀α β. (α ⟶	 β)	 ⟶	 α	 	 ⟶	 β (as above)
 also a paired function join : ∀α. α 	 ⟶	 α 	 	
 (e.g., for Set, this is U)
 also a paired function ⇧("up" or map0): ∀α. α ⟶	 α	 	
 (e.g., for Set, this is singleton)

 instead of map + join, you could have a single function
 <=< : ∀α β γ. (β ⟶	 	 γ)	 ⟶	 (α ⟶	 	 β)	 ⟶	 (α	 	 ⟶	 	 γ)
 compare the type of the ordinary composition operator
 ∘ : ∀α β γ. (β ⟶	 	 γ)	 ⟶	 (α ⟶	 	 β)	 ⟶	 (α	 	 ⟶	 	 γ)

<=< is called "Kleisli composition." It plays the role for Kleisli arrow types
(α ⟶	 	 β) that ∘ plays for ordinary arrow types (α ⟶	 β).

Example:
 duplicate 3 = {3, 3, 3}multi
 upto 4 = {0, 1, 2, 3}multi
 (duplicate <=< upto) 4 = join {{}, {1}, {2, 2}, {3, 3, 3}}multi = {1, 2, 2, 3, 3, 3}multi

 These functions (map + join + ⇧, or <=< + ⇧) have to obey laws, best stated as:
 k′ <=< (k <=< j) = (k′ <=< k) <=< j
 ⇧ <=< j = j = j <=< ⇧

In summary, <=< is associative and ⇧ is its identity. So monads are a
generalization with polytypes of the algebraic notion of a monoid.

 Interdefinitions:
 j >=> k ≡ k <=< j
 xx >>= ("bind") k ≡ (k <=< id) xx ≡ (k <=< const xx) anything ≡ join (map k xx)
 k <=< j ≡ join ∘ map k ∘ j ≡ λx. (j x >>= k)
 join xxx ≡ xxx >>= id
 map f xx ≡ xx >>= λx. ⇧ (f x)
 map2 f xx yy ≡ xx >>= λx. yy >>= λy. ⇧ (f x y)
 Compare types:
 ⇧/map0 : ∀α. α → α	 lifts a value (nullary function) into
 map : ∀α β. (α → β) → α	 → β lifts a unary function into
 map2 : ∀α β γ. (α → β → γ) → α	 → β → γ lifts a binary function into

 Other names for ⇧/map0: η, pure, return, unit (≠ our Boring type), monadic id, singleton
 Other names for join: μ
 Other names for >>=/bind: ★

Monadic Layers
 α Set is really α SetT (Identity) = Set α
 α Intensionality is really α Reader World is really α ReaderT World (Identity) = World → α
There are also monadic types like α ReaderT World (SetT (Identity)) = World → Set α
 α StateT S (SetT (Identity)) = S → Set (α × S)
 α SetT (StateT S (Identity)) = S → (Set α) × S

Definitions for Identity Monad

 α Identity = α
⇧ = id
k <=< j = k ∘ j
xx >>= k = k xx
map = λf xx. f xx
(Note: map and >>= won't have the same definition in general: usually their types differ.)

Definitions for MaybeT Monadic Layer
type Maybe/Shortlist α = None () + One (α)
 α MaybeT (M) = Maybe α M
liftT = λxx. mapM One xx
⇧ = liftT ∘ ⇧M
xx >>= k = xx >>=M λxs. case xs of { None ⟶ ⇧M None | One x ⟶ k x }
Auxiliary functions for MaybeT: zero : α ; zero = ⇧M None
When M = Identity: xx >>= Maybe k = case xx of { None ⟶ None | One x ⟶ k x }
⇧Maybe = λx. One x
map2Maybe = λf xx yy. case (xx, yy) of { (One x, One y) ⟶ One (f x y) | else None }

Definitions for SetT Monadic Layer

 α SetT (M) = Set α M
liftT = λxx. mapM singleton xx
⇧ = liftT ∘ ⇧M
xx >>= k = xx >>=M λxs. unionM { k x | x ∈ xs }
 where unionM : Set Set β M → Set β M
 unionM { } = ⇧M { }
 unionM {bb} = bb
 unionM {bb, bb′} = map2M (∪) bb bb′
 unionM {bb, bb′, bb″} = map2M (∪) (map2M (∪) bb bb′) bb″
 ...
Auxiliary functions for SetT: zero : α ; zero = ⇧M { }
 plus : α → α → α ; plus = λxx yy. map2M (∪) xx yy
When M = Identity: xx >>= Set k = U { k x | x ∈ xx }
⇧Set = λx. {x}
map2Set = λf xx yy. { f x y | x ∈ xx, y ∈ yy }

Definitions for ReaderT Monadic Layer

 α ReaderT R (M) = R → α M
liftT = λxx. λr. xx
⇧ = liftT ∘ ⇧M
xx >>= k = λr. xx r >>= M λx. k x r
Auxiliary functions for ReaderT: ask : R ; ask = ⇧M
 localshift : (R → R) → α → α ; localshift = λf xx. xx ∘ f
When M = Identity: xx >>= Reader R k = λr. let x = xx r; yy = k x in yy r
⇧Reader R = λx. λr. x
map2Reader R = λf xx yy. λr. f (xx r) (yy r)

Definitions for StateT Monadic Layer

 α StateT S (M) = S → α × S M
liftT = λxx. λs. mapM (λx. (x, s)) xx
⇧ = liftT ∘ ⇧M
xx >>= k = λs. xx s >>= M λ(x, s′). k x s′
Auxiliary functions for StateT: get : S ; get = λs. ⇧M (s, s)
 modify : (S → S) → Boring ; modify = λf. λs. ⇧M ((), f s)
When M = Identity: xx >>= State S k = λs. let (x,s′) = xx s; yy = k x in yy s′
⇧State S = λx. λs. (x, s)

Definitions for WriterT Monadic Layer

 α WriterT W (M) = α × W M, where W is e.g., a list of logged messages
liftT = λxx. mapM (λx. (x, [])) xx
⇧ = liftT ∘ ⇧M
xx >>= k = xx >>= M λ(x, ws). k x >>= M λ(y, ws′). ⇧M (y, ws ◁▷ ws′)
Auxiliary functions for WriterT: tell : W → Boring ; tell = λws. ⇧M ((), ws)
 listen : α → α × W ; listen = λxx. xx >>= M λ(x, ws). ⇧M ((x, ws), ws)
 censor : (W → W) → α → α ; censor = λf xx. xx >>= M λ(x, ws). ⇧M (x, f ws)
When M = Identity: xx >>= Writer W k = let (x,ws) = xx; (y,ws′) = k x in (y, ws ◁▷ ws′)
⇧Writer W = λx. (x, [])

Examples of Using (Simple, Single-layered) Monads

1. Safe division (CB, using Maybe monad)
 …
2. ± (JP, using Set monad)

* What is: (3 * √4) - √25, interpreting that as: (3 * ±2) - ±5?

> plusMinus x = [x, -x] :: Set Int
> :type plusMinus
plusMinus :: Int -> Set Int

> map2 (*) (up 3) (plusMinus 2)

Set [-6,6]

> map2 (-) (map2 (*) (up 3) (plusMinus 2)) (plusMinus 5)

Set [-1,-11,11,1]

3. Variable binding (CM, using Reader monad)
 …
4. Running tally (JP, using State monad)

* Suppose you're trying to use the State monad to keep a running side-tally of
how often certain arithmetic operations have been used in computing a complex
expression. You've settled upon the design plan of using the State monad, and
defining a function like this:

 let counting_plus xx yy = tick >>= λ_. map2 (+) xx yy

How should you define the operation tick to make this work? The intended
behavior is that after running:

 let zz = counting_plus (up 1) (counting_plus (up 2) (up 3))
 in runState zz 0

you should get a payload/at-issue result of 6 (that is, 1+(2+3)) and a final side-
tally of 2 (because + was used twice).

> let -- xx >> yy = xx >>= _ -> yy
 tick :: State Int ()
 tick = modify succ
 counting_plus xx yy = tick >> map2 (+) xx yy
 zz :: State Int Float
 zz = counting_plus (up 1) (counting_plus (up 2) (up 3))
 in runState zz 0

(6.0, 2)

* Instead of the design in the previous problem, suppose you had instead chosen
to do things this way:

 let counting_plus' xx yy = map2 (+) xx yy >>= tock

How should you define the operation tock to make this work, with the same
behavior as before?

> let tock :: Float -> State Int Float
 tock = \z -> modify succ >> up z
 counting_plus' xx yy = map2 (+) xx yy >>= tock
 zz' = counting_plus' (up 1) (counting_plus' (up 2) (up 3))
 in runState zz' 0

(6.0, 2)

