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Recall from predicate logic (with restricted quantification):
1. ∀x<7. 2 + x ≤ 9

Or with a different relation in the restrictor:
2. ∀x=7. 2 + x ≤ 9  ⇒ ("evaluates to") True, given standard interpretations of ≤, =, +, numerical constants

Let's also use ⇒ to specify values of subsentential expressions:
3. 2 + 7  ⇒ 9
4. 2 + x  ⇒{x ↦ 7} 9

In #2, the restrictor (=) is syntactically guaranteed to have at most satisfier. Let's express such forms using the syntax:
5. let x = 7 in 2 + x ≤ 9  ⇒ True (as in #2)

Let's partially specify assignments for subsentential expressions, too:
6. let x = 7 in 2 + x  ⇒ 9 (as in #4)
More-or-less equivalent to:
7. (λx. 2 + x) 7  ⇒ 9 (as in #6)

Let's embed several lets to specify assignments more fully:
8. let x = 3 in (let y = 4 in 2 + x + y)  ⇒ 9
9. let x = 3; y = 4 in 2 + x + y  ⇒ 9

"Curried style" application of λ to several arguments:
10. (λx y. 2 + x + y) 3 4  ⇒ 9
"N-tuple style," mathematically more familiar:
11. (λ(x, y). 2 + x + y) (3, 4)  ⇒ 9
#11 uses "pattern matching" to bind x and y to each element of its pair argument. As does:
12. let (x, y) = (3, 4) in 2 + x + y  ⇒ 9

Our language has simple values (numbers, truth-values, functions, etc) as well as container values (lists, pairs, etc):
13. [2, 3, 4]  ⇒ [2, 3, 4]
14. let x = 3; y = 4 in [2, x, y]  ⇒ [2, 3, 4]
15. let xs = [2, 3, 4] in head xs  ⇒ 2
16. let xs = [2, 3, 4] in tail xs  ⇒ [3, 4]
17. cons 2 [3, 4]  ⇒ [2, 3, 4]
18. 2 ◁ [3, 4]  ⇒ [2, 3, 4]
19. let xs = [2, 3, 4]; ys = cons 1 (tail xs) in ys  ⇒ [1, 3, 4]

We've seen pre-defined functions like +, ≤, head, cons. We express our own functions with λ-terms:
20. λx y. 2 + x + y
This applies to values as exhibited in #10, #11. Recall also #9 ≋ #10. Now we bind variables to our λ-terms:
21. let g = λx y. 2 + x + y in g 3 4  ⇒ 9 (as in #9 and #10)
22. let g x y = 2 + x + y in g 3 4  ⇒ 9
23. let g = λx y. 2 + x + y; x = 3 in g x 4  ⇒ 9



"Big Step" Operational Semantics for some of the constructions we've seen

(a)  g includes {x ↦ v}
   x ⇒g v

(b)  A ⇒g va    B ⇒g {x ↦ va} vb
      let x = A in B  ⇒g vb

(c)  A ⇒g NoElems    B ⇒g vb
      case A of { NoElems ⟶  B | OneElem x  ⟶  C } ⇒g vb

(d)  A ⇒g OneElem va    C ⇒g {x ↦ va} vc
      case A of { NoElems ⟶  B | OneElem x  ⟶  C } ⇒g vc

(e)                                                           
      λ x. B ⇒g the "closure" (λx. B, g)

(f)  A ⇒g va    H ⇒g (λx. B, g0)    B ⇒g0 {x ↦ va} vb
     H A ⇒g vb

Call-by-value (or "eager," weak-head normal form) evaluation order

1. first, evaluate the outermost "head" subexpression using these rules, until the result is not an application
2. if the head isn't a λ-term (or primitive function), then stop
3. if the head isn't followed by an argument, then stop (we don't evaluate "under lambdas," but wait until they're applied)
4. evaluate the argument term using these rules, until the result is not an application
5. "perform the application," by evaluating the body of the head λ-term with its abstracted variable bound to the result of 
step 4

When could it matter what evaluation order we use?

(a) Infinitely recursing evaluations
     "Thunks" (unapplied functions, usually expecting arguments of type Boring) are useful because in these languages we 
don't evaluate inside unapplied λ-terms (rule #3 in the call-by-value evaluation scheme)

(b) printing
     pay_taxes (let _ = print "paying 100" in 90)

(c) mutation (rest of today's discussion)



Remember in predicate logic you can say:
24. ∀x. (∃ x. x = 9) ∨ … x …
So too can we say:
25. let x = 0; y = 0 in (let x = 3; y = 4 in 2 + x + y)  ⇒ 9
Programmers describe this as the innermost let introducing "new local bindings" for x, y that "shadow" their more global 
bindings. The more local bindings are only in place until the closing ")".

Contrast:
26. let x = 0; y = 0 in (let x = 3; y = 4 in (2 +)) (x + y)  ⇒ 2
Where (2 +) is a "partial application" of +. Here the local bindings are in place only for the evaluation of that partial sum 
(where they make no difference). When we evaluate the further argument (x + y) for that sum, we use the more global 
bindings {x ↦ 0, y ↦ 0}.

λ-terms can contain variables that are bound outside them (variables that are "locally free"):
27. let y = 4; f = λx. 2 + x + y in [f 3, f 13]  ⇒ [9, 19]
How should we interpret variable occurrences like the y inside our λ-term when y later gets a different binding, shadowing 
the one in place where the λ-term was expressed?
28. let y = 4; f = λx. 2 + x + y; y = 0 in [y, f 3, f 13, y]  ⇒ [0, ?, ?, 0]
What programmers call "lexical" or "static" binding keeps interpreting that y inside the λ-term with its original binding to 4. 
So the result is [0, 9, 19, 0]. This is the dominant strategy in contemporary programming. The other strategy (which 
programmers happen to call "dynamic," but that's misleading in a context like ours) interprets #28 with y using its new 
binding to 0, yielding the result [0, 5, 15, 0]. We'll ignore that strategy in our discussion.

Contrast #28 (evaluating to [0, 9, 19, 0]) with:
29. let y = 4; f = λx. (let y = 0 in 2 + x + y) in [y, f 3, f 13, y]  ⇒ [4, 5, 15, 4]
Here the more local binding for y is inside the definition of f, so it does affect the result we get when applying f. Also, that 
binding is in effect only inside the definition of f, so it doesn't affect the interpretation of y at the start and end of the final 
list expression.

Everything so far has been "purely declarative." Now we'll introduce mutation, which comes in two varieties. "Explicit"-style 
mutation gives us mutable container values. "Implicit"-style mutation gives us mutable variable bindings. We'll introduce 
them in that order.
30. let xs = [2, 3, 4]mut; _ = set-head! xs 1 in xs  ⇒ [1, 3, 4]
31. let xs = [2, 3, 4]mut; ( ) = set-head! xs 1 in xs  ⇒ [1, 3, 4]
Notice the different syntax on the list expression, to indicate that the container is mutable. Also, contrast #30/#31 to #19, 
here repeated:
19. let xs = [2, 3, 4]; ys = cons 1 (tail xs) in ys  ⇒ [1, 3, 4]
In #19, ys  ⇒ [1, 3, 4], but xs would still ⇒ [2, 3, 4]. In #30/#31, on the other hand, xs itself now ⇒ [1, 3, 
4]. We achieve this not by constructing a new list, partially modeled on the one we originally bound xs to. Instead we 
mutate that original list, using the operation set-head! (We follow a convention of naming functions that have effects with 
a trailing "!") The usefulness of set-head! is in the effect you get from applying it, not from its return value, so in #30 we 
ignore it. I assume here that its return value is just the dummy, boring value () (or "unit"). (You might instead have chosen 
to make set-head! return the original, pre-mutated head.)

In introducing mutable lists and operations like set-head! into our language, we've abandoned what programmers call 
"referential transparency." Consider:
32. let f = (let ys = [0]mut 
            in λx. (let y = head ys; _ = set-head! ys (1+y) in 2 + x + y) )
   in [f 3, f 3, f 3]  ⇒ [5, 6, 7]
What result you will get from this depends on what order the "f 7"s in the final list expression are evaluated. I've assumed 
here it goes from left-to-right, but nothing mandates that choice. At each application of function f to a constant argument 3, 
we end up adding different head-values from the mutating list ys. So the result of applying f is not determined by the 
values supplied to it as arguments.



An interesting aside:
33. let y = 4 in y equal 3  ⇒ False
34. let ys = [2, 3, 4] in ys equal/egal [1, 3, 4]  ⇒ False
35. let xs = [2, 3, 4]mut; ys = cons 1 (tail xs); zs = xs; _ = set-head! xs 1 in …
(a) … xs  ⇒ [1, 3, 4]
(b) … zs  ⇒ [1, 3, 4]
(c) … xs equal ys  ⇒ True, because these lists contain the same elements
(d) … xs egal ys  ⇒ False, because they're distinct, independently mutable containers (unlike xs and zs)

So far, we've seen mutable list values, but the way variable bindings work hasn't changed. Once bound to a value, a 
variable stays so bound throughout the syntactic scope of that binding — though perhaps it may be "shadowed" by more 
local bindings of the same variable symbol. In such cases, though, the old binding would persist in the background, and 
would again be visible after the scope of the more local binding expires.

Some languages, more radically, permit variable bindings themselves to be mutated (not merely "shadowed").
36. let y = 4; f = λx. (let _ = set! y 0 in 2 + x + y) in [y, f 3, f 13, y]  ⇒ [4, 5, 15, 
0]
Contrast #29, here repeated:
29. let y = 4; f = λx. (let y = 0 in 2 + x + y) in [y, f 3, f 13, y]  ⇒ [4, 5, 15, 4]
In #29 we only "shadow" the outermost binding of y with a new binding. In #36 we instead mutate the outermost binding, 
itself. So then even after the closing ")", after f has been applied to any argument, that new mutated binding will still be 
visible. That's why #36's result ends with 0 rather than 4.

Some languages (e.g., Scheme) have both mutable container values and also mutable variable bindings. But commonly 
languages have at most one of them (mainstream, imperatival languages generally have mutable variable bindings).
Here's an example of both together:
37. let xs = [2, 3, 4]mut;
       zs = xs;
       _ = set-head! xs 1;
       _ = set! xs [0, 0, 0]mut
    in …
(a) xs  ⇒ [0, 0, 0]
(b) zs  ⇒ [1, 3, 4]
In the operation set-head! xs 1, we  use the variable xs to mutate the single list value that both xs and zs are bound 
to. So when we later evaluate zs, that change is visible (as it also was in #35b). Here, though, we go on to do something 
we didn't do in #35. We go on to mutate the variable xs to become bound to a new list. zs still stays bound to the old list.



"Big Step" Operational Semantics for a language with mutable container values

BEFORE: A ⇒g      va
NOW:       A ⇒g,m  va, m′

(a)  A ⇒g,m va, ma    B ⇒g {x ↦ va},ma
 vb, mb    (will respect dynamic effects in evaluation of A or B)

     let x = A in B  ⇒g,m vb, mb

(b)  A ⇒g,m va, ma
      newbox A ⇒g,m new location in ma, ma with va in that new location    (len ma, ma▹va)

(c)  A ⇒g,m location a, ma      ma has va in location a
      get A ⇒g,m va, ma

(d)  A ⇒g,m location a, ma    B ⇒g,ma
 vb, mb

      put B into A ⇒g,m ( ), mb with vb in location a

(e) let x = newbox 0 in get x  ⇒g,m 0, m with 0 in a new location
      DERIVATION:
                                                                                                                  
      0 ⇒g,m 0, m                                 x ⇒g {x ↦ len m},m▹0 

len m, m▹0      m▹0 has 0 in location (len m)

      newbox 0 ⇒g,m len m, m▹0       get x ⇒g {x ↦ len m},m▹0 0, m▹0
      let x = newbox 0 in get x  ⇒g,m 0, m▹0

(f) let x = newbox 0 in (let _ = put 1 into x in get x)  ⇒g,m 1, m with 1 in a new location


