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5

Further Rational Constraints

The previous three chapters have discussed five core normative Bayesian rules:
Kolmogorov’s three probability axioms, the Ratio Formula, and Condition-
alization. Bayesians offer these rules as necessary conditions for an agent’s
credences to be rational. We have not discussed whether these five rules are
jointly sufficient for rational credence.

Agents can satisfy the core rules and still have wildly divergent attitudes.
Suppose 1,000 balls have been drawn from an urn and every one of them
has been black. In light of this evidence, I might be highly confident that the
next ball drawn will be black. But I might also have a friend Mina, whose
credences satisfy all the rational constraints we have considered so far, yet who
nevertheless responds to the same evidence by being 99% confident that the
next ball will be white. Similarly, if you tell me you rolled a fair die but don't
say how the roll came out, I might assign credence 1/6 that it came up six.
Mina, however, could be 5/6 confident of that proposition, without violating
the core Bayesian rules in any way.

If we think Mina’s credences in these examples are irrational, we need to
identify additional rational requirements beyond the Bayesian core that rule
them out. We have already seen one potential requirement that goes beyond
the core: the Regularity Principle (Section 4.2) prohibits assigning credence
0 to logically contingent propositions. What other requirements on rational
credence might there be? When all the requirements are put together, are they
strong enough to dictate a single rationally permissible credence distribution
for each possible body of total evidence?

The answer to this last question is sometimes taken to separate Subjec-
tive from Objective Bayesians. Unfortunately, “Objective/Subjective Bayesian”
terminology is used ambiguously, so this chapter begins by clarifying two
different ways in which those terms are used. In the course of doing so
we'll discuss various interpretations of probability, including frequency and
propensity views.

Then we will consider a number of additional rational credence constraints
proposed in the Bayesian literature. We'll begin with synchronic constraints:
the Principal Principle (relating credences to chances); the Reflection Principle

Fundamentals of Bayesian Epistemology 1: Introducing Credences. Michael G. Titelbaum, Oxford University Press.
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124 FURTHER RATIONAL CONSTRAINTS

(concerning one’s current credences about one’s future credences); principles
for deferring to experts; indifference principles (for distributing credences
in the absence of evidence); and principles for distributing credences over
infinitely many possibilities. Finally, we will turn to Jeffrey Conditionalization,
a diachronic updating principle proposed as a generalization of standard
Conditionalization.

Most of these constraints are usually offered as supplements to the five core
Bayesian rules we've seen already. You may not have noticed, but in discussing
Conditionalization and drawing out its consequences, we assumed throughout
that the updating agents satisfied the probability axioms and Ratio Formula.
Similarly, most of the principles we will discuss in this chapter build upon
the five core rules, and only have their intended effects if those five rules are
assumed in the background. Jeffrey Conditionalization, on the other hand,
is sometimes proposed as a substitute for Conditionalization—though it still
assumes the other four, synchronic core rules.

5.1 Subjective and Objective Bayesianism

When a weather forecaster comes on television and says, “The probability
of snow tomorrow is 30%,” what does that mean? What exactly has this
forecaster communicated to her audience? Such questions have been asked
throughout the history of mathematical probability theory; in the twentieth
century, rival answers became known as intepretations of probability. There
is an excellent literature devoted to this topic and its history (see the Further
Reading of this chapter for recommendations), so I don’t intend to let it
take over this book. But for our purposes it’s important to touch on some of
the main interpretations, and at least mention some of their advantages and
disadvantages.

5.1.1 Frequencies and propensities

The earliest European practitioners of mathematical probability theory applied
what we now call the classical interpretation of probability. This interpre-
tation, championed most famously by Pierre-Simon Laplace, calculates the
probability of a proposition by counting up the number of possible event
outcomes consistent with that proposition, then dividing by the total number
of outcomes possible. For example, if I roll a six-sided die, there are six possible
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outcomes, and three of them are consistent with the proposition that the
die came up even. So the classical probability of even is 1/2. (This is almost
certainly the kind of probability you first encountered in school.)

Laplace advocated this procedure for any situation in which “nothing leads
us to believe that one of [the outcomes] will happen rather than the others”
(Laplace 1814/1995, p. 3). Applying what Jacob Bernoulli (1713) had earlier
called the “principle of insufficient reason”, Laplace declared that in such
cases we should view the outcomes as “equally possible’, and calculate the
probabilities as described above.

The notion of “equally possible” at the crux of this approach clearly needs
more philosophical elucidation. But even setting that aside, the classical inter-
pretation leaves us adrift the moment someone learns to shave a die. With the
shape of the die changed, our interpretation of probability needs to allow the
possibility that some faces are more probable than others. For instance, it might
now be 20% probable that you will roll a six. While Laplace recognized and
discussed such cases, it’s unclear how his view can interpret the probabilities
involved. There are no longer possible outcomes of the roll that can be tallied
up and put into a ratio equaling 20%.

So suppose a shady confederate offers to sell you a shaved die with “a
20% probability of landing six” How might she explain—or back up—that
probability claim? Well, if an event has a 20% probability of producinga certain
outcome, we expect that were the event repeated it would produce that type
of outcome roughly 20% of the time. The frequency theory of probability
uses this fact to analyze “probability” talk. On this interpretation, when your
confederate claims the die has a 20% probability of landing six on a given roll,
she means that repeated rolls of the die will produce a six about 20% of the time.
According to the frequency theory, the probability is x that event A will have
outcome B just in case proportion x of events like A have outcomes like B.! The
frequency theory originated in work by Robert Leslie Ellis (1849) and John
Venn (1866), then was famously developed by the logical positivist Richard
von Mises (1928/1957).

The frequency theory has a number of problems; I will mention only a few.
Suppose my sixteen-year-old daughter asks for the keys to my car; I wonder
what the probability is that she will get into an accident should I give her the
keys. According to the frequency theory, the probability that the event of my
giving her the keys will have the outcome of an accident is determined by how
frequently this type of event leads to accidents. But what type of event is it? Is
the frequency in question how often people who go driving get into accidents?
How often sixteen-year-olds get into accidents? How often sixteen-year-olds
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with the courage to ask their fathers for the keys get into accidents? How often
my daughter gets into accidents? Presumably these frequencies will differ—
which one is the probability of an accident should I give my daughter the keys
right now?

Any event can be subsumed under many types, and the frequency theory
leaves it unclear which event-types determine probability values. Event types
are sometimes known as reference classes, so this is the reference class
problem. In response, one might suggest that outcomes have frequencies—and
therefore probabilities—only relative to the specification of a particular refer-
ence class (either implicitly or explicitly). But it seems we can meaningfully
inquire about the probabilities of particular event outcomes (or of propositions
simpliciter) without specifying a reference class. I need to decide whether to
give the keys to my daughter; I want to know how probable it is that she will
crash. That probability doesn’t seem relative to any particular reference class.
Or ifit is (covertly) relative to some reference class, which reference class does
the job?

Frequency information about specific event-types seems more relevant to
determining probabilities than information about general types. (The prob-
ability that my daughter will get into an accident on this occasion seems
much closer to her frequency of accidents than to the accident frequency of
drivers in general.) Perhaps probabilities are frequencies in the maximally
specific reference class? But the maximally specific reference class containing a
particular event contains only that individual event. The frequency with which
my daughter gets into an accident when I give her my keys on this occasion is
either 0 or 1—but we often think probabilities for such events have nonextreme
values.

This brings us to another problem for frequency theories. Suppose I have a
penny, and think that if I flip it, the probability that the flip will come out heads
is 1/2. Let’s just grant arguendo that the correct reference class for this event
is penny flips. According to the frequency theory, the probability that this flip
will come up heads is the fraction of all penny flips that ever occur which come
up heads. Yet while I'd be willing to bet that fraction is close to 1/2,'d be willing
to bet even more that the fraction is not exactly 1/2. (For one thing, the number
of penny flips that will ever occur in the history of the universe might be an
odd number!) For any finite run of trials of a particular event-type, it seems
perfectly coherent to imagine—indeed, to expect—that a particular outcome
will occur with a frequency not precisely equal to that outcome’s probability.
Yet if the frequency theory is correct, this is conceptually impossible when the
run in question encompasses every event trial that will ever occur.
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One might respond that the probability of heads on the flip of a penny is
not the frequency with which penny flips actually come up heads over the finite
history of our universe; instead, it’s the frequency in the limit—were pennies to
continue being flipped forever. This gives us hypothetical frequency theory,
on which the probability of an outcome is the frequency it would approach
were the event repeated indefinitely. Yet this move undermines one of the
original appeals of the frequency approach: its empiricism. The proportion
of event repetitions that produce a particular outcome in the actual world is
the sort of thing that could be observed (at least in principle)—providing a
sound empirical base for otherwise-mysterious “probability” talk. Empirically
grounding hypothetical frequencies is a much more difficult task.

Moreover, there seem to be events that couldn’t possibly be repeated many
many times, and even events that couldn’t be repeated once. Before the Large
Hadron Collider was switched on, physicists were asked for the probability that
doing so would destroy the Earth. Were that to have happened, switching on
the Large Hadron Collider would not have been a repeatable event. Scientists
also sometimes discuss the probability that our universe began with a Big
Bang; arguably, that’s not an event that will happen over and over or even
could happen over and over. So its difficult to understand talk about how
frequently the universe would begin with a Bang were the number of times
the universe started increased toward the limit. This problem of assigning
meaningful nonextreme probabilities to individual, perhaps non-repeatable
events is called the problem of the single case.

The frequentist still has moves available. Faced with a single event that’s non-
repeatable in the actual world, she might ask what proportion of times that
event produces a particular outcome across other possible worlds.> But now
the prospects for analyzing “probability” talk in empirically observable terms
have grown fairly dim.

An alternate interpretation of probability admits that probabilities are
related to frequencies, but draws our attention to the features that cause
particular outcomes to appear with the frequencies that they do. What is
it about a penny that makes it come up heads about half the time? Presumably
something about its physical attributes, the symmetries with which it interacts
with surrounding air as it flips, etc. These traits lend the penny a certain
tendency to come up heads, and an equal tendency to come up tails. This
quantifiable disposition—or propensity—would generate certain frequencies
were a long run of trials to be staged. But the propensity is also at work in each
individual flip, whether that flip is ever repeated or could ever be repeated.
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A non-repeatable experimental setup may possess a nonextreme propensity
to generate a particular outcome.

While an early propensity theory appeared in the work of Charles Sanders
Peirce (1910/1932), propensity’s most famous champion was Karl Popper
(1957). Popper was especially motivated by developments in quantum
mechanics. In quantum theory the Born rule calculates probabilities of
experimental outcomes from a particular quantity (the amplitude of the wave-
function) with independent significance in the theory’s dynamics. Moreover,
this quantity can be determined for a particular experimental setup even if
that setup is never to be repeated (or couldn’t be repeated) again. This gives
propensities a respectable place within an empirically established scientific
theory. Propensities may also figure in such theories as statistical mechanics
and population genetics.

Yet even if there are propensities in the world, it seems difficult to interpret
all probabilities as propensities. Suppose were discussing the likelihood that
a particular outcome occurs given that a quantum experiment is set up in
a particular fashion. This is a conditional probability, and it has a natu-
ral interpretation in terms of physical propensities: the experimental setup
described in the condition of the conditional probability has a particular causal
tendency to produce the outcome. But where there is a likelihood, probability
mathematics suggests there will also be a posterior—if there’s a probability
of outcome given setup, there should also be a probability of setup given
outcome. Yet the latter hardly makes sense as a physical propensity—does
an experimental outcome have a quantifiable causal tendency to produce the
particular experimental setup from which it results?*

Some philosophers—especially those of a Humean bent—are also suspi-
cious of the metaphysics of propensities. From their point of view, causes
are objectionable enough; even worse to admit propensities that seem to be
a kind of graded causation. Nowadays most philosophers of science agree
that we need some notion of physical probability that applies to the single
case. Call this notion objective chance. But whether objective chances are best
understood via propensity theory, a “best systems” analysis (Lewis 1994), or
some other approach is a hotly contested matter.

Finally, whatever objective chances turn out to be, they are governed by the
physical laws of our world. That means there can be no objective chance that
the physical laws are one way or another. (What set of laws beyond the physical
might determine such chances?) Yet it seems physicists can meaningfully
discuss the probability that the physical laws of the universe will turn out to be
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such-and-such. While the notion of objective chance makes sense of some of
our “probability” talk, it nevertheless seems to leave a remainder.

5.1.2 Two distinctions in Bayesianism

So what are physicists talking about when they discuss the probability that the
physical laws of the universe are one way rather than another? Perhaps they
are expressing their degrees of confidence in alternative physical hypotheses.
Perhaps there are no probabilities out in the world, independent of us, about
which our opinions change as we gain evidence. Instead, it may be that
facts in the world are simply true or false, probability-free, and “probability”
talk records our changing confidences in those facts in the face of changing
evidence.

Bayesian theories are often characterized as “Subjective” or “Objective’, but
this terminology can be used to draw two different distinctions. One of them
concerns the interpretation of “probability” talk. On this distinction—which
I'll call the semantic distinction—Subjective Bayesians adopt the position
I proposed in the previous paragraph. For them, “probability” talk expresses
or reports the degrees of confidence of the individuals doing the talking,
or perhaps of communities to which they belong. Objective Bayesians, on
the other hand, interpret “probability” assertions as having truth-conditions
independent of the attitudes of particular agents or groups of agents.’ In
the twentieth century, talk of “Objective” and “Subjective” Bayesianism was
usually used to draw this semantic distinction.®

More recently the “Subjective Bayesian/Objective Bayesian” terminology
has been used to draw a different distinction, which I will call the normative
distinction. However we interpret the meaning of “probability” talk, we can
grant that agents assign different degrees of confidence to different proposi-
tions (or, more weakly, that it is at least useful to model agents as if they do).
Once we grant that credences exist and are subject to rational constraints, we
may inquire about the strength of those constraints.

On one end of the spectrum, Objective Bayesians (in the normative
sense) endorse what Richard Feldman (2007) and Roger White (2005) have
called the

Uniqueness Thesis: Given any proposition and body of total evidence, there
is exactly one attitude it is rationally permissible for agents with that
body of total evidence to adopt toward that proposition.



130 FURTHER RATIONAL CONSTRAINTS

Assuming the attitudes in question are degrees of belief, the Uniqueness Thesis
says that given any evidential situation, there’s exactly one credence that any
agent is rationally permitted to adopt toward a given proposition in that
situation. The Uniqueness Thesis entails evidentialism, according to which
the attitudes rationally permissible for an agent supervene on her evidence.

Suppose we have two agents with identical total evidence who adopt dif-
ferent credences toward some propositions. Because Objective Bayesians (in
the normative sense) endorse the Uniqueness Thesis, they will maintain that
at least one of these agents is responding to her evidence irrationally. In most
real-life situations, different agents have different bodies of total evidence—
and even different bodies of relevant evidence—so many discrepancies in their
attitudes can be chalked up to evidential differences. But we have stipulated
in this case that the agents have identical evidence, so whatever causes the
differences in their attitudes, it can’t be the contents of their evidence. In
Section 4.3 we identified the extra-evidential factors that determine an agent’s
attitudes in light of her total evidence as her “ultimate epistemic standards”
These epistemic standards might reflect pragmatic influences, a predilection
for hypotheses with certain features, a tendency toward mistrust or skepti-
cism, etc.

The Hypothetical Priors Theorem tells us that whenever an agent’s credence
distributions over time satisfy the probability axioms, Ratio Formula, and
Conditionalization, her epistemic standards can be represented by a hypothet-
ical prior distribution. This regular, probabilistic distribution stays constant
as the agent gains evidence over time. Yet we can always recover the agent’s
credence distribution at a given time by conditionalizing her hypothetical
prior on her total evidence at that time. ‘

The core Bayesian rules (probability axioms, Ratio Formula, Conditional-
ization) leave a wide variety of hypothetical priors available. Assuming they
satisfy the core rules, our two agents who assign different credences in response
to the same total evidence must have different hypothetical priors. According
to the Objective Bayesian (in the normative sense), any time such a situation
arises at least one of the agents must be violating rational requirements. Thus
the Objective Bayesian thinks there is exactly one set of rationally permissible
hypothetical priors—one set of correct epistemic standards embodying ratio-
nal agents’ common responses to evidence.

How might the unique rational hypothetical prior be generated, and how
might we justify the claim that it is uniquely correct? Our ongoing epis-
temic standards for responding to new pieces of empirical evidence are often
informed by other pieces of evidence we gained in the past. I react to a fire
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alarm in a particular way because I've experienced such alarms before; one
piece of evidence helps determine how we interpret the next. But ultimate
epistemic standards—the ones represented by our hypothetical priors—dictate
responses to our fotal evidence, and so must be rationally antecedent to all of
our evidence. If we are to select and justify a unique set of ultimate epistemic
standards, we must do so a priori.

Extending a tradition that dated back to Bolzano (1837/1973) and perhaps
even Leibniz,” Keynes (1921) and Carnap (1950) argued that just as there are
objective facts about which propositions are logically entailed by a given body
of evidence, there are objective logical facts about the degree to which a body
of evidence probabilifies a particular proposition. Carnap went on to offer a
mathematical algorithm for calculating the unique logical hypothetical priors
from which these facts could be determined; we will discuss that algorithm
in Chapter 6. (The logical interpretation of probability holds that an agent’s
“probability” talk concerns logical probabilities relative to her current total
evidence.)® Many recent theorists, while backing away from Keynes's and
Carnap’s position that these values are logical, nevertheless embrace the idea
of evidential probabilities reflecting the degree to which a proposition is
probabilified by a given body of evidence. If you think that rationality requires
an agent to assign credences equal to the unique, true evidential probabilities
on her current total evidence, you have an Objective Bayesian view in the
normative sense.’

At the other end of the spectrum from Objective Bayesians (in the normative
sense) are theorists who hold that the probability axioms and Ratio Formula
are the only rational constraints on hypothetical priors.!? The literature often
defines “Subjective Bayesians” as people who hold this view. But that terminol-
ogy leaves no way to describe theorists in the middle of the spectrum—the vast
majority of Bayesian epistemologists who believe in rational constraints on
hypothetical priors that go beyond the core rules but are insufficient to narrow
things down to a single permissible standard. I will use the term “Subjective
Bayesian” (in the normative sense) to refer to anyone who thinks more than
one hypothetical prior is rationally permissible. I will call people who think
the Ratio Formula and probability axioms are the only rational constraints on
hypothetical priors “extreme Subjective Bayesians”

Subjective Bayesians allow for what White calls permissive cases: situations
in which two agents reach different conclusions on the basis of the same total
evidence without either party’s making a rational mistake. This is because each
agent interprets the evidence according to different (yet rationally acceptable)
epistemic standards, which allow them to draw different conclusions.
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I have distinguished the semantic and normative Objective/Subjective
Bayesian distinctions because they can cross-cut one another. Historically,
Ramsey (1931) and de Finetti (1931/1989) reacted to Keyness Objective
Bayesianism with groundbreaking theories that were Subjective in both the
semantic and normative senses. But one could be a Subjective Bayesian in
the semantic sense—taking agents’ “probability” talk to express their own
current credences—while maintaining that strictly speaking only one credence
distribution is rationally permitted in each situation (thereby adhering to
Objective Bayesianism in the normative sense). Going in the other direction,
one could admit the existence of degrees of belief while holding that theyre
not what “probability” talk concerns. This would give an Objective Bayesian
semantic view that combined with either Subjective or Objective Bayesianism
in the normative sense. Finally, probability semantics need not be monolithic;
many Bayesians now hold that some “probability” assertions in everyday life
express credences, others report objective chances, and still others indicate
what would be reasonable to believe given one’s evidence.!

Regardless of her position on the semantics, any Bayesian who isn’t an
extreme Subjective Bayesian in the normative sense will concede that there
are rational constraints on agents’ hypothetical priors beyond the probability
axioms and Ratio Formula. The rest of this chapter investigates what some of
those additional constraints might be. I should note at the outset, though, that
the more powerful and widely applicable these constraints get, the more they
seem to be beset by problems. Many Subjective Bayesians (in the normative
sense) would be happy to adopt an Objective position, if only they could
see past the numerous shortcomings of the principles Objective Bayesians
propose to generate unique hypothetical priors. Richard Jeffrey characterized
his Subjective Bayesian position as follows:

As a practical matter, I think one can give necessary conditions for rea-
sonableness of a set of partial beliefs that go beyond mere [probabilistic]
coherence—in special cases. The result is a patch-work quilt, where the
patches have frayed edges, and there are large gaps where we lack patches
altogether. It is not the sort of seamless garment philosophers like to wear;
but (we ragged pragmatists say), the philosophers are naked! Indeed we have
no proof that no more elegant garb than our rags is available, or ever will
be, but we haven’t seen any, yet, as far as we know. We will be the first to
snatch it off the racks, when the shipments come in. But perhaps they never
will. Anyway, for the time being, we are dressed in rags, tied neatly at the
waist with a beautiful cord—probabilistic coherence. (It is the only cord that
visibly distinguishes us from the benighted masses.) (1970, p. 169)
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5.2 Deference principles
5.2.1 The Principal Principle

Bayesian epistemology concerns agents’ degrees of belief. Yet most contem-
porary Bayesian epistemologists also believe that the world contains objective
chances of some sort—physical probabilities that particular events will pro-
duce particular outcomes. This raises the question of how subjective credences
and objective chances should relate. One obvious response is a principle of
direct inference: roughly, rational agents set their credences in line with what
they know of the chances. If you're certain a die is fair (has an equal objective
chance of landing on each of its faces), you should assign equal credence to
each possible roll outcome.

While direct inference principles have a long history, the most famous
such principle relating credence and chance is David Lewis’s (1980) Principal
Principle. The Principal Principle’s most straightforward consequence is that
if you are certain an event has objective chance x of producing a particular
outcome, and you have no other information about that event, then your
credence that the outcome will occur should be x. For many Bayesian purposes
this is all one needs to know about the Principal Principle. But in fact the
Principle is a more finely honed instrument, because Lewis wanted it to deal
with complications like the following: (1) What if you're uncertain about the
objective chance of the outcome? (2) What if the outcome’s chance changes
over time? (3) What if you have additional information about the event besides
what you know of the chances? The rest of this section explains how the
Principal Principle deals with those eventualities. If you're not interested in
the details, feel free to skip to Section 5.2.2.

So: Suppose it is now 1 p.m. on a Monday. I tell you that over the weekend
I found a coin from a foreign country that is somewhat irregular in shape.
Despite being foreign, one side of the coin is clearly the “Heads” side and the
other is “Tails” I also tell you that I flipped the foreign coin today at noon.

Let Hbe the proposition that the noon coin flip landed heads. Consider each
of the propositions below one at a time, and decide what your credence in H
would be if that proposition was all you knew about the coin in addition to the
information in the previous paragraph:

E;: After discovering the coin I spent a good part of my weekend
flipping it, and out of my 100 weekend flips sixty-four came up
heads.
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E,: The coin was produced in a factory that advertises its coins as fair,
but also has a side business generating black-market coins biased
toward tails.

E,;: The coin is fair (has a 1/2 chance of landing heads).

E;: Your friend Amir was with me at noon when I flipped the coin, and
he told you it came up heads.

Hopefully it’s fairly clear how to respond to each of these pieces of evidence,
taken singly. For instance, in light of the frequency information in Ej, it seems
rational to have a credence in H somewhere around 0.64. We might debate
whether precisely 0.64 is required,'? but certainly a credence in H of 0.01
(assuming E; is your only evidence about the coin) seems unreasonable.

This point generalizes to a rational principle that whenever one’s evidence
includes the frequency with which events of type A have produced outcomes
of type B, one should set one’s credence that the next A-event will produce a
B-outcome equal to (or at least in the vicinity of) that frequency.!®> While some
version of this principle ought to be right, working out the specifics creates
problems like those faced by the frequency interpretation of probability. For
instance, we have a reference class problem: Suppose my evidence includes
accident frequency data for drivers in general, for sixteen-year-old drivers
in general, and for my sixteen-year-old daughter in particular. Which value
should I use to set my credence that my daughter will get in a car accident
tonight? The more specific data seems more relevant, but the more general
data reflects a larger sample.!*

There are statistical tools available for dealing with these problems, some
of which we will discuss in Chapter 13. But for now let’s focus on a different
question about frequency data: Why do we use known flip outcomes to predict
the outcome of unobserved flips? Perhaps because known outcomes indicate
something about the physical properties of the coin itself; they help us figure
out its objective chance of coming up heads. Known flip data influence our
unknown flip predictions because they make us think our coin has a particular
chance profile. In this case, frequency data influences predictions by way of our
opinions about objective chances.

This relationship between frequency and chance is revealed when we com-
bine pieces of evidence listed above. We've already said that if your only
evidence about the coin is E;—it came up heads on sixty-four of 100 known
tosses—then your credence that the noon toss (of uncertain outcome) came
up heads should be around 0.64. On the other hand, if your only evidence is
E;, that the coin is fair, then I hope it’s plausible that your credence in H should



5.2 DEFERENCE PRINCIPLES 135

be 0.5. But what if you're already certain of E, and then learn E;? In that case
your credence in heads should still be 0.5.

Keep in mind we’re imagining you're certain that the coin is fair before you
learn the frequency data; were not concerning ourselves with the possibility
that, say, learning about the frequencies makes you suspicious of the source
from which you learned that the coin is fair. If it’s a fixed, unquestionable
truth for you that the coin is fair, then learning that it came up sixty-four
heads on 100 flips will not change your credence in heads. If all you had
was the frequency information, that would support a different hypothesis
about the chances. But it’s not as if sixty-four heads on 100 flips is inconsistent
with the coin’s being fair—a fair coin usually won’t come up heads on exactly
half the flips in a given sample. So once you're already certain of heads, the
frequency information becomes redundant, irrelevant to your opinions about
unknown flips. Frequencies help you learn about chances, so if you are already
certain of the chances there’s nothing more for frequency information to do.

David Lewis called information that can change your credences about
an event only by way of changing your opinions about its chances
admissible information. His main insight about admissible information was
that when the chance values for an event have already been established, admis-
sible information becomes irrelevant to a rational agent’s opinions about the
outcome.

Here’s another example: Suppose your only evidence about the noon flip
outcome is E,, that the coin was produced in a factory that advertises its coins
as fair but has a side business in tails-biased coins. Given only this information
your credence in H should be somewhere below 0.5. (Exactly how far below
depends on how extensive you estimate the side business to be.) On the other
hand, suppose you learn E, after already learning E;, that this particular coin is
fair. In that context, E, becomes irrelevant, at least with respect to predicting
flips of this coin. E, is relevant in isolation because it informs you about the
chances associated with the coin. But once you're certain that the coin is fair,
information E, only teaches you that you happened to get lucky not to have
a black-market coin; it doesn’t do anything to push your credence in H away
from 0.5. E, is admissible information.

Contrast that with E,, your friend Amir’s report that he observed the flip
landing heads. Assuming you trust Amir, E, should make you highly confident
in H. And this should be true even if you already possess information E,
that the coin is fair. Notice that E; and E4 are consistent; the coin’s being
fair is consistent with its having landed heads on this particular flip, and
with Amir’s reporting that outcome. But E, trumps the chance information; it
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moves your credence in heads away from where it would be (0.5) if you knew
only E;. Information about this particular flip’s outcome does not change your
credences about the flip by way of influencing your opinions about the chances.
You still think the coin is fair, and was fair at the time it was flipped. You just
know now that the fair coin happened to corhe up heads on this occasion.
Information about this flip’s outcome is inadmissible with respect to H.

Lewis expressed his insight about the irrelevance of admissible information
in his famous chance-credence principle, the

Principal Principle: Let Pry be any reasonable initial credence function.
Let t; be any time. Let x be any real number in the unit interval.
Let Ch;(A) = x be the proposition that the chance, at time ¢;, of
A’s holding equals x. Let E be any proposition compatible with
Ch;(A) = x that is admissible at time #;. Then

Pry(A|Chj(A) =x&E)=x

(I have copied this principle verbatim from Lewis 1980, p. 266, though I have
altered Lewis’s notation to match our own.) Theres a lot to unpack in the
Principal Principle, so we'll take it one step at a time. First, Lewis’s “reasonable
initial credence function” sounds a lot like an initial prior distribution. Yet
we saw in Section 4.3 that the notion of an initial prior is problematic, and
there are passages in Lewis that make it sound more like he’s talking about
a hypothetical prior.® So I will interpret the “reasonable initial credence
function” as your hypothetical prior distribution, and designate it with our
notation “Prg”

The Principal Principle is proposed as a rational constraint on hypothetical
priors, one that goes beyond the probability axioms and Ratio Formula. Why
frame the Principal Principle around hypothetical priors, instead of focusing
on the credences of rational agents at particular times? One advantage of
the hypothetical-priors approach is that it makes the total evidence at work
explicit, and therefore easy to reference in the principle. Recall from Section
4.3 that a hypothetical prior is a probabilistic, regular distribution containing
no contingent evidence. A rational agent is associated with a particular hypo-
thetical prior, in the sense that if you conditionalize that hypothetical prior
on the agent’s total evidence at any given time, you get the agent’s credence
distribution at that time.

In the Principal Principle we imagine that a real-life agent is consid-
ering some proposition A about the outcome of a chance event. She has
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chance of heads (Ch(H))
known flip unknown flip
frequencies outcome (H)

Figure 5.1 Chances screen off frequencies

some information about the chance of A, Ch;(A) = x, and then some further
evidence E. So her total evidence is Ch;(A) = x & E, and by the definition of
a hypothetical prior her credence in A equals Pry(A | Ch;(A) = x & E). Lewis
claims that as long as E is both admissible for A, and is compatible (which we
can take to mean “logically consistent”) with Ch;(A) =x, E should make no
difference to the agent’s credence in A. In other words, aslong as E is admissible
and compatible, the agent should be just as confident in A as she would be if
all she knew were Ch,(A) = x. That is, her credence in A should be x.

Return to our example about the noon coin flip, and the relationship
between chance and frequency information. Suppose that at 1 p.m. your
total evidence about the flip outcome consists of E; and E;. E;, the chance
information, says that Ch(H) = 0.5. E;, the frequency information, comprises
the rest of your total evidence, which will play the role of E in the Principal
Principle. Because this additional evidence is both consistent with Ch(H) = 0.5
and admissible for H, the Principal Principle says your 1 p.m. credence in H
should be 0.5. Which is exactly the result we came to before.

We can gain further insight into this result by connecting it to our earlier
(Section 3.2.4) discussion of causation and screening off. Figure 5.1 illustrates
the causal relationships in the coin example between chances, frequencies, and
unknown results. The coin’s physical structure, associated with its objective
chances, causally influenced the frequency with which it came up heads in
the previous trials. The coin’s physical makeup also affects the outcome of
the unknown flip. Thus previous frequency information is relevant to the
unknown flip, but only by way of the chances.!® We saw in Section 3.2.4
that when this kind of causal fork structure obtains, the common cause
screens its effects off from each other.!” Conditional on the chances, frequency
information becomes irrelevant to flip predictions. That is,

Pry(H|Ch(H) = 0.5 & E) = Pry(H| Ch(H) = 0.5) (5.1)
and intuitively the expression on the right should equal 0.5.

A similar analysis applies if your total evidence about the coin flip contains
only Ch(H) = 0.5 and E,, the evidence about the coin factory. This time
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Figure 5.2 Chance in a causal chain

our structure is a causal chain, as depicted in Figure 5.2. The situation in
the coin factory causally affects the chance profile of the coin, which in turn
causally affects the unknown flip outcome. Thus the coin factory information
affects opinions about H by way of the chances, and if the chances are already
determined then factory information becomes irrelevant. Letting the factory
information play the role of E in the Principal Principle, the chances screen off
E from H and we have the relation in Equation (5.1).

Finally, information E,, your friend Amir’s report, is not admissible infor-
mation about H. E, affects your opinions about H, but not by way of affecting
your opinions about the chances. The Principal Principle applies only when E,
the information possessed in addition to the chances, is admissible. Since E, is
inadmissible, the Principal Principle supplies no guidance about setting your
credences in light of it.

There are still a few details in the principle to unpack. For instance, the
chance expression Ch;(A) is indexed to a time t;. That’s because the chance
that a particular proposition will obtain can change as time goes on. For
instance, suppose that at 11am our foreign coin was fair, but at 11:30 I stuck
a particularly large, non-aerodynamic wad of chewing gum to one of its sides.
In that case, the proposition H that the coin comes up heads at noon would
have a chance of 0.5 at 1 1am but might have a different chance after 11:30. The
physical details of an experimental setup determine its chances, so as physical
conditions change chances may change as well.'®

Finally, the Principal Principle’s formulation in terms of conditional cre-
dences allows us to apply it even when an agent doesn’t have full information
about the chances. Suppose your total evidence about the outcome A of some
chance event is E. E influences your credences in A by way of informing you
about A’s chances (so E is admissible), but E does not tell you what the chances
are exactly. Instead, E tells you that the chance of A (at some specific time,
which I'll suppress for the duration of this example) is either 0.7 or 0.4. E also
supplies you with a favorite among these two chance hypotheses: it sets your
credence that 0.7 is the true chance at 2/3, and your credence that 0.4 is the
true chance at 1/3.
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How can we analyze this situation using the Principal Principle? Since your
total evidence is E, the definition of a hypothetical prior distribution tells us
that your current credences cr should be related to your hypothetical prior Pry
as follows:

cr(A) = Pry(A | E) (5.2)
This value is not dictated directly by the Principal Principle. However, the
Principal Principle does set
Pry(A|Ch(A) = 0.7 & E) = 0.7 (5.3)
because we stipulated that E is admissible. Similarly, the Principal Principle
sets
Pry(A|Ch(A) =04 & E) = 0.4 (5.4)

Since E narrows the possibilities down to two mutually exclusive chance
hypotheses, those hypotheses (Ch(A) = 0.7 and Ch(A) = 0.4) form a partition
relative to E. Thus we can apply the Law of Total Probability (in its conditional

credence form)' to obtain

Pry(A|E) = Pry(A | Ch(A) = 0.7 & E) - Pry(Ch(A) = 0.7 | E) + (5.5)
Pry(A| Ch(A) = 0.4 & E) - Pry(Ch(A) = 0.4 | E) '
By Equations (5.3) and (5.4), this is
Pry(A|E) = 0.7 - Pry(Ch(A) = 0.7 | E) + 0.4 - Pry(Ch(A) = 0.4|E) (5.6)

As Equation (5.2) suggested, Pry(:|E) is just cr(:). So this last equation
becomes

cr(A) = 0.7 - cr(Ch(A) = 0.7) + 0.4 - cr(Ch(A) = 0.4) (5.7)

Finally, we fill in the values stipulated in the problem to conclude
cr(A)=0.7-2/34+04-1/3=06 (5.8)
That’s a lot of calculation, but the overall lesson comes to this: When your total

evidence is admissible and restricts you to a finite set of chance values for A,
the Principal Principle sets your credence in A equal to a weighted average of
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those chance values (where each chance value is weighted by your credence
that it’s the true chance).

This is an extremely useful conclusion, provided we can discern what kinds
of evidence are admissible. Lewis writes that, “Admissible propositions are the
sort of information whose impact on credence about outcomes comes entirely
by way of credence about the chances of those.outcomes” (1980, p. 272). He
then sketches out some categories of information that we should expect to
be admissible, and inadmissible. For example, evidence about events causally
upstream from the chances will be admissible; such events will form the first
link in a causal chain like Figure 5.2. This includes information about the
physical laws that give rise to chances—information that affects our credences
about experimental outcomes by affecting our views about their chances. On
the other hand, evidence about effects of the chance outcome is inadmissible,
as we saw in the example of Amir’s report. Generally, then, it’s a good rule
of thumb that facts concerning events temporally before the chance outcome
are admissible, and inadmissible information is always about events after the
outcome. (Though Lewis does remark at one point (1980, p. 274) that if
backward causation is possible, seers of the future or time-travelers might give
us inadmissible information about chance events yet to come.)

We'll close our discussion of the Principal Principle with a couple of
caveats.?’ First, I have been talking about coin flips, die rolls, etc. as if
their outcomes have non-extreme objective chances. If you think that these
outcomes are fully determined by the physical state of the world prior to such
events, you might think these examples aren’t really chancy at all—or if there
are chances associated with their outcomes, the worlds determinism makes
those chances either 1 or 0. There are authors who think non-extreme chance
assignments are compatible with an event’s being fully deterministic. This will
be especially plausible if you think a single phenomenon may admit of causal
explanations at multiple levels of description. (Though the behavior of a gas
sample is fully determined by the positions and velocities of its constituent
particles, we might still apply a statistical thermodynamics that treats the
sample’s behavior as chancy.) In any case, if the compatibility of determinism
and non-extreme chance concerns you, you can replace my coin-flipping and
die-rolling examples with genuinely indeterministic quantum events.

Second, you might think frequency data can affect rational credences with-
out operating through opinions about chances. Suppose a new patient walks
into a doctor’s office, and the doctor assigns a credence that the patient has a
particular disease equal to that disease’s frequency in the general population.
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In order for this to make sense, must the doctor assume that physical chances
govern who gets the disease, or that the patient was somehow brought to her
through a physically chancy process? (That is, must the frequency affect the
doctor’s credences by informing her opinions about chances?) This will depend
on how broadly we are willing to interpret macroscopic events as having objec-
tive chances. But unless chances are literally everywhere, inferences governed
by the Principal Principle form a proper subset of the legitimate instances of
inductive reasoning. To move from frequencies in an observed population
to predictions about the unobserved when chances are not present, we may
need something like the frequency-credence principle (perhaps made more
plausible by incorporating statistical tools) with which this section began. Or
we may need a theory of inductive confirmation in general—something we
will try to construct in Chapter 6.

For the time being, the message of the Principal Principle is clear: Where
there are objective chances in the world, we should align our credences with
them to the extent we can determine what they are. While there are exceptions
to this rule, they can be worked out by thinking about the causal relations
between our information and the chances of which we’re aware.

5.2.2 Expert principles and Reflection

The Principal Principle is sometimes described as a deference principle: to the
extent you can determine what the objective chances are, the principle directs
you to defer to them by making your credences match. In a certain sense, you
treat the chances as authorities on what your credences should be. Might other
sorts of authorities demand such rational deference?

Testimonial evidence plays a large role in how we learn about the world.
Suppose an expert on some subject reveals her credences to you. Instead of
coming on television and talking about the “probability” of snow, the weather
forecaster simply tells you she’s 30% confident that it will snow tomorrow. It
seems intuitive that—absent other evidence about tomorrow’s weather—you
should set your credence in snow to 0.30 as well.

We can generalize this intuition with a principle for deference to experts
modeled on the Principal Principle:

Pry(A|crg(A) =x) = x (5.9)
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Here Pry is a rational agent’s hypothetical prior distribution, representing her
ultimate epistemic standards for assigning attitudes on the basis of total evi-
dence. A is a proposition within some particular subject matter, and crz(A) = x
is the proposition that an expert on that subject matter assigns credence x to A.
As we've discussed before (Section 4.3), an agent’s credences at a given time
equal her hypothetical prior conditionalized on her total evidence at that
time. So Equation (5.9) has consequences similar to the Principal Principle’s:
When a rational agent is certain that an expert assigns credence x to A, and
that fact constitutes her total evidence relevant to A, satisfying Equation (5.9)
will leave her with an unconditional credence of cr(A) =x. On the other
hand, an agent who is uncertain of the experts opinion can use Equation
(5.9) to calculate a weighted average of all the values she thinks the expert
might assign.?!

Equation (5.9) helps us figure out how to defer to someone we've identified
as an expert. But it doesn’t say anything about how to make that identification!
Ned Hall helpfully distinguishes two kinds of experts we might look for:

Let us call the first kind of expert a database-expert: she earns her epistemic
status simply because she possesses more information. Let us call the second
kind an analyst-expert: she earns her epistemic status because she is particu-
larly good at evaluating the relevance of one proposition to another.

(2004, p. 100)

A database expert’s evidence (or at least, her evidence relevant to the matter
at hand) is a superset of mine. While she may not reveal the contents of her
evidence, I can still take advantage of it by assigning the credences she assigns
on its basis. On the other hand, I defer to an analyst expert not because she has
superior evidence but because she is particularly skilled at forming opinions
from the evidence we share. Clearly these categories can overlap; relative to me,
a weather forecaster is probably both an analyst expert and a database expert
with respect to the weather.

One particular database expert has garnered a great deal of attention in the
deference literature: an agent’s future self. Because Conditionalization retains
certainties (Section 4.1.1), at any given time a conditionalizing agent will
possess all the evidence possessed by each of her past selves—and typically
quite a bit more. So an agent who is certain she will update by conditionalizing
should treat her future self as a database expert.?? On the supposition that her
future self will assign credence x to a proposition A, she should now assign
credence x to A as well. This is van Fraassen’s (1984)
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Reflection Principle: For any proposition A in £, real number x, and times
t;and t; with j > 4, rationality requires

cri(Aler(A) =x) =x

Although the Reflection Principle mentions both the agent’s £; and £; credences,
strictly speaking it is a synchronic principle, relating various credences the
agent assigns at ;. If we apply the Ratio Formula and then cross-mutiply,
Reflection gives us:

cri[A & crj(A) = x] = x - crjfcr;(A) = «] (5.10)

The two credences related by this equation are both assigned at ¢;; they just
happen to be credences in some propositions about ;.

Despite this synchronic nature, Reflection bears an intimate connection to
Conditionalization. If an agent is certain she will update by conditionalizing
between #; and ;—and meets a few other side conditions—Reflection follows.
For instance, the Reflection Principle can be proven from the following set of
conditions:

1. The agent is certain at t; that cr; will result from conditionalizing cr; on
the total evidence she learns between ¢; and ¢; (call it E).
2. The agent is certain at ¢; that E (whatever it may be) is true.
3. cry(er(A) =x) >0
4. Att, the agent can identify a set of propositions S in £ such that:
(a) The members of S form a partition relative to the agent’s certainties
att;.
(b) Att; the agent is certain that E is one of the propositions in S.
(c) For each member of S, the agent is certain at f; what cr;-value she
assigns to A conditional on that member.

References to a proof can be found in the Further Reading. Here I'll simply
provide an example that illustrates the connection between Conditionalization
and Reflection. Suppose that I've rolled a die you're certain is fair, but as of t;
have told you nothing about the outcome. However, at t; you're certain that
between ¢, and t, I'll reveal to you whether the die came up odd or even. The
Reflection Principle suggests you should assign

cri(6]cry(6) = 1/3) = 1/3 (5.11)
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Assuming the enumerated conditions hold in this example, we can reason to
Equation (5.11) as follows: In this case the partition S contains the proposition
that the die came up odd and the proposition that it came up even. You are
certain at £; that one of these propositions will provide the E you learn before
t,. Youre also certain that your cr,(6) value will result from conditionalizing
your t; credences on E. So you're certain at t; that

cry(6) = cry(6|E) (5.12)

Equation (5.11) involves your #; credence in 6 conditional on the suppo-
sition that cr,(6) =1/3. To determine this value, let’s see what conditional
reasoning you could do at t;, not yet certain what credences you will actually
assign at #,, but temporarily supposing that cr,(6) =1/3. We just said that
at t; youre certain of Equation (5.12), so given the supposition you can
conclude that cr;(6 | E) = 1/3. Then you can examine your current t; credences
conditional on both odd and even, and find that cr, (6 | E) will equal 1/3 only if
Eis the proposition that the die came up even. (Conditional on the die’s coming
up odd, your credence in a 6 would be 0.) Thus you can conclude that E is the
proposition that the die came up even. You’re also certain at ¢, that E (whatever
its content) is true, so concluding that E says the die came up even allows you
to conclude that the die did indeed come up even. And on the condition that
the die came up even, your ¢, credence in a six is 1/3.

All of the reasoning in the previous paragraph was conditional, starting
with the supposition that cry(6) = 1/3. We found that conditional on this
supposition, your rational credence in six would be 1/3. And that’s exactly
what the Reflection Principle gave us in Equation (5.11).% Information about
your future credences tells you something about what evidence you’ll receive
between now and then. And information about what evidence you’ll receive
in the future should be incorporated into your credences in the present.

But how often do we really get information about our future opinions?
Approached the way I've just done, the Reflection Principle seems to have little
real-world applicability. But van Fraassen originally proposed Reflection in a
very different spirit. He saw the principle as stemming from basic commit-
ments we undertake when we form opinions.

van Fraassen drew an analogy to making promises. Suppose I make a
promise at a particular time, but at the same time admit to being unsure
whether I will actually carry it out. van Fraassen writes that “To do so would
mean that I am now less than fully committed (a) to giving due regard to the
felicity conditions for this act, or (b) to standing by the commitments I shall



5.3 THE PRINCIPLE OF INDIFFERENCE 145

overtly enter” (1984, p. 255). To fully stand behind a promise requires full
confidence that you will carry it out. And what goes for current promises goes
for future promises as well: if you know you’ll make a promise later on, failing
to be fully confident now that you'll enact the future promise is a betrayal of
solidarity with your future promising self.

Now apply this lesson to the act of making judgments: assigning a different
credence now to a proposition than the credence you know you'll assign in
the future is a failure to stand by the commitments implicit in that future
opinion. As van Fraassen puts it in a later publication, “Integrity requires me
to express my commitment to proceed in what I now classify as a rational
manner, to stand behind the ways in which I shall revise my values and
opinions” (1995, pp. 25-6). This is his motivation for endorsing the Reflection
Principle.* For van Fraassen, Reflection brings out a substantive commitment
inherent in judgment, which underlies various other rational requirements.
For instance, since van Fraassen’s argument for Reflection does not rely on
Conditionalization, van Fraassen at one point (1999) uses Reflection to argue
for Conditionalization!

Of course, one might not agree with van Fraassen that assigning a credence
involves such strong commitments. And even if Reflection can be supported
as van Fraassen suggests, moving from that principle to Conditionalization is
going to require substantive further premises. As we've seen, Reflection is a
synchronic principle, relating an agent’s attitudes at one time to other attitudes
she assigns at the same time. By itself, Reflection may support a conclusion
to the effect that an agent with certain attitudes at a given time is required
to predict that she will update by Conditionalization. But to actually establish
Conditionalization as a diachronic norm, we would need a further principle
requiring rational agents to update in the manner they predict they will.?®

5.3 The Principle of Indifference

The previous section discussed various deference principles (the Principal
Principle, expert principles, the Reflection Principle) that place additional
rational constraints on credence beyond the probability axioms, Ratio For-
mula, and Conditionalization. Yet each of those deference principles works
with a particular kind of evidence—evidence about the chances, about an
expert’s credences, or about future attitudes. When an agent lacks these spe-
cific sorts of evidence about a proposition she’s considering, the deference
principles will do little to constrain her credences. If an Objective Bayesian
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(in the normative sense) wants to narrow what's rationally permissible to a
single hypothetical prior, he is going to need a stronger principle than these.

The Principle of Indifference is often marketed to do the trick. This is
John Maynard Keynes's name for what used to be known as the “principle of
insufficient reason”:

The Principle of Indifference asserts that if there is no known reason for
predicating of our subject one rather than another of several alternatives, then
relatively to such knowledge the assertions of each of these alternatives have
an equal probability. (Keynes 1921, p. 42, emphasis in original)

Applied to degrees of belief, the Principle of Indifference holds that if an agent
has no evidence favoring any proposition in a partition over any other, she
should spread her credence equally over the members of the partition. If I tell
you I have painted my house one of the seven colors of the rainbow but tell you
nothing more about my selection, the Principle of Indifference requires you to
assign credence 1/7 that my house is now violet.

The Principle of Indifference looks like it could settle all open questions
about rational credence. An agent could assign specific credences as dictated
by portions of her evidence (say, evidence that engages one of the deference
principles), then use the Principle of Indifference to settle all remaining
questions about her distribution. For example, suppose I tell you that I flipped
a fair coin to decide on a house color—heads meant gray, while tails meant
a color of the rainbow. You could follow the Principal Principle and assign
credence 1/2 to my house’s being gray, then follow the Principle of Indifference
to distribute the remaining 1/2 credence equally among each of the rainbow
colors (so each would receive credence 1/14). This plan seems to dictate a
unique rational credence for every proposition in every evidential situation,
thereby specifying a unique hypothetical prior distribution.

Unfortunately, the Principle of Indifference has a serious flaw, which was
noted by Keynes (among others).?8 Suppose I tell you only that I painted
my house some color—I don't tell you what palette I chose from—and you
wonder whether it was violet. You might partition the possibilities into the
proposition that I painted the house violet and the proposition that I didn’t.
In that case, the Principle of Indifference will require you to assign credence
1/2 that the house is violet. But if you use the seven colors of the rainbow
as your partition, you will assign 1/7 credence that my house is now violet.
And if you use the colors in a box of crayons....The trouble is that faced
with the same evidential situation and same proposition to be evaluated, the
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Principle of Indifference will recommend different credences depending on
which partition you consider.

Might one partition be superior to all the others, perhaps on grounds of
the naturalness with which it divides the space of possibilities? (The selection
of colors in a crayon box is pretty arbitrary!) Well, consider this example:
I just drove eighty miles to visit you. I tell you it took between two and four
hours to make the trip, and ask how confident you are that it took less than
three. Three hours seems to neatly divide the possibilities in half, so by the
Principle of Indifference you assign credence 1/2. Then I tell you I maintained
a constant speed throughout the drive, and that speed was between 20 and 40
miles per hour. You consider the proposition that I drove faster than 30mph,
and since that evenly divides the possible speeds the Indifference Principle
again recommends a credence of 1/2. But these two credence assignments
conflict. I drove over 30mph just in case it took me less than two hours and
forty minutes to make the trip. So are you 1/2 confident that it took me less
than three hours, or that it took me less than two hours forty minutes? If you
assign any positive credence that my travel time fell between those durations,
the two answers are inconsistent. So once more we need a specified partition
(time or velocity) to apply the Principle of Indifference against. But here the
decision can’t be made on grounds of naturalness: thinking about one’s speed
of travel is neither more nor less natural than thinking about how long the trip
took.?’

This example is different from the painting example, in that time and
velocity require us to consider continuous ranges of possibilities. Infinite
possibility spaces introduce a number of complexities we will discuss in the
next section, but hopefully the intuitive difficulty is clear. Joseph Bertrand
(1888/1972) produced a number of infinite-possibility paradoxes for princi-
ples like Indifference. His most famous puzzle (now usually called Bertrand’s
Paradox) asks how probable it is that a chord of a circle will be longer than
the side of an inscribed equilateral triangle. Indifference reasoning yields
conflicting answers depending on how one specifies the chord in question—by
specifying its endpoints, by specifying its orientation and length, by specifying
its midpoint, etc.

Since Keynes’s discussion, a number of authors have modified his Indiffer-
ence Principle. Chapter 6 will look in detail at Carnap’s proposal. Another well-
known suggestion is E.T. Jayness (1957a,b) Maximum Entropy Principle.
Given a partition of the space of possibilities, and a set of constraints on
allowable credence distributions over that partition, the Maximum Entropy
Principle selects the allowable distribution with the highest entropy. If the
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credence
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Figure 5.3 Possible urn distributions

partition is finite, containing the propositions {Q;, Q,, ..., Q,}, the entropy
of a distribution is calculated as

— > er(Q) - log ex(Q) (5.13)

i=1

The technical details of Jaynes's proposal are beyond the level of this book.
The intuitive idea, though, is that by maximizing entropy in a distribution we
minimize information.

To illustrate, suppose you know an urn contains 100 balls, each of which is
either black or white. Initially, you assign an equal credence to each available
hypothesis about how many black balls are in the urn. This “flat” distribution
over the urn hypotheses is reflected by the dashed line in Figure 5.3. Then I tell
you that the balls were created by a process that tends to produce roughly as
many white balls as black. This moves you to the more “peaked” distribution
of Figure 5.3 solid curve. The peaked distribution reflects the fact that at the
later time you have more information about the contents of the urn. There
are various mathematical ways to measure the informational content of a
distribution, and it turns out that a distribution’s entropy goes down as its
information content goes up. So in Figure 5.3, the flat (dashed) distribution
has a higher entropy than the peaked (solid) distribution.

Maximizing entropy is thus a strategy for selecting the lowest-information
distribution consistent with what we already know. Jaynes’s principle says
that within the bounds imposed by your evidence, you should select the
“flattest” credence distribution available. In a sense, this is a directive not to
make any assumptions beyond what you know. As van Fraassen puts it, “one
should not jump to unwarranted conclusions, or add capricious assumptions,
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when accommodating one’s belief state to the deliverances of experience”
(1981, p. 376). If all your evidence about my urn is that it contains 100 black
or white balls, it would be strange for you to peak your credences around any
particular number of black balls. What in your evidence would justify such a
maneuver? The flat distribution seems the most rational option available.?8

The Maximum Entropy approach has a number of advantages. First, it can
easily be extended from finite partitions to infinite partitions by replacing the
summation in Equation (5.13) with an integral (and making a few further
adjustments). Second, for cases in which an agent’s evidence simply delineates
a space of doxastic possibilities (without favoring some of those possibilities
over others), the Principle of Maximum Entropy yields the same results as the
Principle of Indifference. But Maximum Entropy also handles cases involving
more complicated sorts of information. Besides restricting the set of possibil-
ities, an agent’s evidence might require her credence in one possibility to be
twice that in another, or might require a particular conditional credence value
for some ordered pair of propositions. No matter the constraints, Maximum
Entropy chooses the “flattest” (most entropic) distribution consistent with
those constraints. Third, probability distributions selected by the Maximum
Entropy Principle have been highly useful in various scientific applications,
ranging from statistical mechanics to CT scans to natural language processing.

Yet the Maximum Entropy Principle also has flaws. It suffers from a ver-
sion of the Indifference Principle’s partitioning problem. Maximum Entropy
requires us to first select a partition, then accept the most entropic distri-
bution over that partition. But the probability value assigned to a particular
proposition by this process often depends on what other propositions appear
in the partition. Also, in some evidential situations satisfying the Maximum
Entropy Principle both before and after an update requires agents to violate
Conditionalization. You can learn more about these problems by studying this
chapter’s Further Reading.

5.4 Credences for infinitely many possibilities

Suppose I tell you a positive integer was just selected by some process, and tell
you nothing more about that process. You need to distribute your credence
across all the possible integers that might have been selected. Lets further
suppose that you want to assign each positive integer the same credence. In the
last section we asked whether, given your scant evidence in this case about the
selection process, such an assignment is obligatory—whether you're rationally
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required to assign each positive integer an equal credence. In this section I want
to set aside the question of whether an equal distribution is required, and ask
whether it’s even possible.

We're going to have a small, technical problem here with the propositional
language over which your credence distribution is assigned. In Chapter 2 we
set up propositional languages with a finite number of atomic propositions,
while a distribution over every positive integer requires infinitely many atomic
propositions. Yet there are standard logical methods for dealing with languages
containing infinitely many atomic propositions, and even for representing
them using a finite number of symbols. For example, we could use “1” to
represent the atomic proposition that the number one was selected, “2” to
represent two's being selected, “12” to represent twelve’s being selected, etc.
This will allow us to represent infinitely many atomic propositions with only
the standard ten Arabic digits.

So the language isn't the real problem; the real problem is what single
credence value you could possibly assign to each and every one of those
positive integers. To start seeing the problem, imagine you pick some positive
real number r and assign it as your unconditional credence in each positive
integer’s being picked. For any positive real r you pick, there exists an integer
n such that r> 1/n. Select such an #, and consider the proposition that the
positive integer selected was less than or equal to n. By Finite Additivity
(Extended),

c(lv2v...va)=c(l)+ca)+ ... +cr(n) (5.14)

Each of the credences on the right-hand side equals 7, so your credence in the
disjunction is r- n. But we selected # such that r> 1/n,s0 r-n > 1. Which means
the credence on the left-hand side of this equation is greater than 1, and you've
violated the probability axioms.

This argument rules out assigning the same positive real credence to each
and every positive integer. What other options are there? Historically the most
popular proposal has been to assign each positive integer a credence of 0. Yet
this proposal creates its own problems.

The first problem with assigning each integer zero credence is that we
must reconceive what an unconditional credence of 0 means. So far in this
book we have equated assigning credence 0 to a proposition with ruling that
proposition out as a live possibility. In this case, though, weve proposed
assigning credence 0 to each positive integer while still treating each as a live
possibility. So while we will still assign credence 0 to propositions that have
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been ruled out, there will now be other types of propositions that receive
credence 0 as well. Similarly, we may assign credence 1 to propositions of
which we are not certain.

Among other things, this reconception of credence 0 will undermine argu-
ments for the Regularity Principle. As stated (Section 4.2), Regularity forbids
assigning credence 0 to any logically contingent proposition. The argument
there was that one should never entirely rule out a proposition that’s logically
possible, so one should never assign such a proposition 0 credence. Now we've
opened up the possibility of assigning credence 0 to a proposition without
ruling it out. So while we can endorse the idea that no contingent proposition
should be ruled out, Regularity no longer follows. Moreover, the current
proposal provides infinitely many explicit counterexamples to Regularity: we
have proposed assigning credence 0 to the contingent proposition that the
positive integer selected was one, to the proposition that the integer was two,
that it was three, etc.

Once we've decided to think about credence 0 in this new way, we encounter
a second problem: the Ratio Formula. In Section 3.1.1 I framed the Ratio
Formula as follows: -

Ratio Formula: Forany Pand Q in £, if ct(Q) > 0 then

ca(P& Q)
c(P|Q) = o)
This constraint relates an agent’s conditional credence cr(P| Q) to her uncon-
ditional credences only when cr(Q) > 0. As stated, it remains silent on how an
agent’s conditional and unconditional credences relate when cr(Q) = 0.

Yet we surely want to have some rational constraints on that relation for
cases in which an agent assigns credence 0 to a contingent proposition that
she hasn'’t ruled out.” For example, in the positive integer case consider your
conditional credence cr(2 | 2). Surely this conditional credence should equal 1.
Yet because the current proposal sets cr(2) =0, the Ratio Formula cannot
tell us anything about cr(2]2). And since we've derived all of our rational
constraints on conditional credence from the Ratio Formula, the Bayesian
system we've set up isn'’t going to deliver a requirement that cr(2 | 2) = 1.

There are various ways to respond to this problem. One interesting sug-
gestion is to reverse the order in which we proceeded with conditional and
unconditional credences: We began by laying down fairly substantive con-
straints (Kolmogorov’s probability axioms) on unconditional credences, then
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tied conditional credences to those via the Ratio Formula. On the reverse
approach, substantive constraints are first placed on conditional credences,
then some further rule relates unconditional to conditional. The simplest such
rule is that for any proposition P, cr(P) = ct(P|T).

Some advocates of this approach describe it as making conditional credence
“basic”, but we should be careful not to read too much into debates about what’s
basic. The way I've approached conditional and unconditional credences in
this book, neither is more fundamental than the other in any sense significant
to metaphysics or the philosophy of mind. Each is an independently existing
type of doxastic attitude, and any rules we offer relating them are strictly nor-
mative constraints. The only sense in which our unconditionals-first approach
has made unconditional credences prior to conditionals is in its order of
normative explanation. The Ratio Formula helped us transform constraints
on unconditional credences into constraints on conditional credences (as in
Section 3.1.2). On the conditionals-first approach, the rule that cr(P) = cr(P | T)
transforms constraints on conditionals into constraints on unconditionals.

Examples of the conditionals-first approach include Hosiasson-Lindenbaum
(1940), Popper (1955), Renyi (1970), and Roeper and Leblanc (1999).* Like
many of these, Popper’s axiom system entails that cr(Q| Q) = 1 for any Q that
the agent deems possible, regardless of its unconditional credence value. This
ensures that cr(2|2) = 1.

The final problem I want to address with assigning each positive integer 0
unconditional credence of being selected has to do with your unconditional
credence that any integer was selected at all. The proposition that some integer
was selected is equivalent to the disjunction of the proposition that one was
selected, the proposition that two was selected, the proposition that three was
selected, etc. Finite Additivity directly governs unconditional credences in
disjunctions of two (mutually exclusive) disjuncts; iterating that rule gives us
Finite Additivity (Extended), which applies to disjunctions of finitely many
disjuncts. But this case concerns an infinite disjunction, and none of the
constraints we've seen so far relates the unconditional credence of an infinite
disjunction to the credences of its disjuncts.

It might seem natural to supplement our credence constraints with the
following:

Countable Additivity: For any countable set {Q;, Q;, Qs, ...} of mutually
exclusive propositions in £,

cr(Q,VQ,VQyV ...) =cr(Q) + cr(Qy) + cr(Qs) + ...
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Notice that Countable Additivity does not apply to sets of every infinite size; it
applies only to sets of countably many members. The set of positive integers is
countable, while the set of real numbers is not. (If you are unfamiliar with the
differing sizes of infinite sets, I would suggest studying the brief explanation
referenced in this chapter’s Further Reading.)

Countable Additivity naturally extends the idea behind Finite Additivity to
sets of (countably) infinite size. Many authors have found it attractive. Yet in
our example it rules out assigning credence 0 to each proposition stating that a
particular positive integer was selected. Taken together, the proposition that
one was selected, the proposition that two was selected, the proposition
that three was selected, etc. form a countable set of mutually exclusive propo-
sitions (playing the role of Q;, Q,, Qs, etc. in Countable Additivity). Countable
Additivity therefore requires your credence in the disjunction of these propo-
sitions to equal the sum of your credences in the individual disjuncts. Yet the
latter credences are each 0, while your credence in their disjunction (namely,
the proposition that some positive integer was selected) should be 1.

So perhaps Countable Additivity wasn’t such a good idea after all. The
trouble is, without Countable Additivity we lose a very desirable property:

Conglomerability: For each proposition P and partition {Q;, Q,, Qs, ...}in
£, cr(P) is no greater than the largest cr(P| Q;) and no less than the
least cr(P| Q,).

In other words, if Conglomerability holds then the largest cr(P| Q;) and the -
smallest cr(P | Q;) provide bounds between which cr(P) must fall.

In defining Conglomerability I didn't say how large the Q-partitions in
question are allowed to be. We might think of breaking up the general Con-
glomerability principle into a number of sub-cases: Finite Conglomerability
applies to finite partitions, Countable Conglomerability applies to countable
partitions, Continuous Conglomerability applies to partitions of continuum-
many members, etc. Finite Conglomerability is guaranteed by the standard
probability axioms. You'll prove this in Exercise 5.6, but the basic idea is
that by the Law of Total Probability cr(P) must be a weighted average of the
various cr(P| Q)), so it can’t be greater than the largest of them or less than
the smallest. With the standard axioms in place, Countable Conglomerability
then stands or falls with our decision about Countable Additivity; without
Countable Additivity, Countable Conglomerability is false.*?

We've already seen that the strategy of assigning 0 credence to each positive
integer’s being selected violates Countable Additivity; let’s see how it violates
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(Countable) Conglomerability as well.*® Begin with the following definition:
For any positive integer n that’s not a multiple of 10, define the n-set as
the set of all positive integers that start with n, followed by some number
(perhaps 0) of zeroes. So the 1-set is {1,10,100, 1000, ...}; the 11-set is
{11,110,1100, 11000, ...}; the 36-set is {36, 360, 3600, 36000, ...}; etc. Now
take the proposition that the integer selected was a member of the 1-set, and
the proposition that the integer selected was a member of the 2-set, and the
proposition that the integer selected was a member of the 3-set, etc. (Though
don’t include any ns that are multiples of 10.) The set of these propositions
forms a partition. (If you think about it carefully, you’ll see that any positive
integer that might have been selected belongs to exactly one of these sets.)
The distribution strategy we’re considering is going to want to assign

cr(the selected integer is not a multiple of 10 |

the selected integer is a member of the 1-set) = 0
(5.15)

Why is that? Well, the only number in the 1-set that is not a multiple of 10 is
the number one. The 1-set contains infinitely many positive integers; on the
supposition that one of those integers was selected you want to assign equal
credence to each one’s being selected; so you assign 0 credence to each one’s
being selected (including the number one) conditional on that supposition.
This gives us Equation (5.15). The argument then generalizes; for any n-set
you'll have

cr(the selected integer is not a multiple of 10 |

the selected integer is a member of that n-set) = 0
(5.16)

Yet unconditionally it seems rational to have
cr(the selected integer is not a multiple of 10) = 9/10 (5.17)

Conditional on any particular member of our n-set partition, your credence
that the selected integer isn’t a multiple of 10 is 0. Yet unconditionally, you’re
highly confident that the integer selected is not a mutiple of 10. This is a flagrant
violation of (Countable) Conglomerability—your credences in a particular
proposition conditional on each member of a (countable) partition are all the
same, yet your unconditional credence in that partition has a very different
value!
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Why is violating Conglomerability a problem? Well, imagine I'm about to
give you some evidence on which you're going to conditionalize. In particular,
I'm about to tell you to which of the n-sets the selected integer belongs.
Whichever piece of evidence you're about to get, your credence that the integer
isn’t a multiple of 10 conditional on that evidence is 0. So you can be certain
right now that immediately after receiving the evidence—whatever piece of
evidence it turns out to be!l—your credence that the integer isn't a multiple
of 10 will be 0. Yet despite being certain that your better-informed future self
will assign a particular proposition a credence of 0, you continue to assign
that proposition a credence of 9/10 right now. This is a flagrant violation
of the Reflection Principle, as well as generally good principles for attitude
management. Our opinions are usually compromises among the pieces of
evidence we think we might receive; we expect that some potential future
pieces of evidence would change our views in one direction, while others would
press in the other. If we know that no matter what evidence comes in we're
going to be pulled away from our current opinion in the same direction, it
seems irrationally stubborn to maintain our current opinion and not move in
that direction right now. Conglomerability embodies these principles of good
evidential hygiene; without Conglomerability our interactions with evidence
begin to look absurd.

Where does this leave us? We wanted to find a way to assign an equal
credence to each positive integer’s being selected. We quickly concluded that
that equal credence could not be a positive real number. So we considered
assigning credence 0 to each integer’s being selected. Doing so violates Count-
able Additivity (a natural extension of our finite principles for calculating
credences in disjunctions) and Conglomerability, which looks desirable for a
number of reasons. Are there any other options?

I will briefly mention two further possibilities. The first possibility is to
assign each positive integer an infinitesimal credence of having been selected.
To work with infinitesimals, we extend the standard real-number system to
include numbers that are greater than 0 but smaller than all the positive reals.
If we assign each integer an infinitesimal credence of having been picked,
we avoid the problems with assigning a positive real and also the problems
of assigning 0. (For instance, if you pile enough infinitesimals together they
can sum to 1.) Yet infinitesimal numbers have a great deal of mathematical
structure, and its not clear that the extra structure plausibly represents any
feature of agents’ attitudes.* Moreover, the baroque mathematics of infinitesi-
mals introduces troubles of its own (see Further Reading). So perhaps only one
viable option remains: Perhaps if you learn a positive integer was just selected,
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it's impossible to assign equal credence to each of the possibilities consistent
with what you know.>

5.5 Jeffrey Conditionalization

Section 4.1.1 showed that conditionalizing on new evidence creates and retains
certainties; evidence gained between two times becomes certain at the later
time and remains so ever after. Contraposing, if an agent updates by Condi-
tionalization and gains no certainties between two times, it must be because
she gained no evidence between those times. In that section we also saw that if
an agent gains no evidence between two times, Conditionalization keeps her
credences fixed. Putting all this together, we see that under Conditionalization
an agent’s credences change just in case she gains new certainties.

As we noted in Section 4.2, mid-twentieth-century epistemologists like
C.I. Lewis defended this approach by citing sense data as the foundational
evidential certainties. Many contemporary epistemologists are uncomfortable
with this kind of foundationalism (and with appeals to sense data in gen-
eral). Richard C. Jeffrey, however, had a slightly different concern, which he
expressed with the following example and analysis:

The agent inspects a piece of cloth by candlelight, and gets the impression
that it is green, although he concedes that it might be blue or even (but very
improbably) violet. If G, B, and V are the propositions that the cloth is green,
blue, and violet, respectively, then the outcome of the observation might be
that, whereas originally his degrees of belief in G, B, and V were .30, .30, and
.40, his degrees of belief in those same propositions after the observation are
.70, .25, and .05. If there were a proposition E in his preference ranking which
described the precise quality of his visual experience in looking at the cloth,
one would say that what the agent learned from the observation was that E is
true....

But there need be no such proposition E in his preference ranking; nor
need any such proposition be expressible in the English language. Thus, the
description “The cloth looked green or possibly blue or conceivably violet,”
would be too vague to convey the precise quality of the experience. Certainly,
it would be too vague to support such precise conditional probability ascrip-
tions as those noted above. It seems that the best we can do is to describe, not
the quality of the visual experience itself, but rather its effects on the observer,
by saying, “After the observation, the agent’s degrees of belief in G, B, and V
were .70, .25, and .05” (1965, p. 154)
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Jeftrey worried that even if we grant the existence of a sense datum for each
potential learning experience, the quality of that sense datum might not be
representable in a proposition to which the agent could assign certaﬁnty,
or at least might not be representable in a precise-enough proposition to
differentiate that sense datum from other nearby data with different effects
on the agent’s credences.

At the time Jeffrey was writing, the standard Bayesian updating norm
(updating by Conditionalization) relied on the availability of such proposi-
tions. So Jeffrey proposed a new updating rule, capable of handling examples
like the cloth one above. While he called it probability kinematics, it is now
universally known as

Jeffrey Conditionalization: Given any ¢; and #; with i < j, any A in £, and
a finite partition {By, B,, ..., B,} in £ whose members each have
nonzero cr;,

cri(A) = cri(A|By) - crj(By) +cri(A | By) - crj(By) + ... +cri(A|B,) - cri(B,)

Let’s apply Jeffrey Conditionalization to the cloth example. Suppose I'm fishing
around in a stack of my family’s clean laundry hoping to pull out any shirt
that belongs to me, but the lighting is dim because I don’t want to turn on
the overheads and awaken my wife. The color of a shirt in the stack would be a
strong clue as to whether it was mine, as reflected by my conditional credences:

cry(mine | G) = 0.80
cr;(mine | B) = 0.50 (5.18)
cry(mine| V) =0

(For simplicity’s sake we imagine green, blue, and violet are the only color shirts
I might fish out of the stack.) At f; I pull out a shirt. Between ¢; and t, I take
a glimpse of the shirt. According to Jeffrey’s story, my unconditional credence
distributions across the G/B/V partition are:

cri(G) = 0.30 cr(B) = 0.30 cri(V) = 0.40

(5.19)
cr,(G) = 0.70 cry(B) = 0.25 cr,(V) = 0.05

Applying Jeffrey Conditionalization, I find my credence in the target proposi-
tion at the later time by combining my post-update unconditional credences
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across the partition with my pre-update credences in the target proposition
conditional on members of the partition. This yields:

cry(mine) =
cri(mine| G) - cry(G) + cry(mine | B) - cr,(B) + cry(mine | V) - cr, (V) =
0.80-0.70+0.50-0.25+0-0.05 =
0.685
(5.20)

At t, I'm fairly confident that the shirt I've selected is mine. How confident
was I at 7, before I caught my low-light glimpse? A quick calculation with the
Law of Total Probability reveals that cr;(mine) = 0.39. But it’s more interesting
to see what happens when we apply the Law of Total Probability to my
credences at t,:

cry(mine) =
cry(mine | G) - cry(G) + cry(mine | B) - cr,(B) + cry(mine | V) - cry(V)
(5.21)

Take a moment to compare Equation (5.21) with the first two lines of
Equation (5.20). Equation (5.21) expresses a feature that my t, credence distri-
bution must have if it is to satisfy the probability axioms and Ratio
Formula. Equation (5.20) tells me how to set my t, credences by Jeffrey
Conditionalization. The only way to make these two equations match—the
only way to square the Jeffrey update with the probability calculus—is if
cry(mine | G) = cr,(mine | G), cr;(mine | B) = cr,(mine | B), etc.

Why should these conditional credences stay constant over time? Well, at
any given time my credence that the shirt I've selected is mine is a function
of two kinds of credences: first, my unconditional credence that the shirt is a
particular color; and second, my conditional credence that the shirt is mine
given that it’s a particular color. When I catch a glimpse of the shirt between
t; and t,, only the first kind of credence changes. I change my opinion about
what color the shirt is, but I don’t change my confidence that it’s my shirt given
that (say) it’s green. Throughout the example I have a fixed opinion about what
percentage of the green shirts in the house are mine; I simply gain information
about whether this shirt is green. So while my unconditional color credences
change, my credences conditional on the colors remain.
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This discussion reveals a general feature of Jeffrey Conditionalization. You'll
prove in Exercise 5.8 that an agent’s credences between two times update by
Jeffrey Conditionalzation just in case the following condition obtains:

Rigidity: For any A in £ and any B,, in{B;, B, ..., B,},
Cl’j(A | Bm) = Cri(A I Bm)

So Jeffrey Conditionalization using a particular partition {B;, B, ..., B,} is
appropriate only when the agent’s credences conditional on the B,, remain
constant across two times. Jeffrey thought this was reasonable for updates that
“originate” in the B,, partition.*® In the cloth example, all my credence changes
between #; and f, are driven by the changes in my color credences caused
by my experience. So if I tell you my credences at ¢;, and then tell you my
unconditional credences in the color propositions at £,, this should suffice for
you to work out the rest of my opinions at #,. Jeffrey Conditionalization makes
that possible.

Rigidity can help us perform Jeffrey Conditionalization updates on a proba-
bility table. Given the partition {B,, B,, ..., B,} in which an update originates,
we divide the lines of the table into “blocks”: the B, block contains all the lines
consistent with By; the B, block contains all the lines consistent with B,; etc.
The agent’s experience between times #; and #; directly sets her unconditional
crj—values for the B,,; in other words, it tells us what each block must sum to
at t;. Once we know a block’s ct; total, we set the values on individual lines
within that block by keeping them in the same proportions as at ¢;. (This
follows from Rigidity’s requirement that each line have the same cr,-value
conditional on a given B,, as it did at #;.) That is, we multiply all the cr;-
values in a block by the same constant so that their cr;-values achieve the
appropriate sum.

Figure 5.4 shows this process for the colored shirt example. I've built the
table around a simplified partition of doxastic possibilities in the problem,
but I could’ve made a probability table with the full list of state-descriptions
and everything would proceed the same way. I calculated the cr,-values in the
table from Equations (5.18) and (5.19). How do we then derive the credences
at £,?

The credence change between #; and f, originates in the G/B/V partition. So
the “blocks” on this table will be pairs of adjacent lines: the first pair of lines
(on which G is true), the second pair of lines (B lines), and the third pair of
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partition member | cr; cry

G & mine 0.24 0.56
G & ~mine 0.06 | 0.14
B & mine 0.15 | 0.125
B & ~mine 0.15 0.125
V & mine 0 0

V & ~mine 0.40 | 0.05

Figure 5.4 Jeffrey Conditionalization across a partition

Vlines. Let’s work with the B-block first. In Jeffrey’s story, glimpsing the shirt
sends me to cr,(B) = 0.25. So on the table, the third and fourth lines must
have cr,-values summing to 0.25. At #; these lines were in a 1 : 1 ratio, so
they must maintain that ratio at ¢,. This leads to cr,-values of 0.125 on both
lines. Applying a similar process to the G- and V-blocks yields the remaining
cr,-values.

Once you understand this block-updating process, you can see that tra-
ditional updating by Conditionalization is a special case of updating by Jef-
frey Conditionalization. When you update by Conditionalization on some
evidential proposition E, your probability table divides into two blocks: lines
consistent with E versus ~E lines. After the update, the ~E lines go to zero,
while the E lines are multiplied by a constant so that they sum to 1.

This tells us how Jeffrey Conditionalization relates to traditional (or “strict”)
Conditionalization mathematically. But how should we understand their rela-
tion philosophically? Suppose we class learning experiences into two kinds:
those that send some proposition to certainty and those that don't. Jeffrey Con-
ditionalization seems to be a universal updating rule, applying to both kinds
of experience. When experience does send a proposition to certainty, Jeffrey
Conditionalization provides the same advice as strict Conditionalization. But
Jeffrey Conditionalization also provides guidance for learning experiences of
the second kind.

Now the defender of Regularity (the principle forbidding extreme uncon-
ditional credence in logically contingent propositions) will maintain that
only the second kind of learning experience ever occurs (at least to rational
agents), and therefore that strict Conditionalization should never be applied in
practice. All experience ever does is shuffle an agent’s unconditional credences
over some partition, without sending any partition members to extremity.
Jeffrey Conditionalization tells us how such changes over a partition affect the
rest of the agent’s credence distribution.
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But one can identify an important role for Jeffrey Conditionalization even
without endorsing Regularity. To establish the need for his new kinematics,
Jeffrey only had to argue that some experiences of the second kind exist—
sometimes we learn without gaining certainties. In that case we need a more
general updating rule than strict Conditionalization, and Jeffrey Conditional-
ization provides one.

Yet despite being such a flexible tool, Jeffrey Conditionalization has its
drawbacks. For instance, while applications of strict Conditionalization are
always commutative, Jeffrey updates that do not send propositions to certainty
may not be. The simplest example of this phenomenon (which Jeffrey readily
acknowledged) occurs when one learning experience sends some B, in the
partition to unconditional credence p, while the next experience sends that
same partition member to a different credence value q. Applying Jeffrey
Conditionalization to the experiences in that order will leave the agent with
a final unconditional credence in B,, of g, while applying Jeffrey’s rule to
the same experiences in the opposite order will result in a final B,, cre-
dence of p. This commutativity failure is problematic if you think that the
effects of evidence on an agent should not depend on the order in which pieces
of evidence arrive.”

Finally, Jeffrey Conditionalization may not provide a recipe for every type
of learning experience. Traditional Conditionalization covers experiences that
set unconditional credences to certainty. Jeffrey Conditionalization general-
izes to experiences that set unconditional credences to nonextreme values.
But what if an experience affects an agent by directly altering her conditional
credences? How can we calculate the effects of such an experience on her
other degrees of belief? Readers interested in that question might begin by
exploring van Fraassen’s “Judy Benjamin Problem” (1981), an example in
which direct alteration of conditional credences plausibly occurs, but which
cannot be analyzed using Jeffrey Conditionalization.*

5.6 Exercises

Unless otherwise noted, you should assume when completing these exercises
that the credence distributions under discussion satisfy the probability axioms
and Ratio Formula. You may also assume that whenever a conditional credence
expression occurs, the needed proposition has nonzero unconditional
credence so that conditional credences are well defined.
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Problem 5.1. & At noon I rolled a six-sided die. It came from either the Fair
Factory (which produces exclusively fair dice), the Snake-Eyes Factory (which
produces dice with a 1/2 chance of coming up one and equal chance of each
other outcome), or the Boxcar Factory (which produces dice with a 1/4 chance
of coming up six and equal chance of each other outcome).

(a) Suppose you use the Principle of Indifference to assign equal credence
to each of the three factories from which the die might have come.
Applying the Principal Principle, what is your credence that my die roll
came up three?

(b) Maria tells you that the die I rolled didn't come from the Boxcar
Factory. If you update on this new evidence by Conditionalization, how
confident are you that the roll came up three?

(c) Is Maria’s evidence admissible with respect to the outcome of the die
roll? Explain.

(d) After you've incorporated Maria’s information into your credence dis-
tribution, Ron tells you the roll didn't come up six. How confident are
you in a three after conditionalizing on Ron’s information?

(e) IsRom’s evidence admissible with respect to the outcome of the die roll?
Explain.

Problem 5.2. # The expert deference principle in Equation (5.9) resembles
the Principal Principle in many ways. Yet the expert deference principle
makes no allowance for anything like inadmissible information. What kind
of information should play the role for expert deference that inadmissible
information plays for deference to chances? How should Equation (5.9) be
modified to take such information into account?

Problem 5.3. 29 Suppose t;, t,, and t; are three times, with the indices
reflecting their temporal order. At t;, you satisfy the probability axioms, Ratio
Formula, and Reflection Principle. You are also certain at ¢, that you will satisfy
these constraints at ¢,. However, for some proposition X your #; credences are
equally divided between the following two (mutually exclusive and exhaustive)
hypotheses about what your ¢, self will think of your ¢; credences:

Y: (cryfers(X) = 1/10] = 1/3) & (cr,[crs(X) = 2/5] = 2/3)
Z: (cryfers(X) = 3/8] = 3/4) & (cry[cry(X) = 7/8] = 1/4)

Given all this information, what is cr;(X)? (Be sure to explain your reasoning
clearly.)
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Problem 5.4. # Can you think of any kind of real-world situation in which
it would be rationally permissible to violate the Reflection Principle? Explain
the situation you're thinking of, and why it would make a Reflection violation
okay.

Problem 5.5. 2 Jingyi assigns the #; credences indicated by the probability
table below. Then between ¢, and t,, she learns P D Q.

Pl Q| cy
T|T|04
T|F|02
F|T102
F| Fjo02

(a) Determine Jingyi’s credence distribution at f,. Then use Equation (5.13)
to calculate the entropy of both cr; and cr, over the partition containing
the four P/Q state-descriptions.*

(b) Use the concept of information content to explain why the entropy of
Jingyi’s distribution changed in the direction it did between ¢, and t,.

(c) Create a probabilistic credence distribution that assigns the same
unconditional value to P as cry, but has a higher entropy over the
P/Q state-description partition.

(d) Use the partition containing just P and ~P to calculate the entropy for
cr; and for your distribution from part (c). What does this tell you about
the partition-dependence of entropy comparisons?

Problem 5.6. 29 Using Non-Negativity, Normality, Finite Additivity, the
Ratio Formula, and any results we've proven from those four, prove Finite
Conglomerability. (Hint: The Law of Total Probability may be useful here.)

Problem 5.7. 2 Suppose that at #; you assign a “flat” credence distribution
over language £ whose only two atomic propositions are B and C—that is,
you assign equal credence to each of the four state-descriptions of £. Between
t, and t, you perform a Jeffrey Conditionalization that originates in the
B/~B partition and sets cr,(B) = 2/3. Between ¢, and t; you perform a Jeffrey
Conditionalization that originates in the C/~C partition and sets cr;(C) = 3/4.

(a) Calculate your cr, and cr; distributions.

(b) Does your credence in B change between ¢, and ,? Does your credence

in C change between ¢, and t,?
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(c) By talking about probabilistic independence at ¢; and t,, explain the
changes or lack of changes you observed in parts (b) and (c).

(d) Now start again with the flat #; distribution, but apply the Jeffrey
Conditionalizations in the opposite order. (First an update that sets the
C credence to 3/4, then an update that sets B to 2/3.)

(e) Isthe cr; distribution you obtained in part (e) the same as the one from
part (a)? Does this always happen when you reverse the order of Jeffrey
Conditionalizations? If not, why do you think it happened in this case?

Problem 5.8. #9 Prove that Jeffrey Conditionalization is equivalent to Rigid-
ity. That is: Given any times ¢; and #;, and any finite partition {B;, B,, ..., B,}
in £ whose members each have nonzero cr;, the following two conditions are
equivalent:

1. Forall Ain £, crj(A) = cry(A|By) - crj(By) + cr(A|By) - cri(By) + ... +

Cri(A |Bn) : er(Bn)-

2. For all A in £ and all B, in the partition, cr;(A | B,,) = cr;j(A| B,,).
(Hint: Complete two proofs—first condition 2 from condition 1, then vice
versa.)

Problem 5.9. 299 Suppose we apply Jeffrey Conditionalization over a finite
partition {By, B, ..., B,} in £ to generate cr, from cr;. Show that we could
have obtained the same cr, from cr, in the following way: start with cry; Jeffrey
Conditionalize it in a particular way over a partition containing only two
propositions; Jeffrey Conditionalize the result of that operation in a particular
way over a partition containing only two propositions (possibly different from
the ones used the first time); repeat this process a finite number of times until
cr, is eventually obtained.*’

5.7 Further reading

SUBJECTIVE AND OBJECTIVE BAYESIANISM

Maria Carla Galavotti (2005). Philosophical Introduction to Probability. CSLI
Lecture Notes 167. Stanford, CA: CSLI Publications

Excellent historical introduction to the many ways “probability” has been
understood by the philosophical and statistical community.
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Alan Héjek (2019). Interpretations of Probability. In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Fall 2019. URL:
http://plato.stanford.edu/archives/fall2019/entries/probability-interpret/

Survey of the various interpretations of probability, with extensive references.

Bruno de Finetti (1931/1989). Probabilism: A Critical Essay on the Theory
of Probability and the Value of Science. Erkenntnis 31, pp. 169-223.
(Translation of B. de Finetti, Probabilismo, Logos 14: 163-219)

Classic paper critiquing objective interpretations of probability and advocating
a Subjective Bayesian (in the semantic sense) approach.

Donald Gillies (2000). Varieties of Propensity. British Journal for the Philos-
ophy of Science 51, pp. 807-35

Reviews different versions of the propensity theory and their motivations.
Focuses at the end on how propensity theories might respond to Humphreys’s
Paradox.

DEFERENCE PRINCIPLES

David Lewis (1980). A Subjectivist’s Guide to Objective Chance. In: Studies
in Inductive Logic and Probability. Ed. by Richard C. Jeffrey. Vol. 2.
Berkeley: University of California Press, pp. 263-94

Lewis’s classic article laying out the Principal Principle and its consequences
for theories of credence and chance.

Adam Elga (2007). Reflection and Disagreement. Noils 41, pp. 478-502

Offers principles for deferring to many different kinds of agents, including
experts, gurus (individuals with good judgment who lack some of your evi-
dence), past and future selves, and peers (whose judgment is roughly as good
as your own).

Bas C. van Fraassen (1984). Belief and the Will. The Journal of Philosophy
81, pp. 235-56
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Article in which van Fraassen proposes and defends the Reflection Principle.

Jonathan Weisberg (2007). Conditionalization, Reflection, and Self-
Knowledge. Philosophical Studies 135, pp. 179-97

Discusses conditions under which Reflection can be derived from Condition-
alization, and vice versa.

Richard Pettigrew and Michael G. Titelbaum (2014). Deference Done Right.
Philosophers’ Imprint 14, pp. 1-19

Attempts to get the formulation of deference principles precisely right, includ-
ing expert deference principles, the Reflection Principle, and principles for
higher-order credences. Particularly concerned with making those principles
consistent with Conditionalization and with the possibility of ignorance about
what's rationally required.

THE PRINCIPLE OF INDIFFERENCE

John Maynard Keynes (1921). Treatise on Probability. London: Macmillan
and Co., Limited

Chapter IV contains Keyness famous discussion of the Principle of
Indifference.

E. T. Jaynes (1957a). Information Theory and Statistical Mechanics I. Phys-
ical Review 106, pp. 620-30

E. T. Jaynes (1957b). Information Theory and Statistical Mechanics II
Physical Review 108, pp. 171-90

E.T. Jaynes introduces the Maximum Entropy approach.

Colin Howson and Peter Urbach (2006). Scientific Reasoning: The Bayesian
Approach. 3rd edition. Chicago: Open Court

Section 9.a covers the Indifference Principle, Harold Jeffreys’s attempts to make
it partition-invariant, and then Jaynes’s Maximum Entropy theory. Very clear
on the flaws of all of these approaches.
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Teddy Seidenfeld (1986). Entropy and Uncertainty. Philosophy of Science 53,
pp. 467-91

A general discussion of the flaws with Jaynes’s Maximum Entropy approach;
especially good on its incompatibility with Bayesian conditionalization. Also
contains useful references to Jaynes’s many defenses of Maximum Entropy over
the years and to the critical discussion that has ensued.

CREDENCES FOR INPINITE POSSIBILITIES

David Papineau (2012). Philosophical Devices: Proofs, Probabilities, Possibil-
ities, and Sets. Oxford: Oxford University Press

Chapter 2 offers a highly accessible introduction to the cardinalities of various
infinite sets. (Note that Papineau uses “denumerable” where we use the term
“countable’”.)

Alan Hijek (2003). What Conditional Probability Could Not Be. Synthese
137, pp. 273-323

Assesses the viability of the Ratio Formula as a definition of conditional
probability in light of various infinite phenomena and plausible violations of
Regularity.

Colin Howson (2014). Finite Additivity, Another Lottery Paradox and
Conditionalisation. Synthese 191, pp. 989-1012

Neatly surveys arguments for and against Countable Additivity, then argues for
dropping Conditionalization as a universal update rule over accepting infinite
additivity principles.

Timothy Williamson (2007). How Probable Is an Infinite Sequence of
Heads? Analysis 67, pp. 173-80

Brief introduction to the use of infinitesimals in probability distributions,
followed by an argument against using infinitesimals to deal with infinite cases.

Kenny Easwaran (2014b). Regularity and Hyperreal Credences. Philosophi-
cal Review 123, pp. 1-41
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Excellent, comprehensive discussion of the motivations for Regularity, the
mathematics of infinitesimals, arguments against using infinitesimals to
secure Regularity (including Williamson’s argument), and an alternative
approach.

JErFREY CONDITIONALIZATION

Richard C. Jeffrey (1965). The Logic of Decision. 1st edition. McGraw-Hill
Series in Probability and Statistics. New York: McGraw-Hill

Chapter 11 contains Jeffrey’s classic presentation of his “probability kinemat-
ics”, now universally known as “Jeffrey Conditionalization”.

Notes

1. The frequency theory is sometimes referred to as “frequentism” and its adherents as
“frequentists”. However “frequentism” more often refers to a school of statistical practice
at odds with Bayesianism (which we'll discuss in Chapter 13). The ambiguity probably
comes from the fact that most people in that statistical school also adopt the frequency
theory as their interpretation of probability. But the positions are logically distinct and
should be denoted by different terms. So I will use “frequency theory” here, and reserve
“frequentism” for my later discussion of the statistical approach.

2. For many, many more see Héjek (1996) and its sequel Hajek (2009b).

3. 'The frequency theory will also need to work with counterfactuals if nonextreme prob-
abilities can be meaningfully ascribed to a priori truths, or to metaphysical necessities.
(Might a chemist at some point have said, “It’s highly probable that water is H,0”?)
Assigning nonextreme frequencies to such propositions’ truth involves possible worlds
far away from the actual.

4. This difficulty for the propensity theory is often known as Humphreys’s Paradox, since
it was proposed in Humphreys (1985).

One might respond to Humphreys’s Paradox by suggesting that propensities don’t
follow the standard mathematical rules of probability. And honestly, it's not obvious
why they should. The frequency theory clearly yields probabilistic values: in any
sequence of event repetitions a given outcome has a non-negative frequency, the tautol-
ogous outcome has a frequency of 1, and mutually exclusive outcomes have frequencies
summing to the frequency of their disjunction. In fact, Kolmogorov’s axioms can be
read as a generalization of the mathematics of event frequencies to cases involving
irrational and infinite quantities. But establishing that propensity values (or objective
chances) satisfy the probability axioms takes argumentation from one’s metaphysics of
propensity. Nevertheless, most authors who work with propensities assume that they
satisfy the axioms; if they didn't, the propensity interpretation’s probabilities wouldn’t
count as probabilities in the mathematician’s sense (Section 2.2).
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. One could focus here on a metaphysical distinction rather than a semantic one—

instead of asking what “probability” talk means, I could ask what probabilities are. But
some of the probability interpretations we will discuss don’t have clear metaphysical
commitments. The logical interpretation, for instance, takes probability to be a logical
relation, but need not go on to specify an ontology for such relations. So I will stick with
a semantic distinction, which in any case matches how these questions were discussed
in much of twentieth-century analytic philosophy.

. In the twentieth century Subjective Bayesianism was also typically read as a form of

3.«

expressivism; an agents “probability” talk expressed her quantitative attitudes toward
propositions without having truth-conditions. Nowadays alternative semantics are
available that could interpret “probability” talk in a more cognitivist mode while still
reading such talk as reflecting subjective degrees of belief (Weatherson and Egan 2011).

. See Hacking (1971) for discussion of Leibniz’s position.
. Carnap himself did not believe all “probability” talk picked out the logical values just

described. Instead, he thought “probability” was ambiguous between two meanings,
one of which was logical probability and the other of which had more of a frequency
interpretation.

. There is disagreement about whether the logical and evidential interpretations of

probability should be considered Objective Bayesian in the semantic sense. Popper
(1957) says that objective interpretations make probability values objectively testable.
Logical and evidential probabilities don'’t satisfy that criterion, and Popper seems to
class them as subjective interpretations. Yet other authors (such as Galavotti 2005)
distinguish between logical and subjective interpretations. I have defined the semantic
Subjective/Objective Bayesian distinction so that logical and evidential interpretations
count as Objective; while they may be normative for the attitudes of agents, logical and
evidential probabilities do not vary with the attitudes particular agents or groups of
agents possess.
As I explained in Chapter 4, note 17, defining hypothetical priors as regular does not
commit us to the Regularity Principle as a rational constraint.
Those who believe that “probability” is used in many ways—or that there are many
different kinds of entities that count as probabilities—sometimes use the terms “sub-
jective probability” and “objective probability”. On this usage, subjective probabilities
are agents’ credences, while objective probabilities include all the kinds of probabilities
we've mentioned that are independent of particular agents’ attitudes.
To assign H a credence exactly equal to the observed frequency of heads would be to
follow what Reichenbach (1938) called the straight rule. Interestingly, it's impossible
to construct a hypothetical prior satisfying the probability axioms that allows an
agent to obey the straight rule in its full generality. However, Laplace (1814/1995)
proved that if an agent’s prior satisfies the Principle of Indifference (adopting a “flat”
distribution somewhat like the dashed line in Figure 5.3), her posteriors will obey the
rule of succession: after seeing h of n tosses come up heads, her credence in H will
be (h+1)/(n+ 2). As the number of tosses increases, this credence approaches the
observed frequency of heads.

Given these difficulties aligning credences and observed frequencies, anyone who
thinks credences should match chances needs to describe a hypothetical prior making
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13.

14.

15.

16.

17.

18.

such a match possible. In a moment we'll see Lewis doing this with the Principal
Principle.

Since the ratio of B-outcomes to A-events must always fall between 0 and 1, this
principle sheds some light on why credence values are usually scaled from 0 to 1.
(Compare note 4 above.)

There’s also the problem that we sometimes have data from overlapping reference
classes applying to the same case, neither of which is a subclass of the other. The Book
of Odds (Shapiro, Campbell, and Wright 2014, p. 137) reports that 1 in 41.7 adults in
the United States aged 20 or older experiences heart failure in a given year. For non-
Hispanic white men 20 or older, the number is 1 in 37. But only 1 in 500 men aged
20-39 experiences heatt failure in a given year. In setting my credence that I will have a
heart attack this year, should I use the data for non-Hispanic white men over 20 or the
data for men aged 20-39?

Here I'm thinking especially of the following: “What makes it be so that a certain
reasonable initial credence function and a certain reasonable system of basic intrinsic
values are both yours is that you are disposed to act in more or less the ways that
are rationalized by the pair of them together, taking into account the modification of
credence by conditionalizing on total evidence” (Lewis 1980, p. 288).

My explanation at this point in the text of screening-off in the Principal Principle fits
very naturally with a propensity-style account of chance. I'm unsure whether it could
be made to work on Lewis’s own “best system” theory of chance (Lewis 1994). As far as
I know, Lewis himself never explains why the screening-off captured by the Principal
Principle should obtain, except to say that it matches our best intuitions about how
rational agents assign credences to chance events.

The notion of screening off in play here is the one I described in Chapter 3, note 9
for continuous random variables. The objective chance of H is a continuous variable,
so facts about Ch(H) screen off known flip frequencies from H in the sense that
conditional on setting Ch(H) to any particular value, known frequency information
becomes irrelevant to H.

Notice that the time ¢; to which the chance in the Principal Principle is indexed need
not be the time at which an agent assigns her credence concerning the experimental
outcome A. In our coin example, the agent forms her credence at 1 p.m. about the coin
flip outcome at noon using information about the chances at noon. This is significant
because on some metaphysical theories of chance, once the coin flip lands heads (or
tails) the chance of H goes to 1 (or 0) forevermore. Yet even if the chance of H has
become extreme by 1 p.m., the Principal Principle may still direct an agent to assign
a nonextreme 1 p.m. credence to H if all she knows are the chances from an earlier
time. (Getting this last point wrong is the most frequent mistake I see people make in
applying the Principal Principle. For more such mistakes, see Meacham 2010b.)

I should also note that because chances are time-indexed, the notion of admissibility
must be time-indexed as well. The information about the wad of chewing gum is
admissible relative to 11:30 a.m. chances—learning about the chewing gum affects your
credence about the flip outcome by way of your opinions about the 11:30 a.m. chances.
But the information that chewing gum was stuck to the coin after 11 a.m. is inadmissible
relative to the 11 a.m. chances. (Chewing gum information affects your credence in H,
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but not by influencing your opinions about the chances associated with the coin at 11
a.m.) So strictly speaking we should ask whether a piece of information is admissible
for a particular proposition relative to the chances at a given time. I have suppressed
this complication in the main text.

For a partition containing only two members (call them C; and C,), the unconditional
credence form of the Law of Total Probability tells us that

cr(A) = cr(A| Cy) - cx(Cy) + cr(A| Cy) - ex(Cy)

The conditional credence form (generated by the procedure described in Section 3.1.2)
tells us that for any E with cr(E) > 0,

ct(A|E) = cr(A|C & E) - cx(C, | E) + cr(A| Cy, & E) - cxr(C, | E)

One caveat ] won’t get into is that Lewis’s original (1980) formulation of the Principal
Principle becomes inconsistent if we allow propositions about chances to have chances
of their own, and those chances of chances may be nonextreme. For why we might allow
this, and how Lewis (and others) reformulated the Principal Principle in response, see
Lewis (1994) and the literature that followed.

Equation (5.9) directs the assignment of your unconditional credences only when
information about the opinion of a particular expert is your total relevant evidence
concerning proposition A. If you have additional information about A (perhaps the
opinion of a second expert?), the relevant condition in the conditional credence on the
left-hand side of Equation (5.9) is no longer just crz(A) = x. (See Exercise (5.2) for
more on this point.)

Supposing that your future credences result from your present credences by condition-
alization guarantees that your future self will possess at least as much evidence as your
present self. But it also has the advantage of guaranteeing that future and present selves
both work from the same hypothetical prior distribution (because of the Hypothetical
Priors Theorem, Section 4.3). It’s worth thinking about whether an agent should defer
to the opinions of a database expert who, while having evidence that’s a strict superset
of the agent’s, analyzes that evidence using different epistemic standards.

The justification I've just provided for Equation (5.11) explicitly uses every one of
the enumerated conditions except Condition 3. Condition 3 is necessary so that the
conditional credence in Equation (5.11) is well defined according to the Ratio Formula.
One complication here is that van Fraassen sometimes describes Reflection as relating
attitudes, but at other times portrays it as being about various acts of commitment, and
therefore more directly concerned with assertions and avowals than with particular
mental states.

The Reflection Principle applies to times ¢; and ¢; with j strictly greater than i. What
would happen if we applied it when j=i? In that case we'd have a principle for how
an agent’s current credences should line up with her credences about her current cre-
dences. This principle would engage the results of an agent’s introspection to determine
what her current credences are. An agent’s credences about her own current credences
are her higher-order credences, and they have been the subject of much Bayesian
scrutiny (e.g., Skyrms 1980b). The core issue is how much access a rational agent is
required to have to the contents of her own mind.
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26.

27.

28.
29.

30.

31.

32.

33,
34.

35.

36.

Joyce (2005) reports that this sort of problem was first identified by John Venn in the
1800s.

This example is adapted from one in Salmon (1966, pp. 66-7). A related example is
van Fraassen’s (1989) Cube Factory, which describes a factory making cubes of various
sizes and asks how confident I should be that a given manufactured cube has a size
falling within a particular range. The Principle of Indifference yields conflicting answers
depending on whether cube size is characterized using side length, face area, or volume.
In Chapter 14 we will discuss other potential responses to this kind of ignorance.
What about cases in which an agent has ruled out the proposition Q? Should ratjonal
agents assign credences conditional on conditions that they’ve ruled out? For discussion
and references on this question, see Titelbaum (2013a, Ch. 5).

I was careful to define the Ratio Formula so that it simply goes silent when cr(Q) = 0,
and is therefore in need of supplementation if we want to constrain values like cr(2 | 2).
Other authors define the Ratio Formula so that it contains the same equation as ours
but leaves off the restriction to cr(Q) > 0 cases. This forces an impossible calculation
when cr(Q) = 0. Alternatively, one can leave the Ratio Formula unrestricted but make
its equation cr(P| Q) - cr(Q) = cr(P & Q). This has the advantage of being true even
when cr(Q) = 0 (because cr(P & Q) will presumably equal 0 as well), but does no better
than our Ratio Formula in constraining the value of ct(2 | 2). (Any value we fill in for
that conditional credence will make the relevant product-equation true.)

For a historical overview of the approach and detailed comparison of the disparate
formal systems, see Makinson (2011).

Seidenfeld, Schervish, and Kadane (2017) shows that this pattern generalizes: At
each infinite cardinality, we cannot secure the relevant Conglomerability principle
with Additivity principles of lower cardinalities; Conglomerability at a particular level
requires Additivity at that same level.

I got the example that follows from Brian Weatherson.

Contrast our move from comparative to quantitative representations of doxastic atti-
tudes in Chapter 1. There the additional structure of a numerical representation allowed
us to model features like confidence-gap sizes, which plausibly make a difference to
agents’ real-world decisions.

Let me quickly tie up one loose end: This section discussed cases in which it might be
rational for an agent to assign unconditional credence 0 to a proposition without ruling
it out. All the cases in which this might be rational involve credence assignments over
infinite partitions. For the rest of this book we will be working with finite partitions,
and will revert to the assumption we were making prior to this section that credence 0
always represents ruling something out.

Actually, Jeffrey’s original proposal was a bit more complicated than that. In Jeffrey
(1965) he began with a set of propositions {By, B, ..., B,} in which the credence change
originated, but did not require the B,, to form a partition. Instead, he constructed a
set of “atoms”, which we can think of as state-descriptions constructed from the B,,.
(Each atom was a consistent conjunction in which each B,, appeared exactly once,
either affirmed or negated.) The Rigidity condition (which Jeffrey sometimes called
“invariance”) and Jeffrey Conditionalization were then applied to these atoms rather
than directly to the B,, in which the credence change originated.
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Notice that in this construction the atoms form a partition. Further, Jeffrey
recognized that if the B,, themselves formed a partition, the atoms wound up in a
one-to-one correspondence with the B,, to which they were logically equivalent. I
think it’s for this reason that Jeffrey later (2004, Ch. 3) dropped the business with
“atoms” and applied his probability kinematics directly to any finite partition.

Though see Lange (2000) for an argument that this order-dependence is not a problem
because the character of the experiences changes when they’re temporally rearranged.
Interestingly, the main thrust of van Fraassen’s article is that while Maximum Entropy
is capable of providing a solution to the Judy Benjamin Problem, that solution is
intuitively unappealing.

Because we're going to be using the entropy values only for comparative purposes, in
the end it won’t make a difference what base we use for the logarithms in Equation
(5.13). But just to make your answers easily checkable with others] please follow Jaynes
(1957a) in using the natural log In.

T owe this problem to Sarah Moss.
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