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4
Updating by Conditionalization

Up to this point we have discussed synchronic credence constraints—rationally
required relations among the degrees of belief an agent assigns at a given
time. This chapter introduces the fifth (and final) core normative Bayesian
rule, Conditionalization. Conditionalization is a diachronic rule, requiring an
agent’s degrees of belief to line up in particular ways across times.

I begin by laying out the rule and some of its immediate consequences. We
will then practice applying Conditionalization using Bayes’s Theorem. Some
of Conditionalization’s consequences will prompt us to ask what notions of
learning and evidence pair most naturally with the rule. I will also explain why
it’s important to attend to an agent’s fotal evidence in evaluating her responses
to learning.

Finally, we will see how Conditionalization helps Bayesians distinguish
two influences on an agents opinions: the content of her evidence, and
her tendencies to respond to evidence in particular ways. This will lead to
Chapter 5% discussion of whether multiple distinct responses to the same
evidence might ever be rationally permissible. Differing answers to that
question provide a crucial distinction between Subjective and Objective
Bayesianism.

4.1 Conditionalization

Suppose I tell you I just rolled a fair six-sided die, and give you no fur-
ther information about how the roll came out. Presumably you assign equal
unconditional credence to each of the six possible outcomes, so your credence
that the die came up six will be 1/6. I then ask you to suppose that the roll
came up even (while being very clear that this is just a supposition—I'm
still not revealing anything about the actual outcome). Applying the Ratio
Formula to your unconditional distribution, we find that rationality requires
your credence in six conditional on the supposition of even to be 1/3. Finally,
I break down and tell you that the roll actually did come up even. Now how
confident should you be that it came up six?

Fundamentals of Bayesian Epistemology 1: Introducing Credences. Michael G. Titelbaum, Oxford University Press.
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4.1 CONDITIONALIZATION 91

I hope the obvious answer is 1/3. When you learn that the die actually came
up even, the effect on your confidence in a six is identical to the effect of
merely supposing evenness. This relationship between learning and supposing
is captured in Bayesians’ credence-updating rule:

Conditionalization: For any time ¢; and later time #, if proposition E in
£ represents everything the agent learns between f; and f;, and
cry(E) > 0, then for any Hin £,

cri(H) = cr;(H| E)

where cr; and cr; are the agents credence distributions at the two times.
Conditionalization captures the idea that an agents credence in H at t;—
after learning E—should equal her earlier t; credence in H had she merely
supposed E. If we label the two times in the die-roll case ¢, and £,, and let 6
represent the die’s coming up six and E represent its coming up even, then
Conditionalization tells us

cry(6) = cry(6 | E) (4.1)

which equals 1/3 (given what we know about your unconditional distribution
at t;).

Warning

Some theorists take Conditionalization to define conditional credence. For
them, to assign the conditional credence cr;(H | E) =r just is to be disposed
to assign crj(H) =r should you learn E. As I said in Chapter 3, I take
conditional credence to be a genuine mental state, manifested by the agent
in various ways at t; (what she’ll say in conversation, what sorts of bets she’ll
accept, etc.) beyond just her dispositions to update. For us, Conditional-
ization represents a normative constraint relating the agent’s unconditional
credences at a later time to her conditional credences earlier on.

Combining Conditionalization with the Ratio Formula gives us

cri(H&E)

0 (4.2)

cri(H) = cr(H|E) =
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Figure 4.1 Updating on E

(when cr;(E) > 0). A Venn diagram shows why dividing these particular ¢
credences should yield the agent’s credence in H at #;. In Chapter 3 we used a
diagram like Figure 4.1 to understand conditional credences. There the white
circle represented a set of possibilities to which the agent had temporarily
narrowed her focus in order to entertain a supposition.

Now let’s imagine the rectangle represents all the possible worlds the agent
entertains at f; (her doxastically possible worlds at that time). The size of the
H-circle represents the agent’s unconditional ¢; credence in H. Between #; and
t; the agent learns that E is true. Among the worlds she had entertained before,
the agent now excludes all the non-E worlds. Her set of doxastic possibilities
narrows down to the E-circle; in effect, the E-circle becomes the agent’s new
rectangle. How unconditionally confident is the agent in H now? That depends
what fraction of her new doxastic space is occupied by H-worlds. And this
is what Equation (4.2) calculates: it tells us what fraction of the E-circle is
occupied by H & E worlds.

As stated, the Conditionalization rule is useful for calculating a single
unconditional credence value after an agent has gained evidence. But what if
you want to generate the agent’s entire #; credence distribution at once? We
saw in Chapter 2 that a rational agent’s entire #; credence distribution can be
specified by a probability table that gives the agent’s unconditional #; credence
in each state-description of £. To satisfy the probability axioms, the credence
values in a probability table must be non-negative and sum to 1. The agent’s
unconditional credence in any (non-contradictory) proposition can then be
determined by summing her credences in the state-descriptions on which that
proposition is true. )

When an agent updates her credence distribution by applying Conditional-
ization to some learned proposition E, we will say that she “conditionalizes on
E”. (Some authors say she “conditions on E”.) To calculate the probability table
resulting from such an update, we apply a two-step process:
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1. Assign credence 0 to all state-descriptions inconsistent with the evidence
learned.

2. Multiply each remaining nonzero credence by the same constant so that
they all sum to 1.

As an example, let’s consider what happens to your confidence that the fair die
roll came up prime! when you learn that it came up even:

P|E| cry | cry
T{T]1/6 | 1/3
TIF|1/3]| 0
FIT]1/3|2/3
FIF|1/6]| O

Here we've used a language £ with atomic propositions P and E representing
“prime” and “even”. The cr; column represents your unconditional credences
at time ¢;, while the cr, column represents your ¢, credences. Between ¢, and
t, you learn that the die came up even. That’s inconsistent with the second
and fourth state-descriptions, so in the first step of our update process their
cr,-values go to 0. The cry-values of the first and third state-descriptions (1/6
and 1/3 respectively) add up to only 1/2. So we multiply both of these values
by 2 to obtain unconditional #,-credences summing to 1.2

In this manner, we generate your unconditional state-description credences
at t, from your state-description credences at t;. We can then calculate cr,-
values for other propositions. For instance, adding up the cr,-values on the
lines that make P true, we find that

cr,(P) =1/3 (4.3)

Given your initial distribution, your credence that the die came up prime after
learning that it came up even is required to be 1/3. Hopefully that squares with
your intuitions about what’s rationally required in this case!

One final note: Our two-step process for updating probability tables yields
a handy fact. Notice that in the second step of the process, every state-
description that hasn’t been set to zero is multiplied by the same constant.
When two values are multipled by the same constant, the ratio between
them remains intact. This means that if two state-descriptions have nonzero
credence values after an update by Conditionalization, those values will stand
in the same ratio as they did before the update. This fact will prove useful
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for problem-solving later on. (Notice that it applies only to state-descriptions;
propositions that are not state-descriptions may not maintain their credence
ratios after a conditionalization.)

4.1.1 Consequences of Conditionalization

If we adopt Conditionalization as our updating norm, what follows? When an
agent updates by conditionalizing on E, her new credence distribution is just
her earlier distribution conditional on E. In Section 3.1.2 we saw that if an
agent’s credence distribution obeys the probability axioms and Ratio Formula,
then the distribution she assigns conditional on any particular proposition (in
which she has nonzero credence) will be probabilistic as well. This yields the
important result that if an agent starts off obeying the probability axioms and
Ratio Formula and then updates by Conditionalization, her resulting credence
distribution will satisfy the probability axioms as well.®

The process may then iterate. Having conditionalized her probabilistic dis-
tribution cr, on some evidence E to obtain probabilistic credence distribution
cr,, the agent may then gain further evidence E’, which she conditionalizes
upon to obtain cr; (and so on). Moreover, conditionalization has the elegant
mathematical property of being cumulative: Instead of obtaining cr; from cry
in two steps—first conditionalizing cr; on E to obtain cr,, then conditional-
izing cr, on E’ to obtain cr;—we can generate the same cr; distribution by
conditionalizing cr; on E& E', a conjunction representing all the propositions
learned between #; and t;. (You'll prove this in Exercise 4.3.) Because condi-
tionalization is cumulative it is also commutative: Conditionalizing first on E
and then E’ has the same effect as conditionalizing in the opposite order.

Besides being mathematically elegant, cumulativity and commutativity
are intuitively plausible features of a learning process. Suppose a detective
investigating a crime learns that the perpetrator was an Italian accordionist,
and updates her credences accordingly. Intuitively, it shouldn’t matter if we
describe this episode as the detective’s learning first one piece of evidence and
then another (first that the perpetrator was Italian, and then that he was an
accordionist) or as the detectives learning a single conjunction containing
both. Because conditionalization is cumulative, it will prescribe the same
ultimate credences for the detective on either construal. Similarly, it shouldn’t
matter whether we take her to have learned that the perpetrator was an Italian
accordionist or an accordion-playing Italian. Because conditionalization is
commutative, the order in which pieces of evidence are presented makes no
difference to an agent’s ultimate credences.*
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When an agent conditionalizes on evidence E, what happens to her uncon-
ditional credence in that very evidence? Substituting E for H in Equation (4.2)
(and recalling that E & E is equivalent to E), we can see that if an agent learns
Ebetween #; and #; then

cri(B) = 1 (4.4)

Conditionalization creates certainties; conditionalizing on a piece of evidence
makes an agent certain of that evidence. Moreover, any proposition entailed
by that evidence must receive at least as high a credence as the evidence (by
our Entailment rule). So an agent who conditionalizes also becomes certain of
any proposition entailed by the evidence she learns.

And conditionalization doesn't just create certainties; it also retains them.
If an agent is certain of a proposition at ¢; and updates by Conditionalization,
she will remain certain of that proposition at . That is, if cr,(H)=1 then
Conditionalization yields crj(H) = 1as well. On a probability table, this means
that once a state-description receives credence 0 at a particular time (the agent
has ruled out that possible state of the world), it will receive credence 0 at all
subsequent times as well.

In Exercise 4.2 you'll prove that conditionalizing retains certainties from
the probability axioms and Ratio Formula. But it’s easy to see why this occurs
on a Venn diagram. Youre certain of H at t; when H is true in every world
you consider a live doxastic possibility. Conditionalizing on E strictly narrows
the set of possible worlds you entertain. So if H was true in every world you
entertained before conditionalizing, it’ll be true in every world you entertain
afterwards as well.

Combining these consequences of Conditionalization yields a somewhat
counterintuitive result, to which we’ll return in later discussions. Condition-
alizing on E between two times makes that proposition (and any proposition
it entails) certain. Future updates by Conditionalization will then retain that
certainty. So if an agent updates by conditionalizing throughout her life, any
piece of evidence she learns at any point will remain certain for her ever after.

What if an agent doesn’t learn anything between two times? Bayesians
represent an empty evidence set as a tautology. So when an agent gains no
information between ¢; and #;, Conditionalization yields

crj(H) = cr(H|T) = cr,(H) (4.5)

for any H in £. (The latter half of this equation comes from Equation (3.7),
which noted that credences conditional on a tautology equal unconditional
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credences.) If an agent learns nothing between two times and updates by
Conditionalization, her degrees of confidence remain unchanged.

4.1.2 Probabilities are weird! The Base Rate Fallacy

Bayes’s Theorem expresses a purely synchronic relation; as we saw in Section
3.1.3, for any time t; it calculates cr;(H | E) in terms of other credences assigned
at that time. Nevertheless, our diachronic Conditionalization rule gives Bayes’s
Theorem added significance. Conditionalization says that your unconditional
t; credence in hypothesis H after learning E should equal cr;(H | E). Bayess
Theorem is a tool for calculating this crucial value (your “posterior” at t;) from
other credences you assign at £;. As new evidence comes in over time and we
repeatedly update by conditionalizing, Bayes’s Theorem can be a handy tool
for generating new credences from old.

For example, we could’ve used Bayess Theorem to answer our earlier
question of what happens to your credence in six when you learn that a fair
die roll has come up even. The hypothesis is 6, and the evidence is E (for even).
By Conditionalization and then Bayes’s Theorem,

cri(E|6) - cr,(6)

cry(6) = cry(6| E) = cr,(E)

(4.6)

cr1(6), your prior credence in a six, is 1/6, and cr;(E), your prior credence in
even, is 1/2. The likelihood of E, cr;(E| 6), is easy—it’s 1. So the numerator is
1/6, the denominator is 1/2, and the posterior cr;(6 | E) = cr,(6) = 1/3 as we
saw before.”

Let’s apply Bayes’s Theorem to a more interesting case:

One in 1,000 people have a particular disease. You have a test for the presence
of the disease that is 90% accurate, in the following sense: If you apply the
test to a subject who has the disease it will yield a positive result 90% of the
time, and if you apply the test to a subject who lacks the disease it will yield a
negative result 90% of the time.

You randomly select a person and apply the test. The test yields a positive
result. How confident should you be that this subject actually has the disease?

Most people—including trained medical professionals!—answer this question
with a value around 80% or 90%. But if you set your credences by the statistics
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given in the problem, the rationally required degree of confidence that the
subject has the disease is less than 1%.

We'll use Bayes’s Theorem to work that out. Let D be the proposition that the
subject has the disease and P the proposition that when applied to the subject,
the test yields a positive result. Here D is our hypothesis, and P is the evidence
acquired between t; and t,. At f; (before applying the test) we take the subject
to be representative of the population, giving us priors for the hypothesis and
the catchall:

cr (D) = 0.001 cri(~D) = 0.999

The accuracy profile of the test gives us likelihoods for the hypothesis and
catchall:

cr;(P| D) =0.9 cry(P|~D) = 0.1

In words, you're 90% confident that the test will yield a positive result given that
the subject has the disease, and 10% confident that we'll get a “false positive”
on the supposition that the subject lacks the disease.

Now we'll apply a version of Bayes’s Theorem from Section 3.1.3, in which
the Law of Total Probability has been used to expand the denominator:

cry(P|D) - cry(D)
ct1(P| D) - cry(D) + cry(P| ~D) - cri(~D)
_ 0.9 - 0.001 (4.7)
0.9-0.001 +0.1-0.999
~ 0.009 = 0.9%

cry(D) =

So theres the calculation. After learning of the positive test result, your
credence that the subject has the disease should be a little bit less than 1%.
But even having seen this calculation, most people find it hard to believe. Why
shouldn’t we be more confident that the subject has the disease? Wasn’t the
test 90% accurate?

Tversky and Kahneman (1974) suggested that in cases like this one, people’s
intuitive responses ignore the “base rate” of a phenomenon. The base rate in
our example is the prior credence that the subject has the disease. In this case,
that base rate is extremely low (1 in 1,000). But people tend to forget about
the base rate and be overwhelmed by accuracy statistics (such as likelihoods)
about the test. This is known as the Base Rate Fallacy.

Why is the base rate so important? To illustrate, let’s suppose you applied this
test to 10,000 people. Using the base rate statistics, we would expect about ten
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of those people to have the disease. Since the test gives a positive result for 90%
of people who have the disease, we would expect these ten diseased people to
yield about nine positive results—so-called “true positives”. Then there would
be about 9,990 people lacking the disease. Since cr;(P | ~D)—the false positive
rate—is 10%, wed expect to get about 999 false positive results. Out of 1,008
positive results the test would yield, only nine of those subjects (or about 0.9%)
would actually have the disease. This particular disease is so rare—its base rate
is so tiny—that even with an accurate test we should expect the false positives
to swamp the true positives. So when a single randomly selected individual
takes the test and gets a positive result, we should be much more confident
that this is a false positive than a true one.

Another way to see what’s going on is to consider the Bayes factor of the
evidence you receive in this case. Using Conditionalization and the Ratio
Formula, we can derive

c(H)  a(H|E) _ cr(H) _ er(E|H)
crj(~H) " cr(~H|E) ~ ery(~H) cr,(E|~H)

(4.8)

That last fraction on the right—the ratio of the likelihood of the hypothesis
to the likelihood of the catchall—is the Bayes factor. Personally, I found this
equation fairly impenetrable until I remembered that cr(H)/cr(~H) is an
agent’s odds for the proposition H (Section 2.3.4). That means we can rewrite
Equation (4.8) as

odds for H after update = odds for H before update - Bayes factor ~ (4.9)

If you update by Conditionalization, learning E multiplies your odds for H by
the Bayes factor. The Bayes factor thus provides a handy way to measure how
much learning E affects your opinion about the hypothesis.

In our disease example, the Bayes factor is

cri(P|D) 09

—_ == 4.1
ct(P|~D) 0.1 ? (4.10)

At ), your odds for D are 1:999. Applying the test has a substantial influence
on these odds; as the Bayes factor reveals, a positive test result multiplies the
odds by 9. This reflects the high accuracy of the test. Yet since the odds were so
small initially, multiplying them by 9 only brings them up to 9:999. So even
after seeing the test outcome, you should be much more confident that the
subject doesn’t have the disease than you are that she does.
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4.2 Evidence and certainty

Combining Conditionalization with the probability axioms and Ratio Formula
creates a Bayesian approach to evidence that many have found troubling.
Conditionalization works with a proposition E representing everything the
agent learns between two times. (If many propositions are learned, E is their
conjunction.) We also speak of E as the evidence the agent gains between those
two times. Yet Conditionalization gives E properties that epistemologists don’t
typically attribute to evidence.

We've already seen that a piece of evidence E (along with anything it entails)
becomes certain once conditionalized upon. When an agent learns E, the set
of doxastically possible worlds she entertains shrinks to a set of worlds that all
make E true; on the Venn diagram, what once was merely an E-circle within
her rectangle of worlds now becomes the entire rectangle. And as we saw in
Section 4.1.1, this change is permanent: as long as the agent keeps updating
by Conditionalization, any evidence she once learned remains certain and
possible worlds inconsistent with it remain ruled out.

Is there any realistic conception of evidence—and of learning—that satisfies
these conditions? When I learn that my sister is coming over for Thanksgiving
dinner, I become highly confident in that proposition. But do I become 100%
certain? Do I rule out all possible worlds in which she doesn’t show, refusing
to consider them ever after? As Richard C. Jeffrey put it:

Certainty is quite demanding. It rules out not only the far-fetched uncertain-
ties associated with philosophical skepticism, but also the familiar uncertain-
ties that affect real empirical inquiry in science and everyday life.

(2004, p. 53)

This concern about certainties motivates the

Regularity Principle: In a rational credence distribution, no logically con-
tingent proposition receives unconditional credence 0.

The Regularity Principle captures the common-sense idea that one’s evidence
is never so strong as to entirely rule out any logical possibility. (Recall that
a logically contingent proposition is neither a logical contradiction nor a
logical tautology.)” As damning evidence against a contingent proposition
mounts up, we may keep decreasing and decreasing our credence in it, but our
unconditional credence distribution should always remain regular—it should
assign each logically contingent proposition at least a tiny bit of confidence.®
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The Regularity Principle adds to the synchronic Bayesian rules we have seen
so far—it is not entailed by the probability axioms, the Ratio Formula, or any
combination of them. As our Contradiction result showed in Section 2.2.1,
those rules do entail that all logical contradictions receive credence 0. But
Regularity is the converse of Contradiction; instead of saying that all contra-
dictions receive credence 0, it entails that only contradictions do. Similarly,
Regularity (along with the probability axioms) entails the converse of Nor-
mality: instead of saying that all tautologies receive credence 1, it entails that
only tautologies do. (The negation of a contingent proposition is contingent;
if we were to assign a contingent proposition credence 1 its negation would
receive credence 0, in violation of Regularity.) This captures the common-
sense idea that one should never be absolutely certain of a proposition that’s
not logically true.’

Conditionalization conflicts with Regularity; the moment an agent condi-
tionalizes on contingent evidence, she assigns credence 1 to a non-tautology.
As we saw earlier, conditionalizing on contingent evidence rules out doxastic
possibilities the agent had previously entertained; on the Venn diagram, it
narrows the set of worlds under consideration. Regularity, on the other hand,
fixes an agent’s doxastic possibility set as the full set of logical possibilities.
While evidence might shift the agent’s credences around among various pos-
sible worlds, an agent who satisfies Regularity will never eliminate a possible
world outright.

We might defend Conditionalization by claiming that whenever agents
receive contingent evidence, it is of a highly specific kind, and Regularity is
false for this kind of evidence. Perhaps I don't actually learn that my sister is
coming over for Thanksgiving—I learn that she fold me she’s coming; or that it
seemed to me that she said that; or that I had a phenomenal experience as of....
Surely I can be certain what phenomenal experiences I've had, or at least what
experiences I'm having right now. While in the midst of having a particular
phenomenal experience, can't I entirely rule out the logical possibility that
I am having a different experience instead? C.I. Lewis defended this approach
as follows:

If anything is to be probable, then something must be certain. The data which
themselves support a genuine probability, must themselves be certainties. We
do have such absolute certainties, in the sense data initiating belief and in
those passages of experience which later may confirm it. (1946, p. 186)

Yet foundationalist epistemologies based on sense data and indubitable phe-
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