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10

Accuracy Arguments

The previous two chapters considered arguments for probabilism based on
Representation Theorems and Dutch Books. We criticized both types of argu-
ment for beginning with premises about practical rationality—premises about
how a rational agent views certain acts (especially acts of placing bets). We
want to establish the probability axioms as requirements of theoretical ratio-
nality on an agent’s credences, and it’s difficult to move from practical premises
to a theoretical conclusion.

This chapter builds arguments for probabilism from explicitly epistemic
premises. The basic idea is that, as representational attitudes, credences can
be assessed for accuracy. We often assess other doxastic attitudes, such as
binary beliefs, for accuracy: a belief in the proposition P is accurate if P is
true; disbelief in P is accurate if P is false. A traditional argument moves from
such accuracy assessments to a rational requirement that agents belief sets
be logically consistent (Chapter 1’s Belief Consistency norm). The argument
begins by noting that if a set of propositions is logically inconsistent, then
by definition there is no (logically) possible world in which all of those
propositions are true. So if an agent’s beliefs are logically inconsistent, she’s
in a position to know that at least some of them are inaccurate. Moreover,
she can know this a priori—without invoking any contingent truths. (Since
an inconsistent set contains falsehoods in every possible world, no matter
which world is actual her inconsistent belief set misrepresents how things are.)
Such unavoidable, a priori inaccuracy reveals a rational flaw in any logically
inconsistent set of beliefs.!

There are plenty of potential flaws in this argument—starting with its
assumption that beliefs have a teleological “aim” of being accurate. But the
argument is a good template for the arguments for probabilism to be discussed
in this chapter. Whatever concerns you have about the Belief Consistency
argument above, keep them in mind as you consider accuracy arguments for
probabilism.

Assessing credences for accuracy isn’t as straightforward as assessing binary
beliefs: a credence of, say, 0.6 in proposition P doesn’t say that P is true, but
neither does it say that P is false. So we can’t assess the accuracy of this credence

Fundamentals of Bayesian Epistemology 2: Arguments, Challenges, Alternatives. Michael G. Titelbaum,
Oxford University Press. © Michael G. Titelbaum 2022, DOI: 10.1093/0s0/9780192863140.003.0010



10.1 ACCURACY AS CALIBRATION 339

by asking whether it assigns a truth-value to P matching P’s truth-value in
the world. Nor can we say that cr(P) =0.6 is accurate just in case P is true
“to degree 0.6”; we've assumed that propositions are wholly true or wholly
false, full stop. So just as we moved from classificatory to quantitative doxastic
attitudes in Chapter 1, we need to move from a classificatory to a quantitative
concept of accuracy. This chapter will begin by considering various numerical
measures of just how accurate a credence (or set of credences) is. Well
start with historical “calibration” approaches that measure credal accuracy by
comparing credences with frequencies. Then we’ll reject calibration in favor of
contemporary “gradational accuracy” approaches.

The most commonly used gradational accuracy measure is known as the
Brier score. Using the Brier score, we will construct an argument for probabil-
ism similar to the Belief Consistency argument above: violating the probability
axioms impedes a credence set’s accuracy in every possible world. It will then
turn out that an argument like this can be constructed using not just the Brier
score, but any gradational accuracy measure in a class known as the “strictly
proper scoring rules”.

Which leads to the question of why strictly proper scoring rules are supe-
rior to other accuracy-measurement options—especially options that rule out
probabilism. The spectre will arise once more that our argument for proba-
bilism has a question-begging, Linearity-In, Linearity-Out structure. This will
force us to ask something you may have started wondering over the last couple
of chapters: How important is it, really, that rational credences satisfy Finite
Additivity, as opposed to other norms with similar consequences for thought
and behavior?

Besides arguing for probabilism, Bayesian epistemologists have offered
accuracy-based arguments for other norms such as the Principal Principle
(Pettigrew 2013a), the Principle of Indifference (Pettigrew 2014), Reflec-
tion (Easwaran 2013), and Conglomerability (Easwaran 2013). We'll close
this chapter with an argument for Conditionalization based on minimizing
expected future inaccuracy. Unfortunately this argument has the same draw-
back as Dutch Strategy arguments for Conditionalization: it is insufficient on
its own to establish truly diachronic norms.

10.1 Accuracy as calibration

In Section 5.2.1 we briefly considered a putative rational principle for matching
one’s credence that a particular outcome will occur to the frequency with
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which that kind of outcome occurs. In that context, the match was supposed to
be between one’s credence that outcome B will occur and the frequency with
which one’s evidence suggests B-type outcomes occur. But we might instead
assess an agent’s credences relative to actual frequencies in the world: If events
of type A actually produce outcomes of type B with frequency x, an agent’s
credence that a particular A-event will produce a B-outcome is more accurate
the closer it is to x.

Now imagine that an agent managed to be perfectly accurate with respect to
the actual frequencies. In that case, she would assign credence 2/3 to types
of outcomes that occurred 2/3 of the time, credence 1/2 to outcome-types
that occurred 1/2 of the time, etc. Or—flipping this around—propositions to
which she assigned credence 2/3 would turn out to be true 2/3 of the time,
propositions to which she assigned credence 1/2 would turn out to be true 1/2
of the time, etc. This conception of accuracy—getting the frequencies right, as
it were—motivates assessing credences with respect to their

Calibration: A credence distribution over a finite set of propositions is
perfectly calibrated when, for any real x, out of all the propositions
to which the distribution assigns x, the fraction that turn out to be
true is x.

For example, suppose your weather forecaster comes on television every night
and reports her degree of confidence that it will snow the next day. You might
notice that every time she says she’s 20% confident of snow, it snows the next
day. In that case she’s not a very accurate forecaster. But if it snows on just
about 20% of those days, wed say she’s doing her job well. If exactly 20% of the
days on which she’s 20% confident of snow turn out to have snow (and exactly
30% of the days on which she’s 30% confident . .. etc.), we say the forecaster is
perfectly calibrated.? Calibration seems a plausible way to gauge accuracy.®

I've defined only what it means to be perfectly calibrated; there are also
numerical measures for assessing degrees of calibration short of perfection (see
Murphy 1973).* But all the good and bad consequences of reading accuracy
as calibration can be understood by thinking solely about perfect calibra-
tion. First, the good: van Fraassen (1983) and Abner Shimony (1988) both
argued for probabilism by showing that in order for a credence distribution
to be embeddable in larger and larger distributions with calibration scores
approaching perfection, that original credence distribution must satisfy the
probability axioms. This seems a powerful argument for probabilism—if we’re
on board with calibration as a measure of accuracy.
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Here’s why we might not be. Consider two agents, Sam and Diane, who
assign the following credence distributions over propositions X; through X:

X | X X3 Xy
Sam 1/2 | 1/2 1/2 1/2
Diane 1 1 1/10 | O

Now suppose that propositions X; and X, are true, while X; and X, are false.
Look at the table and ask yourself whose credences intuitively seem more
accurate.’

I take it the answer is Diane. Yet Sam’s credences are perfectly calibrated—
he assigns credence 1/2 to all four propositions, exactly half of which are
true—while Diane’s credences are not. This is an intuitive flaw with measuring
accuracy by calibration.

A similar point can be made by considering the following (real life!) exam-
ple: On the morning of February 1, 2015, I looked outside and found it was
snowing heavily. At least four inches had accumulated during the night, the
snow was still coming down, and it showed no signs of stopping. The online
weather report on my smartphone, however, showed an at-the-moment 90%
probability of snow. Why hadn’t the forecaster simply looked out her window
and updated the report to 100%?

I was suddenly struck by a possible explanation. Let’s imagine (what's
probably not true) that the forecaster posts to the online weather report her
current credence that it will snow on the current day. Suppose also that weather
forecasting sites are graded for accuracy, and promoted on search engines
based on how well they score. Finally, suppose this accuracy scoring is done
by measuring calibration. What if, up to February 1, it had snowed every time
the forecaster reported a 100% credence, but it had snowed on only eight of
the nine occasions on which she had expressed a 90% credence? The snow on
February 1 would then present her with an opportunity. She could report her
true, 100% confidence in snow for February 1 on the website. Or she could post
a 90% probability of snow. Given that it was clearly snowing on February 1,
the latter option would bring her up to a perfect calibration score, and shoot
her website to the top of the search rankings. Calibration gives the forecaster
an incentive to misreport her own credences—and the content of her own
evidence.

Calibration is one example of a scoring rule; a procedure for rating distribu-
tions with respect to accuracy. James M. Joyce reports that “the term ‘scoring
rule’ comes from economics, where values of [such rules] are seen as imposing
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penalties for making inaccurate probabilistic predictions” (2009, p. 266). Done
right, the imposition of such penalties can be a good way of finding out what
experts really think—what’s known as credence elicitation. If you reward (or
punish) an expert according to the accuracy of her reports, you incentivize her
to gather the best evidence she can, consider it carefully, and then report to
you her genuine conclusions. Seen through this lense of credence elicitation,
calibration fails as a scoring rule. As we've just seen, rewarding a forecaster
according to her level of calibration can incentivize her to misreport her true
opinions, and what she takes to be the import of her evidence.

Yet perhaps it’s unfair to criticize calibration on the grounds that it per-
versely incentivizes credence reports; norms for assertion can be messy, and
anyway probabilism is a norm on agents’ thoughts, not their words. So let’s
consider calibration as a direct accuracy measure of our forecaster’s credences.
Prior to February 1 it has snowed whenever the forecaster was certain of snow,
but on the days when she assigned 0.9 credence to snow, it has snowed eight
of nine times. Looking out her window and seeing snow, the forecaster assigns
credence 1 to snow.® Yet if her goal is to be as accurate as possible with her
credences, and if accuracy is truly measured by calibration, then the forecaster
will wish that her credence in snow was 0.9. After all, that would make her
pefectly calibrated!

Assessing the forecaster’s credences by calibration makes those credences
unstable. By the forecaster’s own lights—given the credences she has formed
in light of her evidence—she thinks sheid be better off with different credences.
Such instability is an undesirable feature in a credence distribution, and is
generally thought to be a hallmark of irrationality. David Lewis offers the
following analogy:

It is as if Consumer Bulletin were to advise you that Consumer Reports was a
best buy whereas Consumer Bulletin itself was not acceptable; you could not
possibly trust Consumer Bulletin completely thereafter. (1971, p. 56)

If we use calibration to measure accuracy, the weather forecaster’s credence
distribution becomes unstable. Such instability is a sign of irrationality. So
from a calibration point of view, there’s something rationally wrong with the
forecaster’s credences. But in reality there’s nothing wrong with the forecaster’s
credences—they are a perfectly rational response to the evidence before her
eyes! The problem lies with calibration as a measure of accuracy; calibration
renders unstable credence distributions that are rationally permissible (if not
rationally required!).
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There are further ways in which calibration rewards agents for ignoring
their evidence. Notice that any agent assigning credences over a partition
of n propositions can secure a perfect calibration score by assigning each
proposition a credence of 1/n. For instance, if a six-sided die is to be rolled,
an agent can guarantee herself perfect calibration (no matter how the roll
comes out!) by assigning each possible outcome a credence of 1/6. Depending
on how you feel about the Principle of Indifference (Section 5.3), this might
be a reasonable assignment when the agent has no evidence relevant to the
members of the partition. But now suppose the agent gains highly reliable
evidence that the die is biased in favor of coming up 6. Altering her credences
to reflect that bias won't earn her a better calibration score than the uniform
1/6 distribution, and might very well serve her worse.

One could make various attempts here to save calibration as a plausible mea-
sure of accuracy. For instance, calibration scores are less easily manipulable
if we measure them only in the long-run. But this generates questions about
the accuracy of credences in non-repeatable events, and soon we're assessing
not actual long-run calibration but hypothetical calibration in the limit. Before
long, we've made all the desperate moves used to prop up the frequency theory
of “probability” (Section 5.1.1), and run into all the same problems.

The response here should be the same as it was with the frequency theory:
Rather than deploy a notion that emerges only when events are situated in a
larger collective, we find a notion (like propensity) that can be meaningfully
applied to single cases considered one at a time. Looking back at Sam and
Diane, our intuitive judgment that Diane is globally more accurate than Sam
arises from local judgments that she was more accurate than him on each
individual proposition. If you knew only the truth-value of X;, you could still
have said that Diane was more accurate than Sam on that one proposition. Our
accuracy intuitions apply piece-wise; we assess credences one proposition at a
time, then combine the results into a global accuracy measure.

10.2 The gradational accuracy argument for probabilism
10.2.1 The Brier score

We will now develop what’s known as the “gradational accuracy” approach to
evaluating credences. Our guiding idea will be that inaccuracy is distance from
truth—a credence distribution gains accuracy by moving its values closer to
the truth-values of propositions. Of course, credence values are real numbers,
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Y
tv:(1, 1)

cr:(0.7,0.6)

X

Figure 10.1 The Brier score

while truth-values are not. But it’s natural to overcome that obstacle by letting
1 stand for truth and 0 stand for falsehood. Just as we have a distribution cr
expressing the agent’s credences in propositions, we’ll have another distribu-
tion tv reflecting the truth-values of those propositions. Distribution tv assigns
numerical values to the propositions in £ such that tv(X) = 1 if X is true and
tv(X) = 0 if X is false.”

Once we have distribution cr representing the agent’s credences and distri-
bution tv representing the truth, we want a scoring rule that measures how
far apart these distributions are from each other. It’s easiest to visualize the
challenge on a diagram. To simplify matters, consider a credence distribution
over only two propositions, X and Y. Our agent assigns cr(X) = 0.7 and
cr(Y) = 0.6. I have depicted this credence assignment in Figure 10.1. In this
diagram the horizontal axis represents the proposition X while the vertical
axis represents Y. Any credence assignment to these two propositions can be
represented as an ordered pair; I have placed a dot at the agent’s cr-distribution
of (0.7,0.6).

What about the values of tv? Let’s suppose that propositions X and Y
are both true. So tv(X) =tv(Y)= 1. I have marked (1, 1)—the location of tv
on the diagram—with another dot. Now our question is how to measure
the inaccuracy of the agents credences; how should we gauge how far cr is
from tv?

A natural suggestion is to use distance as the crow flies, indicated by
the arrow in Figure 10.1. A quick calculation tells us that the length of the
arrow is:

(1=0.7)% + (1 —0.6)2 = (0.3)2 + (0.4)* = 0.25 (10.1)
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Pythagorean Theorem aficionados will note the lack of a square-root in this
distance expression (the arrow is actually 0.5 units long). For the time being,
we're going to use inaccuracy measurements only for ordinal comparisons
(which credence distribution is farther from the truth), so particular numerical
values don’t matter much—and neither does the square-root.

When generalized to a credence distribution over finitely many pro-
positions {X;, X;, ..., X}, this distance measure of inaccuracy becomes

Lp(cr, w) = (tv,(X;) — Cr(Xl))Z + (v (X3) = Cr(Xz))Z + ...
+ (tvco(Xn) - CI'(X,,))Z (102)

A few notes about this equation: First, what are the ws doing in there? We
usually want to evaluate the inaccuracy of your credence distribution relative
to conditions in the actual world. But sometimes we’ll wonder how inaccurate
your credences would’ve been if youd maintained your distribution but lived
in a different possible world. For example, in Figure 10.1 we might wonder
how inaccurate the credence distribution cr would have been had X and Y
both been false. That is, we might want to calculate the distance between cr
and the point (0, 0). Equation (10.2) calculates the inaccuracy of credence
distribution cr in an arbitrary possible world w. tv,,(X;) represents the truth-
value of proposition X; in world w; I, (cr, ) then measures the inaccuracy
of cr relative to conditions in that world. (So for the credence distribution
(0.7,0.6) and the world (0,0), Equation (10.2) would yield an I,,-value of
0.7* + 0.6 = 0.85.)8

Second, Equation (10.2) tallies up inaccuracy one proposition at a time, then
sums the results. For any credence distribution cr and particular proposition
X, evaluating (tv(X;)—cr(X;))? is a way of gauging how far off distribution cr is
on that particular proposition. Equation (10.2) makes that calculation for each
individual proposition X;, then adds up the results. In general, a scoring rule
that sums the results of separate calculations made on individual propositions
is called separable. Separable scoring rules track our intuition that accuracy
assessments of an entire credence distribution can be built up piece-wise,
considering the accuracy of one credence at a time; this was exactly the feature
we found lacking in calibration’s evaluation of Sam and Diane.’

The scoring rule described by Equation (10.2) is known as the Euclidean
distance, the quadratic loss function, or most commonly the Brier score.!”
(This accounts for the “BR” subscript in I,;.) The Brier score is hardly the
only scoring rule available, but it is natural and widely used. So we will stick
with it for the time being, until we examine other options in Section 10.3. At
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that point we'll find that even among the separable scoring rules, there may
be ordinal non-equivalence—two separable scoring rules may disagree about
which distribution is more accurate in a given world. Nevertheless, all the
separable scoring rules have some features in common. For instance, while
Ix(cr, w) is in some sense a global measure of the inaccuracy of cr in world
, it doesn’t take into account any wholistic or interactive features among the
individual credences cr assigns. Separable scores can't, for example, take into
account the sum or difference of cr(X;) and cr(X;) for i # j.!!

Finally, I, and the other gradational measures we'll consider calculate the
inaccuracy of credence distributions in particular worlds. So an agent striving
to be as accurate as possible will seek to minimize her score. Some authors
prefer to work with credence distributions’ epistemic utility, a numerical
measure of epistemic value that rational agents maximize. Now there may be
many aspects of a credence distribution that make it epistemically valuable
or disvaluable besides its distance from the truth. But many authors work
under the assumption that accuracy is the sole determiner of a distribution’s
epistemic value, in which case that value can be calculated directly from the
distribution’s inaccuracy. (The simplest way is to let the epistemic utility of
distribution cr in world w equal 1 — I (cr, w).) If you find yourself reading
elsewhere about accuracy arguments, be sure to notice whether the author asks
agents to minimize inaccuracy or maximize utility. On either approach, the best
credence is the one closest to the pin (the distribution tv). But with inaccuracy,
as in golf, lowest score wins.

10.2.2 Joyce's accuracy argument for probabilism

In our discussion of calibration we said that it’s rationally problematic for an
agent’s credence distribution to be “unstable”’—for it to seem to the agent, by
her own lights, that another credence distribution would be preferable to her
own. We ultimately rejected assessing agents’ credences using calibration, but
now we have an alternative accuracy measure: the Brier score. If we could
convince an agent that her credences are less accurate, as measured by the
Brier score, than some other distribution over the same set of propositions,
then it would seem irrational for her to maintain her credence distribution (as
opposed to the other one).

How can we convince an agent that her credences are less accurate than
some alternative? Inaccuracy is always measured relative to a world. Pre-
sumably the agent is interested how things stand in the actual world, but
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presumably she also has some uncertainty as to which propositions are true or
false in the actual world. If she doesn’t know the tv-values in the actual world,
she won't be able to calculate her own Brier score in that world, much less the
score of an alternative distribution.

But what if we could show her that there exists a single distribution that is
more accurate than her own in every logically possible world? Then she wouldn’t
need to know which possible world was actual; she could determine on an a
priori basis that however things stand in the actual world, she would be more
accurate if she had that other distribution. In light of information like this, her
present credences would look irrational. This line of thought is enshrined in
the following principle:

Admissibles Not Dominated: If an agent’s credence distribution is ratio-
nally permissible, and accuracy is measured with an acceptable
scoring rule, then there does not exist another distribution that is
more accurate than hers in every possible world.

Admissibles Not Dominated is a conditional. Contraposing it, we get that
any credence distribution accuracy-dominated by another distribution on an
acceptable scoring rule is rationally impermissible (or “inadmissible”, in the
accuracy literature’s jargon).

Repurposing a theorem of de Finetti’s (1974), and following on the work of
Rosenkrantz (1981), Joyce (1998) demonstrated the

Gradational Accuracy Theorem: Given a credence distribution cr over a
finite set of propositions {X;, X,, ..., X,}, if we use the Brier score
I;r(cr, w) to measure inaccuracy then:

o If cr does not satisfy the probability axioms, then there exists a
probabilistic distribution cr’ over the same propositions such
that Iy (cr’, w) < Iz (cr, w) in every logically possible world w;
and

o If cr does satisfy the probability axioms, then there does not
exist any cr’ over those propositions such that I (ct’, w) <
Ix(cr, w) in every logically possible world.

The Gradational Accuracy Theorem has two parts. The first part says that if an
agent has a non-probabilistic credence distribution cr, we will be able to find
a probabilistic distribution cr’ defined over the same propositions as cr that
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Figure 10.2 Violating Non-Negativity

accuracy-dominates cr. No matter what the world is like, distribution cr’ will
be less inaccurate than cr. So the agent with distribution cr can be certain that,
come what may, she is leaving a certain amount of accuracy on the table by
assigning cr rather than cr’. There’s a cost in accuracy, independent of what you
think the world is like and therefore discernible a priori, to assigning a non-
probabilistic credence distribution—much as there’s a guaranteed accuracy
cost to assigning logically inconsistent beliefs. On the other hand (and this
is the second part of the theorem), if an agent’s credence distribution is prob-
abilistic, then no distribution (probabilistic or otherwise) is more accurate in
every possible world. This seems a strong advantage of probabilistic credence
distributions.'?

Proving the second part of the theorem is difficult, but I will show how
to prove the first part. There are three probability axioms—Non-Negativity,
Normality, and Finite Additivity—so we need to show how violating each one
leaves a distribution susceptible to accuracy domination. We'll take them one
at a time, in order.

Suppose credence distribution cr violates Non-Negativity by assigning some
proposition a negative credence. In Figure 10.2 I've imagined that cr assigns
credences to two propositions, X and Y, bearing no special logical relations to
each other. cr violates Non-Negativity by assigning cr(X) < 0. (The value of
cr(Y) is irrelevant to the argument, but I've supposed it lies between 0 and 1.)
We introduce probabilistic cr’ such that cr’(Y) = cr(Y) but cr’(X) = 0; cr’ is
the closest point on the Y-axis to distribution cr.

We need to show that cr’ is less inaccurate than cr no matter which possible
world is actual. Given our two propositions X and Y, there are four possible
worlds.' I've marked them on the diagram as w;, @,, @3, and @w,, determining
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the coordinates of each world by the truth-values it assigns to X and Y. (In c,,
for instance, X is true and Y is false.) We now need to show that for each of
these worlds, cr’ receives a lower Brier score than cr. In other words, we need
to show that cr’ is closer to each world as the crow flies than cr is.

Clearly cr’ is closer to w, and w, than cr is, so cr’ is less inaccurate than cr
relative to both w, and w;. What about w,? I've indicated the distances from
cr and cr’ to w; with arrows. Because cr’ is the closest point on the Y-axis to
cr, the points cr, cr’, and w; form a right triangle. The arrow from cr to w; is
the hypotenuse of that triangle, while the arrow from cr’ to w; is a leg. So the
latter must be shorter, and cr’ is less inaccurate by the Brier score relative to
w,. A parallel argument shows that cr’ is less inaccurate relative to w,. So cr’ is
less inaccurate than cr relative to each possible world.

That takes care of Non-Negativity.!* The accuracy argument against vio-
lating Normality is depicted in Figure 10.3. Suppose X is a tautology and cr
assigns it some value other than 1. Since X is a tautology, there are no logically
possible worlds in which it is false, so there are only the worlds w, and w, to
consider. We construct ct’ such that ¢r’(Y) = cr(Y) and cr’(X) = 1. cr’ is closer
than cr to @, because the arrow from cr to w; is the hypotenuse of a right
triangle of which the arrow from cr’ to w, is one leg. A similar argument shows
that cr’ is closer than cr to w,, demonstrating that cr’ is less inaccurate than cr
in every logically possible world.

Explaining how to accuracy-dominate a Finite Additivity violator requires
a three-dimensional argument sufficiently complex that I will leave it for an
endnote.!> But we can show in two dimensions what happens if you violate
one of the rules that follows from Finite Additivity, namely our Negation rule.
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Suppose your credence distribution assigns cr-values to two propositions
X and Y such that X is the negation of Y. If you violate Negation, you'll have
ca(Y) # 1 —ca(X).

I've depicted only @, and w; in Figure 10.4 because only those two worlds are
logically possible in this case (since X and Y must have opposite truth-values).
The diagonal line connecting w, and w; has the equation Y = 1 —X; it contains
all the credence distributions satisfying Negation. If cr violates Negation, it will
fall somewhere off of this line. Then we can accuracy-dominate cr with the
point closest to cr lying on the diagonal (call that point cr’). Once more, we've
created a right triangle with cr, cr’, and one of our possible worlds. The arrow
representing the distance from cr to ws is the hypotenuse of this triangle, while
the arrow from cr’ to ws is its leg. So cr’ has the shorter distance, and cr’ is
less inaccurate in cw, than cr according to the Brier score. A parallel argument
applies to w,, so cr’ isless inaccurate than cr in each of the two logically possible
worlds.'6

Joyce (1998, 2009) leverages the advantage of probabilistic credence distri-
butions displayed by the Gradational Accuracy Theorem into an argument for
probabilism:

Gradational Accuracy Argument for Probabilism

(Premise 1) A rationally permissible credence distribution cannot be
accuracy-dominated on any acceptable scoring rule.

(Premise 2) The Brier score is an acceptable scoring rule.

(Theorem)  If we use the Brier score, then any non-probabilistic credence
distribution can be accuracy-dominated.
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(Conclusion) All rationally permissible credence distributions satisfy the
probability axioms.

The first premise of this argument is Admissibles Not Dominated. The theorem
is the Gradational Accuracy Theorem. The conclusion of this argument is
probabilism.

10.3 Objections to the accuracy argument for probabilism

Unlike Representation Theorem and Dutch Book Arguments, the Grada-
tional Accuracy Argument for Probabilism has nothing to do with an agent’s
decision-theoretic preferences over practical acts. It clearly pertains to the
theoretical rationality of credences assigned in pursuit of an epistemic goal:
accuracy. (This is why Joyce’s (1998) paper was titled “A Nonpragmatic Vindi-
cation of Probabilism”) This is a major advantage of the accuracy argument
for probabilism. Of course, one has to be comfortable with the idea that
belief-formation is a goal-directed activity—teleological, so to speak—and
commentators have objected to that idea. (Examples appear in the Further
Reading.)

But I want to focus on a more technical objection that has been with the gra-
dational accuracy approach from its inception. Premise 2 of the Gradational
Accuracy Argument states that the Brier score is an acceptable scoring rule.
The Brier score is certainly not the only scoring rule possible; why do we think
it’s acceptable? And what does it even mean for a scoring rule to be acceptable
in this context?

10.3.1 The absolute-value score

In his original (1998) presentation of the accuracy argument, Joyce selected
the Brier score because it exhibits a number of appealing formal properties—
what we might think of as adequacy conditions for an acceptable scoring rule.
We've already seen that the Brier score is a separable rule. The Brier score also
displays

Truth-Directedness: If a distribution cr is altered by moving at least one
cr(X;) value closer to tv,(X;), and no individual cr-values are
moved farther away from tv,, then I(cr, w) decreases.
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Figure 10.5 Truth-Directedness

The intuitive idea of Truth-Directedness is that if you change your credence
distribution by moving some propositions closer to their truth-values, and
leaving the rest alone, this should decrease inaccuracy. This condition is
depicted in Figure 10.5. (Ignore the dashed elements in that diagram for now.)
Assume once more that the agent assigns credences only to the propositions
X and Y, and that both these propositions are true in the actual world. If the
agent’s credence distribution is (0.7, 0.6), every point on or in the gray box
(except for (0.7, 0.6) itself) assigns an X-credence or a Y-credence closer to
1 than hers. On a truth-directed scoring rule, all of those distributions are more
accurate than the agents.

The Brier score isn't the only truth-directed scoring rule, or the only way of
measuring distance on a diagram. Brier measures distance as the crow flies. But
suppose you had to travel from the distribution (0.7, 0.6) to the truth (1, 1) by
traversing a rectangular street grid, which permitted movement only parallel
to the axes. The shortest distance between those two points measured in this
fashion—what’s sometimes called the “taxicab distance’—is

I1—0.7|+|1—0.6]=03+04=07 (10.3)

I've illustrated this distance in Figure 10.6.
Generalizing the taxicab calculation to a distribution over finitely many
propositions {X;, X5, ..., X,} yields

Lgs(er, @) = [tv, (X)) — cr(X))| + [tv, (X) — ()| +. .« +[tv, (X)) —cr(X,)]
(10.4)
WEe'll call this the absolute-value scoring rule.
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Both the absolute-value score and the Brier score satisfy Truth-Directedness.
We can see this by attending to the dashed elements in Figure 10.5. The dashed
line passing through (0.7, 0.6) shows distributions that have the exact sarme
inaccuracy as (0.7, 0.6) if we measure inaccuracy by the absolute-value score.'”
Any point between that dashed line and (1, 1) is more accurate than (0.7, 0.6)
by the absolute-value score. Notice that all the points in the gray box fall into
that category, so the absolute-value score is truth-directed.

The dashed quarter-circle shows distributions that are just as inaccurate
as (0.7, 0.6) if we measure inaccuracy by the Brier score. Points between the
dashed quarter-circle and (1, 1) are less inaccurate than (0.7, 0.6) according to
the Brier score. Again, the gray box falls into that region, so the Brier score is
truth-directed.

We can see in Figure 10.5 that the Brier score and the absolute-value score
are ordinally non-equivalent measures of inaccuracy. To bring out the contrast,
consider the distribution (0.48,0.9). Notice that Truth-Directedness doesn’t
settle whether this distribution is more or less accurate than (0.7, 0.6)—given
that both X and Y have truth-values of 1, (0.48, 0.9) does better than (0.7, 0.6)
with respect to Y but worse with respect to X. We have to decide whether the Y
improvement is dramatic enough to merit the X sacrifice; Truth-Directedness
offers no guidance concerning such tradeoffs. The Brier score and absolute-
value score render opposite verdicts on this point. (0.48,0.9) lies inside the
dashed line, so the absolute-value score evaluates this distribution as less
inaccurate than (0.7, 0.6). But (0.48, 0.9) lies outside the quarter-circle, so the
Brier score evaluates it as more inaccurate. Here we have a concrete case in
which the absolute and Brier scores disagree in their accuracy rankings of two
distributions.
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Such disagreement is especially important when it comes to the Gradational
Accuracy Argument. A Gradational Accuracy Theorem cannot be proven
for the absolute-value score; in fact, replacing the Brier score with the
absolute-value score in the statement of that theorem yields a falsehood.
(Well demonstrate this in the next section.) This makes the second premise
of the Gradational Accuracy Argument crucial. The first premise says that
rational credence distributions are not dominated on any acceptable scoring
rule. If all the acceptable scoring rules were like the absolute-value score, then
nonprobabilistic distributions would not be dominated and the argument
could not go through. But if we can establish that the Brier score is acceptable,
then we have an argument for probabilism.

10.3.2 Proper scoring rules

How do we decide whether the Brier score or the absolute-value score (or both,
or neither) is an acceptable measure of inaccuracy? In his (1998), Joyce offered
adequacy conditions beyond Truth-Directedness and separability that favored
the Brier score over the absolute-value score. Maher (2002), however, argued
that these properties were implausible as requirements on rationally acceptable
scoring rules, and defended the absolute-value score. So we're left wondering
how to select one over the other.

Historically, the Brier score was favored over the absolute-value score
because Brier belongs to a broad class of scoring rules called the “proper”
scoring rules. To understand this notion of propriety, we first need to
understand expected inaccuracies.

Suppose I want to assess the inaccuracy of my friend Ritas credence
distribution. We'll simplify matters by stipulating that Rita assigns only two
credence values, crp(X) = 0.7 and crp(Y) = 0.6. Stipulate also that I am going
to use the absolute-value score for inaccuracy measurement. We know from
Equation (10.3) that if X and Y are both true, Rita’s I, ;¢ score is 0.7. The trouble
is, I'm not certain whether X or Y is true; I assign positive credence to each
of the four truth-value assignments over X and Y. The table below shows my
credence distribution (cr) over the four possibilities—which is distinct from
Rita’s:

X | Y| er | Lyerg,*)
w, | T|T |01 0.7
w, | T|F|o02 0.9
ws | F|T103 1.1
wy | F| F]04 1.6
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The last column in this table shows the inaccuracy of Rita’s distribution in
each of the four possible worlds according to the absolute-value score. If X
and Y are both true, her inaccuracy is 0.7; if X is true but Y is false, it’s 0.9; etc.

The table tells me the inaccuracy of Rita’s distribution in each possible world.
I can’t calculate her actual inaccuracy, because I'm not certain which possible
world is actual. But I can calculate how inaccurate I expect Rita’s distribution
to be. The inaccuracy of a credence distribution is a numerical quantity, and
just like any numerical quantity I may calculate my expectation for its value.
My expectation for the I, value of Rita’s distribution crp is:

EIcr(CrR) = IABS(CrR7 601) : Cr(wl) + IABS(CrR’ 502) . Cr(wz)
+ IABS(CrR5 CU3) : Cr(wa) + IABS(CrR5 C’)4) ’ CI‘(CU4) (10.5)
=07-014+09-02+1.1-034+16-0.4=1.22

For each world, I calculate how inaccurate cry would be in that world, then
multiply by my credence cr that that world is actual.'® Finally, I sum the results
across all four worlds. Notice that because I'm more confident in, say, worlds w;
and w, than I am in worlds w; and w,, my expected inaccuracy for Rita’s distri-
bution falls near the higher end of the values in the fourth column of the table.

In general, if an agent employs the scoring rule I to measure inaccuracy, the
agent’s credence distribution is cr, and the finite set of worlds under consider-
ation is {wy, w,, ..., w,}, the agents expected inaccuracy for any distribution
cr’ is:

Bl (cr') = I(cr’, ;) - cr(w;) + I(cr’, w,) - cr(w,) + ... +1(cr’, w,) - cr(w,)
(10.6)

This equation generalizes the expected inaccuracy calculation of Equation
(10.5) above. The notation EI_(ct’) indicates that we are calculating the
expected inaccuracy of credence distribution cr’, as judged from the point of
view of credence distribution cr.”®

Equation (10.6) allows me to calculate my expected inaccuracy for any
credence distribution, probabilistic or otherwise. If I wanted, I could even
calculate my expected inaccuracy for my own credence distribution. That is,
I could calculate EI  (cr). But this calculation is fraught. When I calculate
my expected inaccuracy for my own current credences and compare it to the
inaccuracy I expect for someone else’s credences, I might find that I expect
that other distribution to be more accurate than my own. We will say that

distribution cr’ defeats cr in expectation if
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El(cr") < EI (cr) (10.7)

Your credence distribution defeats mine in expectation when, from the point
of view of my own credence distribution, I expect yours to be less inaccurate
than mine.

Being defeated in accuracy expectation is not quite as bad as being accuracy-
dominated. Being defeated in expectation is kind of like having a twin sister
who takes all the same classes as you but has a better GPA. (Being accuracy-
dominated is like your twin’s getting a better grade than you in every single
class.) Still, being defeated in expectation is a rational flaw. Joyce writes:

If, relative to a person’s own credences, some alternative system of beliefs
has a lower expected epistemic [inaccuracy], then, by her own estimation,
that system is preferable from the epistemic perspective. This puts her in
an untenable doxastic situation. She has a prima facie epistemic reason,
grounded in her beliefs, to think that she should not be relying on those very
beliefs. This is a probabilistic version of Moore’s paradox. Just as a rational
person cannot fully believe “X but I don’t believe X,” so a person cannot
rationally hold a set of credences that require her to estimate that some other
set has higher epistemic utility. [Such a] person is...in this pathological
position: her beliefs undermine themselves, (2009, p. 277)

The idea that rational agents avoid being defeated in expectation is related to
our earlier weather-forecaster discussion of stability and credence elicitation.
Lewis (1971) calls a distribution that assigns itself the highest expected accu-
racy immodest. (“When asked which method has the best estimated accuracy,

the immodest method answers: ‘T have’”) He then relates immodesty to an
agent’s epistemic goals:

If you wish to maximize accuracy in choosing a [credence-assignment]
method, and you have knowingly given your trust to any but an immodest
method, how can you justify staying with the method you have chosen? If
you really trust your method, and you really want to maximize accuracy, you
should take your method’s advice and maximize accuracy by switching to
some other method that your original method recommends. If that method is
also not immodest, and you trust it, and you still want to maximize accuracy,
you should switch again; and so on, unless you happen to hit upon an
immodest method. Immodesty is a condition of adequacy because it is a
necessary condition for stable trust. (1971, p. 62)
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These arguments from Joyce and Lewis support the following principle:

Admissibles Not Defeated: If an agent’s credence distribution is rationally
permissible, and she measures inaccuracy with an acceptable scor-
ing rule, then there will not exist any distribution that she expects
to be more accurate than her own.

Admissibles Not Defeated says that under an acceptable scoring rule, no
credence distribution that is rationally permissible will take itself to be defeated
in expectation by another distribution.?

Admissibles Not Defeated relates two elements: a credence distribution
and a scoring rule. If we've already settled on an acceptable scoring rule,
we can use Admissibles Not Defeated to test the rational permissibility of
a credence distribution. But we can also argue in the other direction: If we
know a particular credence distribution is rational, we can use Admissibles
Not Defeated to argue that particular scoring rules are not acceptable.

For example, suppose I'm certain a fair die has just been rolled, but
I know nothing about the outcome. I entertain six propositions, one for
each possible outcome of the roll, and lets imagine that I assign each of
those propositions a credence of 1/6. That is, my credence distribution cr
assigns cr(1) = cr(2) = cr(3) = cr(4) = cr(5) = cr(6) = 1/6. This seems at least
a rationally permissible distribution in my situation.

But now suppose that, in addition to having this perfectly permissible
credence distribution, I also use the absolute-value scoring rule to assess
accuracy. I entertain six possible worlds—call them w; through wg, with the
subscripts indicating how the roll comes out in a given world. In world w,, the
roll comes out one, so tv,, (1) = 1 while the tv,, -value of each of the other
outcomes is zero. Thus we have

Lgs(er,w) =|1—-1/6/+5-]0—1/6] = 10/6 = 5/3 (10.8)
A bit of reflection will show that I,,.(cr, w,) through I,,.(cr, ws) also equal

5/3, for similar reasons. Recalling that I assign credence 1/6 to each of the six
possible worlds, my expected inaccuracy for my own credence distribution is

El(cr) = 6-(5/3 - 1/6) = 5/3 (10.9)

Next I consider my crazy friend Ned, who has the same evidence as me
but assigns credence 0 to each of the six roll-outcome propositions. That
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is, Ned’s distribution cry assigns cry(1) = cry(2) = cry(3) = cry(4) = cry(5) =
cry(6) = 0. How inaccurate do I expect Ned to be? Again, in wy, tv,, (1)=1
while the tv,, -value of each other outcome is 0. So

Las(cry, @) =1 -0/ +5-]0—0] =1 (10.10)

Similar calculations show that, as measured by the absolute-value score, in each
possible world Ned’s distribution will have an inaccuracy of 1. When I calculate
my expected inaccuracy for Ned, I get

EL(cry) =6-(1-1/6) =1 (10.11)

And now we run into a problem: 1 is less than 5/3. If I calculate inaccuracy
using the absolute-value rule, I will expect Ned’s distribution to be less inac-
curate than my own; my credence distribution is defeated in expectation by
Ned’s. Yet Ned’s distribution isn’t better than mine in any epistemic sense—
in fact, the Principal Principle would say that my distribution is rationally
required while his is rationally forbidden! Something has gone wrong, and it
isn't the credences I assigned. Instead, it’s the scoring rule I used to compare
my credences with Ned’s.

We can use this example to construct an argument against the absolute-
value score as an acceptable scoring rule. In the example, my credence dis-
tribution is rationally permissible. According to Admissibles Not Defeated, a
rationally permissible distribution cannot be defeated in expectation on any
acceptable scoring rule. On the absolute-value rule, my credence distribution
is defeated in expectation (by Ned’s). So the absolute-value scoring rule is not
an acceptable inaccuracy measure. (This argument is similar to an argument
we made against calibration as an accuracy measure, on the grounds that
calibration made perfectly rational forecaster credences look unstable and
therefore irrational.)

The Ned example cannot be used to make a similar argument against the
Brier score. Exercise 10.4 shows that if I had used the Brier score, I would have
expected my own credence distribution to be more accurate than Ned’s. In fact,
the Brier score is an example of a proper scoring rule:

Proper Scoring Rule: A scoring rule is proper just in case any agent with a
probabilistic credence distribution who uses that rule takes herself
to defeat in expectation every other distribution over the same set
of propositions.
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The absolute-value scoring rule is not proper. The Brier score is: a probabilistic
agent who uses the Brier score will always expect herself to do better with
respect to accuracy than any other distribution she considers.?! The Brier score
is not the only scoring rule with this feature. For the sake of illustration, here’s
another proper scoring rule:?

Log(cr, @) = [—log(l — [tve(X;) — cr(X)D] + ...

(10.12)
+ [~ log(1 — [tve, (X)) — er(X;,)]]

Historically, the Brier score has been favored over the absolute-value score
for inaccuracy measurement because Brier is a proper scoring rule.”? Of
course, propriety gives us no means of choosing between the Brier score and
other proper scores such as the logarithmic rule of Equation (10.12). But it
turns out we don’t need to. Predd et al. (2009) showed that a Gradational
Accuracy Theorem can be proven for any separable, proper scoring rule (not
just the Brier score). So, for instance, on the logarithmic scoring rule any
non-probabilistic credence distribution will be accuracy-dominated by some
probabilistic distribution over the same propositions, but no probabilistic
distribution will be dominated. The same is not true for the absolute-value
score. In fact, if you look back to the Crazy Ned example, youll find that
Crazy Ned’s non-probabilistic distribution accuracy-dominates my probabilis-
tic distribution cr. In each of the six possible worlds, I,,;(cry, @) =1 while
I,gs(cr,w)=5/3. On an improper scoring rule, a non-probabilistic distribu-
tion may accuracy-dominate a probabilistic one.

10.3.3 Are improper rules unacceptable?

We now have a clear argumentative path to probabilism. Suppose we establish
that all acceptable scoring rules are proper. Then, regardless of any further
distinctions we might make among the proper rules, it will turn out that all
nonprobabilistic credence distributions can be accuracy-dominated, while no
probabilistic distributions can be. Given Admissibles Not Dominated, we will
be able to establish that credence distributions violating the probability axioms
are irrational. So can we use propriety as an adequacy criterion for scoring
rules?

A proper scoring rule is one on which probabilistic distributions always
expect themselves to be more accurate than the alternatives. But why focus
on what probabilistic distributions expect? Inaccuracy measurement has many
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applications, and in many of those applications (including one we'll see in
Section 10.5) it is already assumed that probabilistic credence distributions
are rational. In such situations we want an accuracy measure that interacts
well with probabilistic distributions, so proper scoring rules are a natural fit,
and it’s traditional to apply the Brier score because of its propriety. But when
an inaccuracy measure is used to argue for probabilism—as in the Gradational
Accuracy Argument—it seems question-begging to privilege probabilistic dis-
tributions in selecting that scoring rule. For instance, our Crazy Ned argument
against the absolute-value score started by assuming that my probabilistic
distribution assigning credence 1/6 to each possible die-roll outcome was
rationally permissible. We then criticized the absolute-value score on the
grounds that it made that distribution look unstable and therefore irrational.
Yet this criticism looks circular in the course of a debate about the rational
status of credences satisfying the probability axioms.

In his (2009), Joyce moved from his old reasons for favoring the Brier score
to a new approach that explicitly begins with the rational permissibility of
probabilistic distributions. While I won't go into the specifics of that argument
here, it takes as a premise that given any numerical distribution satisfying the
probability axioms, there exists some situation in which it would be rationally
permissible for an agent to assign those values as her credences. Admittedly,
this premise—that probabilistic credences are rationally permitted—is weaker
than the ultimate conclusion of Joyce’s accuracy-dominance argument—that
probabilistic credences are rationally required. Still, without any independent
support for the premise, it feels like we're assuming the rationality of proba-
bilistic credences in order to prove the rationality of probabilistic credences. It
sounds like Linearity In, Linearity Out to me.*

Joyce does try to provide independent support for his premise. He argues
that for any probabilistic distribution, we could imagine a situation in which
an agent is rationally certain that those values reflect the objective chances of
the propositions in question. By the Principal Principle, the agent would then
be rationally required to assign the relevant values as her credences.

Yet recall our characters Mr. Prob, Mr. Bold, and Mr. Weak. Mr. Prob
satisfies the probability axioms, while Mr. Bold violates Finite Additivity by
having his credence in each proposition be the square-root of Mr. Probs
credence in that proposition. Mr. Bold happily assigns a higher credence to
every uncertain proposition than Mr. Prob does. In arguing for probabilism,
we look to establish that Mr. Bold’s (and Mr. Weak’s) credences are rationally
forbidden. If we could establish that rational credences must match the numer-
ical values of known frequencies or objective chances, then in many situations
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Mr. Bold’s distribution could be ruled out immediately, because frequencies
and chances must each be additive.”” But part of Mr. Bold’s boldness is that
even when he and Mr. Prob are both certain that a particular proposition has
a particular nonextreme chance, he’s willing to assign that proposition a higher
credence than its chance value. Mr. Bold is willing to be more confident of a
given experimental outcome than its numerical chance!

What if, when confronted with a fair die roll like the one in the Crazy
Ned example, Mr. Bold maintains that it is rationally impermissible to assign
a credence of 1/6 to each outcome? It's not that Mr. Bold disagrees with
us about what the chances are; it’s that he disagrees with us about whether
rationally permissible credences equal the chances.?® Faced with this position,
our argument against the absolute-value score could not get off the ground,
and would not favor the Brier score over absolute-value in constructing a
Gradational Accuracy Argument. Similarly, Joyce’s argument for his premise
would go nowhere, because Mr. Bold clearly rejects the Principal Principle.?’
While we might intuitively feel like Mr. Bold’s position is crazy, the accuracy-
based arguments against it are question-begging.

10.4 Do we really need Finite Additivity?

Let’s step back and take a broader view of the arguments discussed so far in
this chapter. Some authors don’t think accuracy considerations are central
to assessing doxastic attitudes for rationality. But among those who embrace
an accuracy-based approach, a few principles are uncontroversial. Everyone
accepts Admissibles Not Dominated, and most authors seem okay with Admis-
sibles Not Defeated. Everyone thinks accuracy measures should be truth-
directed, and most are on board with separability. Controversy arises when we
try to put more substantive constraints on the set of acceptable scoring rules.
In order to run a gradational accuracy argument for probabilism, we need to
narrow the acceptable scoring rules to the set of proper scores (or one of the
other restricted sets Joyce considers in his 1998 and 1999). But arguments for
such a restricted set often turn out to be question-begging.

What if we didn’t try to narrow the set so far—what if we worked only with
constraints on scoring rules that are entirely uncontroversial? In Exercise 10.3,
you'll show that as long as one’s scoring rule is truth-directed, Admissibles Not
Dominated endorses Normality and Non-Negativity as rational constraints
on credence. As usual, Finite Additivity is the most difficult Kolmogorov
axiom to establish. But an excellent (1982) paper by Dennis Lindley shows
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how close we can get to full probabilism without strong constraints on our
scoring rules.

Lindley assumes Admissibles Not Dominated, then lays down some very
minimal constraints on acceptable scoring rules. I wont work through
the details, but besides separability and Truth-Directedness he assumes
(for instance) that an acceptable scoring rule must be smooth—your score
doesn’t suddenly jump when you slightly increase or decrease your credence
in a proposition. Lindley shows that these thin constraints on scoring
rules suffice to narrow down the class of rationally permissible credence
distributions, and narrow it down more than just Normality and Non-
Negativity would. In fact, every rationally permissible credence distribution is
either probabilistic (it satisfies all three Kolmogorov axioms) or can be altered
by a simple transformation into a probabilistic distribution. The permissible
credence distributions stand to the probabilistic ones in something like the
relation Mr. Bold and Mr. Weak stand to Mr. Prob. Mr. Prob satisfies Finite
Additivity; Mr. Bold and Mr. Weak don't; but their credences can be converted
into Mr. Probs by a simple mathematical operation (squaring for Mr. Bold;
square-rooting for Mr. Weak).?

How should we interpret this result? One reading would be that, as long
as we rely exclusively on accuracy arguments, we will have to grant that
Mr. Bold and Mr. Weak, despite not satisfying Finite Additivity, have doxastic
attitudes just as rational as Mr. Probs. Rational requirements on credences
are stronger than just Normality and Non-Negativity—Lindley’s result isn’t
anything goes, and he describes some distributions that satisfy those two
constraints but are not transformable in the relevant manner into probabilities.
But the requirements we get from Lindley are not as strong as Finite Additivity,
and do not rule out Mr. Weak or Mr. Bold. So perhaps those characters are
perfectly rational, and Finite Additivity is not a rational requirement.

A second reading, however, would be that Mr. Prob, Mr. Bold, and
Mr. Weak aren’t really distinguishable characters; they don’t actually have
differing doxastic attitudes in any significant sense. We have stipulated that
upon hearing a fair coin was flipped, Mr. Prob assigns credence 1/2 to heads,
while Mr. Bold assigns 1/4/2 ~ .707. But do they have importantly different
outlooks on the world? Their distributions are ordinally equivalent—Mr. Prob
is more confident of X than Y just in case Mr. Bold is as well. And both of
them satisfy certain structural constraints, such as Normality, Non-Negativity,
and our credal Entailment rule. In real life these characters would think and
act in many of the same ways; a functionalist might argue that their doxastic
attitudes are identical.
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Perhaps Mr. Bold stands to Mr. Prob in much the same relation that
Fahrenheit measurements of temperature stand to Celsius. Representing tem-
peratures as numbers requires us to introduce a measurement regime, which
necessitates some arbitrary choice: what numbers should we assign to water’s
freezing point, to its boiling point, etc.? Whichever choices we make, the same
underlying kinetic phenomena are portrayed—they may contain different
numbers, but measurements of 0°C and 32°F describe the same state of the
world. Perhaps, instead of there being two different characters Mr. Prob
and Mr. Bold, the numerical credence distributions we've associated with
these characters are just two different representations of the same underlying
attitudes, utilizing two different measurement regimes. The relation between
measurement schemes wouldn’t be quite as straightforward as that between
Celsius and Fahrenheit; something more than an affine transformation is
involved. But from a mathematical point of view, getting from Mr. Prob’s
distribution to Mr. Bold’s is a simple affair. Lindley identifies a whole family of
numerical distributions that are simply transformable into probabilities, and
Mr. Bold’s is among them.

On this reading, Lindley’s result establishes Finite Additivity as a rational
requirement in the only way that could possibly matter. A rational agent’s
credences may be depicted by any one of a number of interrelated numerical
distributions, depending on the measurement conventions of the person doing
the depicting. To say that Finite Additivity is rationally required is to say that
at least one of these distributions satisfies it; it’s to say that a rational agent’s
attitudes are representable as additive, even if non-additive representations
are available as well. Lindley shows that, given minimal conditions on an
acceptable accuracy score, every admissible credence distribution either satis-
fies Finite Additivity or can be transformed into a distribution that does. And
there’s nothing more substantive than this to the claim that rationality requires
Finite Additivity.?

To argue against this reading, one would have to argue that there can
be significant, cognitive differences between an individual with Mr. Probs
credences and one with Mr. Bold’s. If that were the case, then the difference
between particular probabilistic and non-probabilistic distributions would not
come down to just a choice among measurement schemes. We would be able
to find individuals in the world who revealed through their thought, talk, or
action that they were like Mr. Bold but not Mr. Prob, and we could have a
meaningful conversation about whether their violation of Finite Additivity
revealed them to be irrational.
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In Chapter 1, I motivated the move from comparative to quantitative
confidence models by noting that agents with ordinally equivalent opinions
may nevertheless disagree on the relative sizes of confidence gaps. Given a
tautology, a contradiction, and the proposition that a fair coin came up heads,
Mr. Prob and Mr. Bold will rank these three propositions in the same order
with respect to confidence. But if we asked an agent like Mr. Prob, he might
say that he is more confident in heads than in the contradiction by the same
amount that he is more confident in the tautology than in heads. A Bold-
type wouldn’t say that. (Mr. Bold has a larger gap between heads and the
contradiction than he has between heads and the tautology.) These sorts of
conversations do happen in the real world; perhaps they establish the doxastic
differences we seek. Yet I worry about basing our case on agents’ self-reports
of their psychological states, which are notoriously unreliable. And I worry
especially about relying upon conversations we've observed in a culture like
ours, which teaches people to measure confidence on something like a linear
percentage scale from a very young age.

In Part III of this book, I suggested we assess Bayesian epistemology by
considering its applications; I focused especially on applications to confirma-
tion and decision theory. Differences in confidence gaps between ordinally
equivalent credence distributions may be highly significant when it comes to
decision theory. If I am offered a gamble that yields a small profit on P but
a major loss on ~P, my decision will depend not only on whether I find P
more likely than ~P, but also on how much more likely I find it. So practical
rationality may make confidence gap sizes observable in behavior.

Yet we saw in Chapter 8 that the differences between Mr. Probs and
Mr. Bold’s credence distributions can be practically neutralized if those agents
apply different valuation functions. If Mr. Prob combines his credences and
utilities to generate preferences by maximizing expected value, and Mr. Bold
combines his credences and identical utilities to generate preferences using
a different function, Mr. Prob and Mr. Bold will wind up with the same
preferences among acts. In that case, the numerical differences—including
confidence-gap differences—between Mr. Prob’s and Mr. Bold’s credences will
make no difference to how they behave. Moreover, Mr. Prob and Mr. Bold
will both satisfy the preference axioms that make decision theory’s account of
practical rationality appealing. So decision theory seems perfectly compatible
with reading Mr. Prob and Mr. Bold as just different representations of the
same acting individual.

The situation seems to me much more open-ended when it comes to
confirmation theory. As with decision theory, confirmation results depend
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not just on confidence rankings but also on quantitative relations among
numerical credence values. In Section 6.4.2 we investigated credence distri-
butions relative to which observing a black raven more strongly confirms the
hypothesis that all ravens are black than does observing a non-black, non-
raven. The Bayesian solution to the Ravens Paradox presented there describes
two conditions on such distributions (Equations (6.10) and (6.11)). The second
of those conditions is about the sizes of gaps—it asks whether learning a
particular hypothesis would change how much more confident you were in
one proposition than another. Despite their ordinal agreements, characters
like Mr. Prob and Mr. Bold have different ratios between their credences
in particular propositions. So Equation (6.11) might be satisfied by one of
them but not by the other. This means that if Mr. Prob and Mr. Bold apply
traditional Bayesian confirmation measures, they may disagree on whether
the ravens hypothesis is more strongly confirmed by a black raven or by a red
herring, which seems like a genuine difference in attitudes.*® Confirmation
is one of many non-decision-theoretic applications of Bayesian epistemology
(coherence of a belief set, measuring information content, etc.) where it seems
like confidence-gap sizes might make a real difference.

Perhaps in each of those applications we could play a trick similar to the one
we used in decision theory. In decision theory we compensated for Mr. Bold’s
non-additive credence distribution by having him use a non-standard valua-
tion function; the combination yielded act preferences identical to Mr. Probss.
What happens if Mr. Bold also uses a non-traditional confirmation measure?
Perhaps there’s an odd-looking confirmation measure Mr. Bold could apply
which, despite Mr. Bold’s credence differences with Mr. Prob, would leave
the two agents with identical judgments about confirmational matters.>! It’s
unclear, though, how such a non-traditional measure would stand up to the
arguments, intuitive considerations, and adequacy conditions that have been
deployed in the debate over confirmation measures. I know of no literature on
this subject.

Where does that leave Finite Additivity as a rational constraint? As it stands,
I think that applications of Bayesianism to theoretical rationality (how we
infer, how we reason, how we determine what supports what) have a better
chance of drawing real contrasts between Mr. Prob and Mr. Bold than practical
applications do. It’s also worth noting that Chapter 6’s confirmation-theoretic
results rely heavily on credence distributions’ actually satisfying Finite Addi-
tivity. So it may turn out that an appealing account of agents’ theoretical
judgments will assess those judgments as rational only if the agent’s attitudes
are genuinely probabilistic. But that is pure speculation on my part.
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10.5 An accuracy argument for Conditionalization

Up to this point we've considered accuracy-based arguments for only
synchronic Bayesian norms. We've found that establishing probabilism on
non-circular grounds is somewhat difficult. But if you've already accepted
probabilism, a remarkable accuracy-based argument for updating by
Conditionalization becomes available. The relevant result was proven by
Hilary Greaves and David Wallace (2006).>* We begin by restricting our
attention to proper scoring rules. Doing so is non-circular in this context,
because we imagine that we've already accepted probabilism as rationally
required. This allows us to appeal to the fact that proper scores are credence-
eliciting for probabilistic credences as a reason to prefer them.

Greaves and Wallace think of Conditionalization as a plan one could adopt
for how to change one’s credences in response to one’s future evidence. Imagine
we have an agent at time #; with probabilistic credence distribution cr;, who
is certain she will gain some evidence before #;. Imagine also that there’s a
finite partition of propositions {E;,E,,...,E,} in £ such that the agent is
certain the evidence gained will be a member of that partition. The agent can
then form a plan for how she intends to update—she says to herself, “If I get
evidence Ej, I'll update my credences to such-and-such’; “If I get evidence E,,
I'll update my credences to so-and-so”; etc. In other words, an updating plan
is a function from members of the evidence partition to cr; distributions she
would assign were she to receive that evidence. Conditionalization is the plan
that sets cr;(+) = cry(- | E,,) in response to learning E,, between t; and ¢;.

Next, Greaves and Wallace show how, given a particular updating plan,
the agent can calculate from her point of view at t; an expectation for how
inaccurate that plan will be.3®* Roughly, the idea is to figure out what credence
distribution the plan would generate in each possible world, measure how
inaccurate that distribution would be in that world, multiply by the agent’s
t; confidence in that possible world, then sum the results. More precisely, the
expectation calculation proceeds in six steps:

1. Picka possible world w to which the agent assigns nonzero credence at ¢;.

2. Figure out which member of the partition {E;, E,, ..., E,} the agent will
receive as evidence between ¢; and ¢ if @ turns out to be the actual world.
(Because possible worlds are maximally specified, there will always be a
unique answer to this question.) We'll call that piece of evidence E.

3. Take the updating plan being evaluated and figure out what credence
distribution it recommends to the agent if she receives evidence E
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between #; and #;. This is the credence distribution the agent will assign
at ; if w is the actual world and she follows the plan in question. We'll
call that distribution cr;.

4. Whichever scoring rule we've chosen (among the proper scoring rules),
use it to determine the inaccuracy of cr; if w is the actual world. (In other
words, calculate I(cr;, ).)

5. Multiply that inaccuracy value by the agent’s ¢; credence that w is the
actual world. (In other words, calculate I(cr;, @) - cry(w).)

6. Repeat this process for each world to which the agent assigns positive
credence at t;, then sum the results.

This calculation has the #; agent evaluate an updating plan by determining
what cr; distribution that plan would recommend in each possible world. She
assesses the recommended distibution’s accuracy in that world, weighting the
result by her confidence that the world in question will obtain. Repeating this
process for each possible world and summing the results, she develops an
overall expectation of how accurate her #; credences will be if she implements
the plan.
Greaves and Wallace go on to prove the following theorem:

Accuracy Updating Theorem: For any proper scoring rule, probabilistic
distribution cr;, and evidential partition in £, a t; agent who
calculates expected inaccuracies as described above will find Con-
ditionalization more accurate than any updating plan that diverges
from it.

The Accuracy Updating Theorem demonstrates that from her vantage point at
t;, an agent with probabilistic credences and a proper scoring rule will expect
to be most accurate at ¢; if she updates by Conditionalization. Given a principle
something like Admissibles Not Defeated for updating plans, we can use this
result to argue that no updating plan deviating from Conditionalization is
rationally acceptable.

Does this argument show that the agent is rationally required to update
by Conditionalization between f; and #? If she’s interested in minimizing
expected inaccuracy, then at ¢; she should certainly plan to update by
conditionalizing—of all the updating plans available to the agent at ¢;, she
expects Conditionalization to be most accurate. Yet being required to make
a plan is different from being required to implement it. Even if the agent
remembers at #; what she planned at #;, why should the ; agent do what her
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t; self thought best? Among other things, the #; agent has more evidence than
her ¢; self did.

This is the same problem we identified in Chapter 9 for diachronic Dutch
Strategy arguments. The Accuracy Updating Theorem establishes a synchronic
point about which policy a #; agent concerned with accuracy will hope her £ self
applies.> But absent a substantive premise that agents are rationally required
later on to honor their earlier plans, we cannot move from this synchronic point
to a genuinely diachronic norm like Conditionalization.

10.6 Exercises

Problem 10.1. 2 On each of ten consecutive mornings, a weather forecaster
reports her credence that it will rain that day. Below is a record of the credences
she reported and whether it rained that day:

Day 1 2 3 4 5 6 7 181 9 110
cr(rain) || 1/2 | 1/4 | 1/3 | 1/3 | 1/2 | 1/4|1/3 | 1| 1/2|1/4
Rain? Y N N N Y Y N |[Y| N N

Unfortunately, the forecaster’s reports turned out not to be perfectly calibrated
over this ten-day span. But now imagine she is given the opportunity to go
back and change two of the credences she reported over those ten days.?
What two changes should she make so that her reports over the span become
perfectly calibrated? (Assume that changing her credence report does not
change whether it rains on a given day.)

Problem 10.2. 29 Throughout this problem, assume the Brier score is used
to measure inaccuracy.

(a) Suppose we have an agent who assigns credences to two propositions,
X and Y, and those credences are between 0 and 1 (inclusive). Draw
a box diagram (like those in Figures 10.2, 10.3, and 10.4) illustrating
the possible distributions she might assign over these two propositions.
Then shade in the parts of the box in which cr(X) > cr(Y).

(b) Now suppose that Y X. Use your diagram from part (a) to show
that if an agent’s credence distribution violates the Entailment rule
by assigning cr(Y) > cr(X), there will exist a distribution distinct from
hers that is more accurate than hers in every logically possible world.
(Hint: When Y X, only three of the four corners of your box represent
logically possible worlds.)
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(c) In Exercise 9.2 we encountered Roxanne, who assigns the following
credences (among others) at a given time:

ct(A&B) =0.5 cr(A) = 0.1

Construct an alternate credence distribution over these two proposi-
tions that is more accurate than Roxanne’s in every logically possible
world. (Hint: Let A & B play the role of proposition Y, and A play the
role of X.) To demonstrate that you've succeeded, calculate Roxanne’s
inaccuracy and the alternate distribution’s inaccuracy in each of the
three available possible worlds.

Problem 10.3. #2 Assuming only that our inaccuracy scoring rule is truth-
directed, argue for each of the following from Admissibles Not Dominated:
(a) Non-Negativity
(b) Normality

Problem 10.4. # Return to the Crazy Ned example of Section 10.3.2, in which
you assign 1/6 credence to each of the six possible die roll outcomes while Ned
assigns each a credence of 0. This time we’ll use the Brier score (rather than the
absolute-value score) to measure inaccuracy in this example.

(a) Calculate the inaccuracy of your credence distribution in a world in
which the die comes up one. Then calculate Ned’s inaccuracy in that
world.

(b) Calculate your expected inaccuracy for your own distribution, then
calculate your expected inaccuracy for Ned’s distribution.

(c) How do your results illustrate the fact that the Brier score is a proper
scoring rule?

Problem 10.5. 2 Suppose that at t; an agent assigns credences to exactly four
propositions, as follows:

proposition | cr;
P&Q 0.1
P& ~Q 0.2
~P& Q 0.3
~P& ~Q | 0.4

The agent is certain that between #; and #;, she will learn whether Q is true or
false.
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(a) Imagine the agent has a very bizarre updating plan: No matter what
she learns between t; and tjs she will assign the exact same credences
to the four propositions at ¢; that she did at ;. Using the six-step process
described in Section 10.5, and the Brier score to measure inaccuracy,
calculate the agent’s expected inaccuracy for this updating plan from
her point of view at ¢;. (Hint: You only need to consider four possible
worlds, one for each of the four possible truth-value assignments to the
propositions P and Q.)

(b) Now imagine instead that the agent’s updating plan is to generate her
t; credences by conditionalizing her #; credences on the information
she learns between the two times. Calculate the agent’s #; expected
inaccuracy for this updating plan (using the Brier score to measure
inaccuracy once more).

(c) How do your results illustrate Greaves and Wallace’s Accuracy Updating
Theorem?

Problem 10.6. 229 In this exercise you will prove a limited version of
Greaves and Wallace’s Accuracy Updating Theorem. Suppose we have an agent
who assigns credences to exactly four propositions, as follows:
proposition | cr; | cr
P& Q s | w
P& ~Q t | x
~P&Q u |y
~P&~Q | v | z
where cr; is probabilistic and regular. Suppose also that the agent is certain at
t; that between then and # she will learn the truth about whether Q obtains.
Finally, assume the agent uses the Brier score to measure inaccuracy.

(a) If the agent updates by Conditionalization and learns Q between ¢; and
t;, what will be the values of w, x, y, and z (expressed in terms of s, £, u,
and v)?

(b) We will now systematically consider updating plans that diverge from
Conditionalization, and show that for each such plan, there exists an
alternative plan that the agent expects at t; to have lower inaccuracy.

To begin, suppose that the agent has an updating plan on which she
assigns a nonzero value to either x or z in the event that she learns Q
is true. Show that if we calculate expected inaccuracy using the six-step
process described in Section 10.5, she will expect this plan to have a

higher inaccuracy than the plan that assigns the same w through z values
in the event that she learns ~Q, the same w and y values if she learns Q,
but assigns 0 to both x and z if she learns Q.
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(A similar argument can be made to show that the agent should assign
w = y = 0 if she learns ~Q.)

(c) Your work in part (b) allows us to restrict our attention to updating
plans that assign x = z = 0 when Q is learned. Use the Gradational
Accuracy Theorem to argue that among such plans, for any plan that
has the agent assign a non-probabilistic #; distribution after learning Q,
there exists another plan that has her assign a probabilistic distribution
at ¢; after learning Q and that she expects to have a lower inaccuracy
from her point of view at £;.

(A similar argument can be made for the agent’s learning ~Q.)

(d) Given your results in parts (b) and (c), we may now confine our
attention to updating plans that respond to learning Q by assigning a
probabilistic ¢; distribution with x = z = 0. Suppose we hold fixed what
such a plan assigns when the agent learns ~Q, and test different possible
assignments to w and y when the agent learns Q. Find the values of w
and y that minimize the agent’s ¢; expected inaccuracy for her updating

plan.
(Useful algebra fact: A quadratic equation of the form f(k) = ak?* +
bk + c with positive g attains its minimum when k = :—b.)

(e) How do the results of parts (a) and (d) confirm Greaves and Wallace’s
point that updating by Conditionalization minimizes expected inaccu-
racy? (Notice that an argument similar to that of part (d) could be made
for a plan that disagrees with Conditionalization on what to do when the
agent learns ~Q.)

Problem 10.7.# Of the three kinds of arguments for probabilism we've
considered in this part of the book—Representation Theorem arguments,
Dutch Book arguments, and accuracy-based arguments—do you think any
of them succeeds in establishing requirements of rationality? Which type of
argument do you find most convincing? Explain your answers.

10.7 Further reading

INTRODUCTIONS AND OVERVIEWS

Richard Pettigrew (2013b). Epistemic Utility and Norms for Credences.
Philosophy Compass 8, pp. 897-908
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Eminently readable introduction to accuracy-based arguments for Bayesian
norms and particular arguments for probabilism and Conditionalization.

Richard Pettigrew (2016). Accuracy and the Laws of Credence. Oxford:
Oxford University Press

Book-length presentation of the entire accuracy program.

Crassic TexTs

Bas C. van Fraassen (1983). Calibration: A Frequency Justification for
Personal Probability. In: Physics Philosophy and Psychoanalysis. Ed. by
R. Cohen and L. Laudan. Dordrecht: Reidel, pp. 295-319

Abner Shimony (1988). An Adamite Derivation of the Calculus of Proba-
bility. In: Probability and Causality. Ed. by ].H. Fetzer. Dordrecht: Reidel,
pp. 151-61

Classic arguments for probabilism on calibration grounds.
Bruno de Finetti (1974). Theory of Probability. Vol. 1. New York: Wiley

Contains de Finetti’s proof of the mathematical result underlying Joyce’s
Gradational Accuracy Theorem.

James M. Joyce (1998). A Nonpragmatic Vindication of Probabilism. Philos-
ophy of Science 65, pp. 575-603

Foundational article that first made the accuracy-dominance argument for
probabilism.

Hilary Greaves and David Wallace (2006). Justifying Conditionalization:
Conditionalization Maximizes Expected Epistemic Utility. Mind 115,
pp. 607-32

Presents the minimizing-expected-inaccuracy argument for updating by
Conditionalization.
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ExTENDED DIiSCUSSION

James M. Joyce (2009). Accuracy and Coherence: Prospects for an Alethic
Epistemology of Partial Belief. In: Degrees of Belief. Ed. by Franz Huber
and Christoph Schmidt-Petri. Vol. 342. Synthese Library. Springer,
pp. 263-97

Joyce further discusses the arguments in his earlier accuracy article and various
conditions yielding privileged classes of accuracy scores.

Dennis V. Lindley (1982). Scoring Rules and the Inevitability of Probability.
International Statistical Review 50, pp. 1-26

Paper discussed in Section 10.4 in which Lindley shows that even with very
minimal conditions on acceptable accuracy scores, every rationally permis-
sible credence distribution is either probabilistic or can be converted to a
probabilistic distribution via a simple transformation.

Hannes Leitgeb and Richard Pettigrew (2010a). An Objective Justification
of Bayesianism I: Measuring Inaccuracy. Philosophy of Science 77, 201-35

Hannes Leitgeb and Richard Pettigrew (2010b). An Objective Justification of
Bayesianism II: The Consequences of Minimizing Inaccuracy. Philosophy
of Science 77, pp. 23672

Presents alternative accuracy-based arguments for synchronic and diachronic
Bayesian norms.

Kenny Easwaran (2013). Expected Accuracy Supports Conditionalization—
and Conglomerability and Reflection. Philosophy of Science 80, 119-42

Shows how expected inaccuracy minimization can be extended in the infinite
case to support such controversial norms as Reflection and Conglomerability.

Hilary Greaves (2013). Epistemic Decision Theory. Mind 122, pp. 915-52

Jennifer Carr (2017). Epistemic Utility Theory and the Aim of Belief. Philos-
ophy and Phenomenological Research 95, pp. 511-34

Selim Berker (2013). Epistemic Teleology and the Separateness of Proposi-
tions. Philosophical Review 122, pp. 337-93
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These papers criticize the teleological epistemology of accuracy-based argu-
ments for rational constraints.

Notes

1. In Chapter 9 I suggested that rational appraisals concern how things look from the
agents own point of view. (If's important that an agent be able to tell for herself that her
credences leave her susceptible to a Dutch Book.) An agent is often unable to assess the
accuracy of her own beliefs, since she lacks access to the truth-values of the relevant
propositions. This makes the a priori aspect of the argument for Belief Consistency
crucial—an agent with inconsistent beliefs can see from her own standpoint that at least
some of those beliefs are false, regardless of what contingent facts she may or may not
have at her disposal.

2. Small technical note: In the definition of calibration, we ignore values of x that the
distribution doesn't assign to any propositions. Shimin Zhao also pointed out to me
that, while we define calibration for any real x, an agent who assigns credences over a
finite set of propositions can be perfectly calibrated only if all of her credence values are
rational numbers!

3. Like so many notions in Bayesian epistemology, the idea of accuracy as calibration was
hinted at in Ramsey. In the latter half of his (1931), Ramsey asks what it would be for
credences “to be consistent not merely with one another but also with the facts” (p. 93).
He later writes, “Granting that [an agent] is going to think always in the same way about
all yellow toadstools, we can ask what degree of confidence it would be best for him to
have that they are unwholesome. And the answer is that it will in general be best for his
degree of belief that a yellow toadstool is unwholesome to be equal to the proportion
of yellow toadstools which are in fact unwholesome” (p. 97).

4, There’s also been some interesting empirical research on how well-calibrated agents’
credences are in the real world. A robust finding is that everyday people tend to be
overconfident in their opinions—only, say, 70% of the propositions to which they
assign credence 0.9 turn out to be true. (For a literature survey see Lichtenstein,
Fischoff, and Phillips 1982.) On the other hand, Murphy and Winkler (1977) found
weather forecasters’ precipitation predictions to be fairly well calibrated—even before
the introduction of computer, satellite, and radar improvements made since the 1970s!

5. This example is taken from Joyce (1998).

6. If you're a Regularity devotee (Section 4.2), you may think the forecaster shouldn’t
assign absolute certainty to snow—what she sees out the window could be clever
Hollywood staging! Setting the forecaster’s credence in snow to 1 makes the numbers in
this example simpler, but the same point could be made using an example with regular
credences.

7. Compare the practice in statistics of treating a proposition as a dichotomous random
variable with value 1 if true and 0 if false.

8. Notice that we're keeping the numerical values of the distribution cr constant as we
measure inaccuracy relative to different possible worlds. I, (cr, w) doesn’t measure the
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inaccuracy in world @ of the credence distribution the agent would have in that world.
Instead, given a particular credence distribution cr of interest to us, we will use Iy, (cr, w)
to measure how inaccurate that particular numerical distribution is relative to each of a
number of distinct possible worlds.

. In this chapter we will apply scoring rules only to credence distributions over finitely

many propositions. If you're wondering what happens when infinitely many proposi-
tions get involved, see (Kelley ms) for some important results and useful references.
Named after George Brier—another meteorologist!—who discussed it in his (1950).
Notice also that each X; contributes equally to the sum I (cr, ). Thus I, treats each
proposition to which the agent assigns a credence in some sense equally. If you thought
it was more important to be accurate about some X; than others, you might want to
insert constants into the sum weighting the (tv(X;) — cr(X;))? terms differently. The
main mathematical results of this chapter would go through even with such weightings;
this follows from a lemma called “Stability” at Greaves and Wallace (2006, p. 627).
The second part of the Gradational Accuracy Theorem stands to the first part much as
the Converse Dutch Book Theorem stands to the Dutch Book Theorem (Chapter 9).
Strictly speaking there are four world-types here, a world being assigned to a type
according to the truth-values it gives X and Y. But since all the worlds of a particular
type will enter into accuracy calculations in the same way, I will simplify discussion by
pretending there is exactly one world in each type.
Notice that a similar argument could be made for any cr lying outside the square
defined by w,, w,, w3, and ;. So this argument also shows how to accuracy-dominate
a distribution that violates our Maximum rule.

One might wonder why we need an argument that credence-values below 0 or above
1 are irrational—didn’t we stipulate our scale for measuring degrees of belief such
that no value could fall outside that range? On some ways of understanding credence,
arguments for Non-Negativity are indeed superfluous. But one might define credences
purely in terms of their role in generating preferences (as discussed in Chapter 8) or
sanctioning bets (as discussed in Chapter 9). In that case, there would be no immediate
reason why a credence couldn’t take on a negative value.
Suppose you assign credences to three propositions X, Y, and Z such that X and Y are
mutually exclusive and Z 3F X v Y. We establish X-, Y-, and Z-axes, then notice that
only three points in this space represent logically possible worlds: (0,0,0), (1,0,1),
and (0, 1, 1). The distributions in this space satisfying Finite Additivity all lie on the
plane passing through those three points. If your credence distribution cr violates Finite
Additivity, it will not lie on that plane. We can accuracy-dominate it with distribution
cr' that is the closest point to cr lying on the plane, If you pick any one of the three
logically possible worlds (call it w), it will form a right triangle with cr and cr’, with the
segment from cr to w as the hypotenuse and the segment from cr’ to w as a leg. That
makes cr’ closer than cr to w.
To give the reader a sense of how the second part of the Gradational Accuracy Theorem
is proven, I will now argue that no point lying inside the box in Figure 10.4 and on
the illustrated diagonal may be accuracy-dominated with respect to worlds w, and
ws. In other words, I'll show how satisfying Negation wards off accuracy domination
(assuming one measures inaccuracy by the Brier score).
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Start with distribution cr’ in Figure 10.4, which lies on the diagonal and therefore
satisfies Negation. Imagine drawing two circles through cr’, one centered on @, and
the other centered on w;. To improve upon the accuracy of ct’ in w,, one would have to
choose a distribution closer to @, than cr’ —in other words, a distribution lying inside
the circle centered on w,. To improve upon the accuracy of ct’ in s, one would have
to choose a distribution lying inside the circle centered on ws. But since cr’ lies on the
line connecting @, and ws, those circles are tangent to each other at ct’, so there is no
point lying inside both circles. Thus no distribution is more accurate than cr’ in both
w, and ws,

The dashed line is like a contour line on a topographical map. There, every point on a
given contour line lies at the same altitude. Here, every point on the dashed line has the
same level of inaccuracy.

Here 'm employing a convention that “cr(@;)” is the value cr assigns to the proposition
that X and Y have the truth-values they possess in world w;. In other words, cr(w,) is
the cr-value on the first line of the probability table.

Readers familiar with decision theory (perhaps from Chapter 7) may notice that the
expected-inaccuracy calculation of Equation (10.6) strongly resembles Savage’s formula
for calculating expected utilities. Here a “state” is a possible world w; that might be
actual, an “act” is assigning a particular credence distribution cr’, and an “outcome” is
the inaccuracy that results if w; is actual and one assigns cr’. Savagé’s expected utility
formula was abandoned by Jeffrey because it yielded implausible results when states
and acts were not independent. Might we have a similar concern about Equation (10.6)?
What if the act of assigning a particular credence distribution is not independent of the
state that a particular one of the w; obtains? Should we move to a Jeffrey-style expected
inaccuracy calculation, and perhaps from there to some analogue of Causal Decision
Theory? As of this writing, this question is only just beginning to be explored in the
accuracy literature, in articles such as Greaves (2013) and Konek and Levinstein (2019).
Notice that Admissibles Not Defeated entails our earlier principle Admissibles Not
Dominated. If distribution cr’ accuracy-dominates distribution cr, it will also have a
lower expected inaccuracy than cr from cr’s point of view (because it will have a lower
inaccuracy in every possible world). So being accuracy-dominated is a particularly bad
way of being defeated in expectation. (As in sports, it’s bad enough to get defeated, but
even worse to get dominated.) Admissibles Not Defeated says that permissible credence
distributions are never defeated in expectation; this entails that they are also never
dominated.

On a proper scoring rule, a probabilistic agent will always expect her own accuracy to
be better than that of any other distribution. On the absolute-value rule, a probabilistic
agent will sometimes expect other distributions to be better than her own. Some scoring
rules fall in the middle: on such rules, a probabilistic agent will never expect anyone else
to do better than herself, but she may find other distributions whose expected accuracy
is tied with her own. To highlight this case, some authors distinguish “strictly proper”
scoring rules from just “proper” ones. On a strictly proper scoring rule a probabilistic
agent will never find any other distribution that ties hers for accuracy expectation; a
merely proper rule allows such ties. I am using the term “proper” the way these authors
use “strictly proper”. For an assessment of how the distinction between propriety and
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strict propriety interacts with the results of this chapter and with varying notions of
accuracy dominance (such as “strong” vs. “weak” accuracy domination), see Schervish,
Seidenfeld, and Kadane (2009). For an argument that one’s commitments to propriety
and strict propriety should stand or fall together, see Campbell-Moore and Levinstein
(2021).

This rule is intended to be applied only to cr-values between 0 and 1 (inclusive).

To better understand the Brier score, we visualize it as the Euclidean distance between
two points in space. Strictly speaking, though, Euclidean distance is the square-root of
the Brier score. As long as we make only ordinal comparisons (whether one distribution
is more accurate than, or just as accurate as, another distribution in a given world), that
square-root doesn’t matter. So all the arguments in previous sections (including the
arguments that non-probabilistic distributions can be dominated) go through either
way. Byt square-roots can make a difference to expectation calculations. It turns out that
while the Brier score is a proper scoring rule, its square-root (the Euclidean distance)
is not.

From a Linearity-In, Linearity-Out point of view, Joyce’s (2009) argument does have
one advantage over attempts to favor the Brier score using propriety considerations. If
you're truly worried about making linearity assumptions in the process of establishing
probabilism, you might be concerned that Admissibles Not Defeated centers around
linear expectations of inaccuracy. Joyce’s (2009) argument runs from his premise to
probabilism using only Admissibles Not Dominated along the way, without invoking
Admissibles Not Defeated at all.

See note 4 in Chapter 5.

Compare Fine (1973, Sect. IIID).

See Héjek (2009a) for a very different kind of objection to Joyce’s argument.

Its worth comparing Lindley’s result to Cox’s Theorem (though the latter does not
invoke considerations of accuracy). Richard Cox (1946, 1961) laid down a set of
minimal constraints on an agent’s credence distribution, such as: the agent assigns
equal credences to logically equivalent propositions; the agent’s credence in ~P is a
function of her credence in P; her credence in P & Q is a function of her credence
in Q and her credence in P given Q; the latter function is twice differentiable; etc. He
then showed that any credence distribution satisfying these constraints is isomorphic
to a probabilistic distribution. For discussion of the mathematics, and of various
philosophical concerns about Cox’s conditions, see Paris (1994), Halpern (1999), Van
Horn (2003), and Colyvan (2004).

I'm inclined to read Lindley’s own interpretation of his result along these lines. For
one thing, Lindley titles his paper “Scoring Rules and the Inevitability of Probability”
For another, after noting on page 8 that Admissibles Not Defeated is a kind of Pareto
optimality rule, he writes that an agent who chooses any of the distributions permitted
by that rule and a minimally acceptable scoring rule is thereby “effectively introducing
probabilities”

The same goes for Bayesian results mentioned in Chapter 6, note 39 showing that a red
herring cannot confirm the ravens hypothesis to anything more than an exceedingly
weak degree. These results depend on particular credal differences and ratios being
“minute” in absolute terms, so they might go through for Mr. Prob but not for Mr. Bold
(or vice versa).
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Since Mr. Bold’s credences are the square-root of Mr. Probs, an obvious move would
be to take whatever confirmation measure Mr. Prob uses and replace all of its credal
expressions with their squares.

As well see, the Greaves and Wallace result focuses on minimizing expected inaccuracy.
For Conditionalization arguments based on accuracy-domination, see Briggs and
Pettigrew (2020) and Williams (ms). For an alternative expected-accuracy approach
to updating, see Leitgeb and Pettigrew (2010a,b).

Is important that Greaves and Wallace restrict their attention to what they call
“available” updating plans. Available plans guide an agent’s credal response to her
total evidence (including the evidence she imagines she'll receive); they do not allow
an agent to set her credences based on further factors not in evidence. For instance,
consider the updating plan according to which an agent magically assigns credence 1
to each proposition just in case it’s true and credence 0 just in case it’s false—even if
her evidence isn’t fine-grained enough to indicate the truth-values of all the relevant
propositions. This would be an excellent plan in terms of minimizing inaccuracy, but
itisn't a feasible updating strategy for an agent going forward. This updating plan does
not count as “available” in Greaves and Wallaces sense, and so does not compete with
Conditionalization for the most accurate updating plan.

Like Reflection, the resulting norm is a synchronic requirement on an agent’s attitudes
toward propositions about diachronic events.

Perhaps via time-machine?
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