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Chapter 9
Epistemic Logic
J.-]. Ch. Meyer

9.1. Introduction: A Brief History of Knowledge

Knowledge has been a subject of philosophical study since ancient times. This is not
surprising since knowledge is crucial for humans to control their actions and the
appetite for acquiring it seems innate to the human race. Philosophy, therefore, has
always occupied itself with the question as to the nature of knowledge. This area of
philosophy is generally referred to as epistemology from the Greek word for know-
ledge: episteme. Plato defined knowledge as “justified true belief,” and this definition
has influenced philosophers ever since; cf. Gettier (1963) and Pollock (1986).
Although sensible, this definition does not yet explain the nature of knowledge,
since all of the three notions of ‘justification’, ‘truth’, and ‘belief” are not yet clear
and still subject to discussion. It would go beyond the scope of our purposes here to
go into this at this moment, but it is touched on later in this chapter.

Further issues concerning knowledge include the question of how it comes to us.
There is the controversy between rationalists, such as Plato and Descartes, who
argued that knowledge only comes via reason(ing), and empiricists, such as Locke
and Hume, who maintained that knowledge derives from sense experience. Kant
considered categories of analytical knowledge (‘derivable by purely logical argument’)
versus synthetic knowledge (where this is not the case) and of & posteriori knowledge
(based on experience) versus a priori knowledge (where this is not the case), which
led to a big debate whether synthetic a priori knowledge is possible.

As is the case with so many things, in the twentieth century, the notion of
knowledge became amenable to formal-logical analysis. With the development of
formal mathematical logic in the second half of the nineteenth century, the formal
approach also became available to the study of philosophical notions such as time,
necessity, obligation, and also knowledge itself. Most of these logics are collected
under the heading of modal logics, namely logics of certain modalities such as
necessity and possibility. [See chapter 7.] While (formal) modal logics had been
around since the publication of C. I. Lewis’ (1912) paper on an axiomatic approach
of strict implication, the inception of formal modal epistemic logic is often taken to
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J.-J. Ch. Meyer

be Hintikka’s (1962). The period 1912 up to the 1950s are referred to by Bull and
Segerberg (1984) as the ‘First Wave’ of (formal) modal logic, where syntactic and
algebraic approaches were prevailing, while the period of roughly 1950-80, where
the focus shifted towards model-theoretic semantic approaches, is referred to as the
‘Second Wave’. Hintikka’s work marks the beginning of this Second Wave. In this
chapter, however, epistemic logic is treated as a particular modal logic and models
are considered that have become standard for modal logics in general, namely so-
called Kripke models, based on the work by Kripke (1963), another leading figure
in the Second Wave of formal modal logic. These models employ the notion of a
possible world dating back to the philosopher and mathematician Leibniz. Carnap,
Prior and Kanger also contributed to coining the notion of a possible world model
(Bull and Segerberg, 1984).

In the 1980s, computer scientists and researchers in the area of artificial intelli-
gence (Al) picked up the subject of epistemic logic as a means to reason about the
knowledge ascribed to processors in processes of computation and that of knowledge-
based systems, such as advanced databases, expert systems and so-called agent-
oriented systems, respectively. (In an important sense, this work belongs to a kind of
“Third Wave’ of modal logic: the use of modal logics in application areas such as
computer science, linguistics and Al.) This chapter reviews briefly their contributions
to epistemic logic and its application, since these concentrate on slightly different
but also quite interesting aspects of knowledge, and their work also, in its turn, has
influenced philosophers again. (Moreover, links were established with another inter-
esting area of Al — nonmonotonic reasoning — which has some definite relations
with philosophy as well [see chapter 15].)

9.2. The Modal Logic Approach to Knowledge

This section looks at the basic idea behind modal epistemic logic: modeling know-
ledge or rather ignorance (as shall be seen) by means of accessibility relations as they
are present in Kripke models.

To prepare for the formal treatment, first consider the following situation. Imag-
ine a person in Amsterdam wondering what the weather is like in New York (pos-
sibly since a friend of his is there on holiday), in particular whether it is raining in
New York. Since he has no information pertaining to this (and clearly cannot obtain
this information by direct observation — unless he is clairvoyant or has access to an
internet site with this information, which is assumed not to be the case), this person
will consider two possible situations, one in which it rains in New York, and one in
which this is not the case. Note that the lack of knowledge of an agent can be
represented as the agent’s considering a number of situations as possible. In this
example, there are only two such possible situations, resulting from being ignorant
about one propositional item, but clearly, it one lacks knowledge about more items,
the number of possible situations that are held possible will increase. Generally, if
one has ignorance about the truth of # propositional atoms, one has to consider 2”
situations. For example, if one totally lacks knowledge about whether it rains in New
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York (p) and whether it rains in Los Angeles (g), one has to reckon with four
situations: one in which both p and g are true, one in which p is true and g4 is false,
one in which p is false and g is true, and one in which both p and g are false. Since
the situations to be considered stem from (lack of) knowledge, they are called
epistemically alternative worlds or shortly epistemic alternatives.

The idea of considering several epistemic alternatives in case one has not complete
knowledge about the situation at hand can be molded perfectly into the framework
of Kripke-style possible world semantics. Assume a set 72 of propositional atoms. Use
the symbols T and F for the truth values (true and false, respectively). Formally a
Kripke model is a structure of the form:

Definition 9.1 A Kripke model is a structure M of the form (S, 7, R), where

e §is a non-empty set (the set of possible worlds);

e 1:S8—>P—{T, F} is a truth assignment function to the atoms per possible
world;

e R C S§SxS§is the knowledge accessibility relation.

By means of a Kripke model, one can represent exactly what an agent considers as
the epistemic alternatives in a certain situation: given a situation (represented again
by a possible world s € ), the epistemic alternatives for the agent are given by the
set {t € S| R(s, t)}, i.c. all possible worlds ¢ that are accessible from s by means of the
relation R.

Thus the example above can be represented in a Kripke model as follows;
see figure 9.1. Suppose that the actual situation at hand (which the agent does not
have complete knowledge about) is that it rains in New York but not in LA,
represented by a state 5, € S for which it holds that 7(s)(p)=T and n(s;)(gq) =F.
Now the model can be represented by taking S= {5, 5, 5, 55}, where & is such that
7(s)(p) = m(5)(q) =T, s is as above, s, is such that 7(s,)(p) = F and 7(s,)(g) =T, and
s; is such that 7(s;)(p) = 7(s;)(gq) = F. The relation R of the model is given by R(s, #)
for every t € S. To represent that the agent has more information in situation s,
e.g., that the agent knows that it is raining in LA (perhaps because the situation is so
unusual that it has been on the news), the relation R in the model can be extended
by stipulating R(s,, ¢) for t=s,, 5,. Now the agent has no doubt anymore about the
truth of proposition g, but is still ignorant about the truth value of proposition p.

Figure 9.1
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On the basis of the Kripke models a modal logic of knowledge can be devised.
To this end, introduce a modal operator K, to be interpreted as ‘it is known that,’
and give it a formal semantic by a clause: for Kripke model M=(S, 7, R) and s € §,

M, sk Ko iff (if and only if) for all # with R(s, #) it holds that M, sk ¢

This clause states that, in a possible world s, it is known (by the agent) that the
formula @ is true ift @ is true in all the worlds ¢ that the agent deems epistemic
alternatives. In other words, although one may have doubts about the true nature of
the world (if one considers more than one epistemic alternative as possible), one has
no doubts about the truth of ¢: this formula holds in all epistemic alternatives.
Thus, it can really be said that, in this case, one knows the formula ¢.

To complete the logic, assume that, besides propositional atoms from 7, formulas
can also be composed by means of the usual propositional connectives — (not),
A (and), v (or), — (implication) and <> (bi-implication), with their usual semantics,
such as, e.g.,

M, sE =@ iff not M, sk @
M, sE @A yift M, sk @and M, sk y

Propositional atoms p € P are, of course, interpreted by using the truth assignment
function

M, sk piff n(s)(p)=T

Finally, a formula ¢ in this logic is said to be valid, notation F ¢, if M, sF @ for all
Kripke models M=(S, m, R) and all s € §.

By interpreting the operator K in the above way, one directly obtains a number of
validities:

Proposition 9.1

1 FEK(lo— yw) - (Kp— Ky)
2 If E ¢ then F Ko

This proposition says that by modeling knowledge in this way, it is closed under
logical consequence. Furthermore, validities are always known. With respect to an
idealized notion of knowledge, these properties are certainly defensible. For more
practical purposes (when using the notion of knowledge in certain applications, e.g.,
describing the knowledge of human or artificial beings such as robots) they may be
undesirable. In this case, one may speak of the so-called problem of logical omniscience,
discussed in section 9.5 below. For the time being, one accepts these properties of
knowledge, and wonders what other properties knowledge should satisfy.

Finally in this section, note that the valid formulas with respect to the class of
Kripke models that have been introduced here can be axiomatized by the following
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Hilbert-style system (called system K in the literature of modal logic), consisting of
the axioms:

(P) any axiomatization of propositional logic

(K) K(o— y) = (Ko — Ky)
and rules modus ponens (MP) and

(Ny)  o/Ko

The validity (K) is generally referred to as the K-axiom, while rule Ny is called the
necessitation rule.

Technically, one can show that this system K is sound and complete with respect to
the class of all Kripke models, which states that the set of theorems in this system is
exactly the set of validities (with respect to the class of all Kripke models). Since the
proof of this is rather technical, it is omitted here, but it can be found in many
textbooks on modal logic; see, for example, Chellas (1980), Hughes and Cresswell
(1984) and Meyer and van der Hoek (1995), [and chapter 7].

9.3. The Systems T, S4, and S5

As seen in section 9.2, the notion of knowledge, as captured by a modal logic based
on Kripke models of the form introduced there, satisfies certain properties. However,
some properties that intuitively hold of knowledge are not validities in this setting.
For instance, one of the defining properties of knowledge is that it is z7ue! That is,
in a formula: K¢ — ¢, if it is known that ¢ then ¢ must be true. This formula,
however, is not a validity in the framework given thus far [see chapter 7].

This can be remedied, however, by putting constraints on the class of Kripke
models being considered. By stipulating that the accessibility relation R is reflexive,
i.c., satisfies the constraint R(s, s) for all s € §, then the formula K¢ — ¢ becomes
valid with respect to this new class of models.

Proposition 9.2 Any Kripke model M=(S, n, R) where R is reflexive, satisfies
ME Ko — .

Extending system K of the previous section with axiom K¢ — ¢ gives the system
referred to as system T. This system can be shown to be sound and complete with
respect to the new class of models, i.e. the class of all Kripke models in which the
accessibility relation is reflexive ([see chapter 7]; see also Chellas (1980), Hughes
and Cresswell (1984), and Meyer and van der Hocek (1995).)

Furthermore, it would also be reasonable to have a property stating that know-
ledge is known itself, expressed by the formula K¢ — KK¢: if one knows ¢, then
one also knows that one knows ¢. This formula is not a validity in the setting
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presented thus far either. But, again, constraints on the class of Kripke models can
be introduced to overcome this difficulty. If the accessibility relation R in a model
M={(S, m, R) is required to be transitive, i.c., satisfics the constraint that

R(s, t) A R(t, u) = R(s, u)

for all 5, £, € S, then the formula K¢ — KK¢ becomes a validity with respect to
this class of models.

Proposition 9.3 Any Kripke model M= (S, m, R) where R is transitive, satisfies
ME Ko — KKo.

Extending the system T with axiom K¢ — KK gives a system called S$4, which is
a well-known axiom system for knowledge (at least in philosophy). The axiom is
called the positive introspection axiom, since it states something about the agent’s
own knowledge about knowledge. Again, it can be shown that S$4 is sound and
complete with respect to models with accessibility relations that are reflexive and
transitive ([see chapter 7]; see also Chellas (1980), Hughes and Cresswell (1984)
and Meyer and van der Hoek (1995).)

Now one can ask the question whether there is more to knowledge? Can further
properties of knowledge be identified? This issue will be discussed later, but first it is
relevant to mention here that in computer science and Al, where epistemic logic is
employed to describe the ‘knowledge’ of artificial systems like (distributed) compu-
ter systems, information systems and ‘intelligent’ systems such as ‘agent systems’ and
robots (Meyer and van der Hoek, 1995), it is customary to also add another axiom,
which says something about knowledge of ignorance.

This axiom is called the negative introspection axiom:

K¢ > K—Ko

It states that if the agent does not know formula ¢, then it knows that it does not
know ¢@. Of course, for human agents this axiom is highly unlikely to hold in
general, since one may not even be aware of one’s not knowing ¢. However, for
some artficial agents, dealing with finite information, like only a finite set 7 of
propositional atoms and a finite set of formulas that it knows, the truth of this axiom
may be argued (informally) like this: if the artificial agent does not know a formula,
then this formula does not follow from the agent’s finite information, and the agent
is able to detect this, so that it knows that it does not know the formula. Also, in
some cases, the validity of the axiom follows directly from the special kind of models
that is used in applications — as in the case of using epistemic logic in distributed
systems, cf. Halpern and Moses (1990) and Meyer and van der Hoek (1995).

To cater to the validity of the negative introspection axiom, one has to constrain
the (accessibility relations of the) Kripke models even further. One can show that by
requiring the relation R to be an equivalence relation, namely a relation that satisfies
the three properties:
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*  Reflexivity: R(s, s) for all s€ S
o Transitivity: R(s, t) A R(t, ) = R(s, ) for all s, £, n € §
e Symmetry: R(s, t) = R(t, s) forall s, t€ §

one obtains that the negative introspection axiom as well as all axioms of system S4
are valid with respect to this new class of Kripke models. (And, of course, also the
rules of modus ponens and necessitation remain sound.)

The new system is known as S5, and, as noted above, is very popular among
computer scientists who use epistemic logic." One of the reasons is the very intuitive
interpretation of the models with equivalence relations as accessibility relations that
are briefly discussed below. For the reason given before, philosophers do not regard
S5 as a correct logic for knowledge. They usually stick to S4, and possibly some
logics in between S4 and S5. The system S5 can be shown sound and complete with
respect to the class of Kripke models in which the accessibility relations are equi-
valence relations ([see chapter 7]; see also Chellas (1980), Hughes and Cresswell
(1984), and Meyer and van der Hoek (1995).)

Equivalence relations divide the set of possible worlds into equivalence classes, the
members of which are all mutually accessible. An equivalence class is, so to speak, a
bunch of worlds that are epistemic alternatives of each other. One can show that in
the case that one has only one knowledge operator as here, one can restrict oneself
to equivalence relations with only one equivalence class without losing soundness
and completeness of the logic. Such a model is particularly simple: it just consists of
a set of states which are #// mutually accessible, or speaking in epistemic terms: are
all each other’s epistemic alternative. So, in such a case, it does not matter what is
the actual world where one is considering alternatives: for each world there is exactly
the same set of alternatives: the whole set S of possible worlds (Meyer and van der
Hoek, 1995).

A final note: as can be verified — see, for example Meyer and van der Hoek (1995)
— the system S5 contains a redundancy: the positive introspection axiom can be
deleted since it can be derived from the other axioms together with the rules.
Nevertheless, in the sequel when speaking about the system S5, it is convenient to
include the positive introspection axiom as well.

9.4. Belief: The Systems K45 and KD45

Belief is mostly regarded as a weaker form of knowledge (but see later in section
9.6.2). The crucial difference between knowledge and belief is that the former must
be true whereas the latter need not. When considering properties (axioms) of belief
rather than knowledge, those of knowledge can be copied except for the one stating
that knowledge is true. Mostly, the modal operator for belief is denoted B: B is
read as ‘it is believed that ¢ or ‘the agent believes that ¢.” Copying the system S5
without the ‘truth axiom’ for belief gives the system known as K45:

e any axiomatization of propositional logic
* Blo—=y)— (Bp— By)
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e Bop— BBop
e —Bp— B-Bg

and rules modus ponens (MP) and

(Np)  @/Bo

The class of Kripke models with respect to which system K45 is sound and
complete consists of those models in which the accessibility relation R (now used to
interpret the operator B, of course) is transitive and Euclidean, the latter meaning
that R satisfies:

R(s, t) A R(s, u) = R(t, u)

for all s, #, u, € §; ([see chapter 7], also Meyer and van der Hoek (1995).)

Mostly, also it is stipulated that beliefs should be consistent, in a formula:
—B(p A —p), for some p € 7. Adding this formula to the system K45 as an axiom
(often called the D-axiom, since it was held a typical axiom of deontic logic [see
chapter 8]) yields the system KD45, or weak S5. This system can be proven sound
and complete with respect to Kripke models in which the accessibility relation is
transitive, Euclidean, and serial, where seriality of a relation R means that for all
s € § there exists £ € §such that R(s, £). This property expresses that, in any possible
world, the agent considers at least one epistemic alternative.

As with S5, it can be shown (Meyer and van der Hocek, 1995) that K(D)45 is
(sound and) complete with respect to a class of simpler models, in this case models
consisting of an ‘actual’ world 5, and a set § of worlds not including s, such that the
accessibility relation R satisfies R(s,, 5) for each s € S and R(s, ¢) for any 5, t € S. In
case one considers KD45, the set S is non-empty, whereas, in the case of K45, it
may be empty. This provides a neat picture which can be interpreted philosophically
in a very intuitive way: these simple models for K(ID)45-belief consist of an actual
world (representing the current state of the external world) together with a set of
epistemic alternatives, or put differently, an actual world and an (S5-)epistemic
model, which in the case of K45 may be empty (representing inconsistent belief).
In general, the actual world may have nothing to do with the epistemic model,
reflecting the fact that beliefs may be ‘counterfactual’ in the sense that they may be
false in reality.

Note: contrary to the case of S5 the positive introspection axiom for belief is noz
redundant in the systems K45 and KD45!

9.5. Logical Omniscience: The Problem and Some Solutions

As seen in a previous section, a modal approach to knowledge (and belief) based on
Kripke models of the kind as defined thus far yields that knowledge (belief) is closed
under logical consequence and that validities are known (believed) (proposition 9.1).
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In fact, there are a number of further properties, collectively called properties of
logical omniscience, since they have to do with some idealizations on the part of the
knowing (believing) agent (here [ stands for either the knowledge operator K or
the belief operator B):

Proposition 9.4

LO1: FOpAO(@p— y) —» Oy
LO2: Fo=FUOgp

LO3: Fo-v=FUp—- Uy

LO4: Fooy=FUeoo Uy

LO5: F(evOy) - O(ev v
LOG6: FOop—-O(evy)

LO7: F—=(OpaO—e)

Properties LO1 and LO2 were already mentioned in proposition 9.1 for K. More
precisely, LO1 says that if both ¢ and the implication ¢ — y is known (believed)
then also y is known (believed). LO3 is a similar property but slightly different: if
some formula ¢ is known (believed) then also everything (y) that is a logical
consequence is known (believed). LO4 says that logically equivalent formulas are
cither both known (believed) or both not known (believed). LO5 says that it both
¢ is known (believed) and y is known (believed) then also the conjunction of ¢ and
v is known. LOG6 says that if ¢ is known (believed) then it is also known (believed)
that @ or y. (In fact, this is a direct consequence of property LO3.) LO7 says that
it cannot be the case that both a formula and its negation is known (believed).

Sometimes, it is very convenient to consider these properties as true, but in some
more practical situations these formulas might be deemed unrealistic. For instance, it
is very unlikely that human agents will know (believe) all logical consequences of
their knowledge (beliefs) including all validities. Although at first sight a reasonable
property, even LO4 is unlikely to hold for human agents: imagine two logically
equivalent formulas both of length greater than 10 million characters. These formu-
las are not even parsable for the unfortunate agent, let alone known to be equiva-
lent! So, sometimes it is argued that on the grounds of the resource boundedness of
an agent one has to deny or at least weaken the properties LO1-LO7. However, this
is not as simple as it sounds. Recall that these validities are the very properties of
Kripke-style modal logic as expounded thus far. The formulas LO1-LOG6 are true of
all Kripke models. (LO7 can be denied by taking accessibility relations that are not
serial, as seen before. However, in the case of knowledge one is still stuck with this
property: the models that are associated with the systems S4 and S5 have reflexive,
and thus serial, accessibility relations.)

Therefore, to deny the above properties something ‘non-standard’ is needed. In
the literature (Thijsse, 1992; Meyer and van der Hoek, 1995) there appear quite a
number of approaches varying in ‘drasticality.” Three such approaches are presented
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here, starting with a rather radical method considering ‘non-standard’ Kripke models
in which nonstandard (‘impossible’) worlds are present. Here, the focus will be on
solving the logical omniscience problem for belzef rather than knowledge, since, in
the context of belief, the problem seems to be more pregnant.

9.5.1. Rantala models

Rantala models are a non-standard type of Kripke models in which, besides the
possible worlds, also so-called ‘impossible worlds® are incorporated (Rantala, 1982).
The idea behind these ‘impossible’ worlds is that, as the name suggests, strange
things may hold there: in these impossible worlds, anything may be the case, even
contradictions may be true there! Thus these worlds are impossible in the true sense
of the word. However, they can nevertheless be regarded as epistemic alternatives by
agents which are not ideal reasoners (are less rational). And this is exactly what is
needed to avoid the agent’s logical omniscience.

Formally, (epistemic) Rantala models are structures of the following kind (here £
stands for the whole logical language):

Definition 9.2 A(n epistemic) Rantala model is a structure M of the form
(S, o, T, §*), where

e Sis a non-empty set, the set of (possible and impossible) worlds;

e S§* C Sis the set of impossible worlds;

e o0:(8\S* > (P> {T, F})) U (S* > (L— {T, F})), a function assigning truth
to atoms on possible worlds, and truth to arbitrary formulas on impossible
worlds, is a truth assignment function to the atoms per state;

e TC SxSis the belief accessibility relation, for which seriality and Rantala-
model versions of transitivity and Euclidicity are required:?

1 foralls, z, n € S\S§* : R(s, t) & R(t, ) implies R(s, ), and for all s € S\§*,
t* € §* 1 R(s, t*) & o(¢*)(—=B— @) =T implies M, " F ¢ for some t' € §
with R(s, ¢).

2 foralls, £, u € S\S8* : R(s, t) & R(s, u) implies R(t, ), and for all s € S\S*,
t* € §* : R(s, t*) & o(¢*)(Bp) =T implies M, ¢’k ¢ for all ' € § with
R(s, t').

Formulas in possible worlds s € S\S*are interpreted in exactly the same way as in
Kripke models including the clause for the modal operator [:

M, sE Qe ift M, tF @ for every ¢t € § such that 1(s, 1)

However, in impossible worlds s* € §* every formula is regarded as atomic, and
given its truth value by means of the truth assignment function o:

M, s* F @ iff o(s*)(@)=T
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Thus, it may happen that for example, the formula p A —p is assigned the value T by
the function o in an impossible world s* € $*. Formulas are valid if they are true
in every possible world s € S\S* in any Rantala model M= (S, o, T, §*). This is very
understandable: the worlds in which one evaluates are the worlds from which one
takes up a stance and considers epistemic alternatives. Although these alternatives
may be ‘impossible,” the worlds of evaluation represent the actual world and thus
must be ‘possible’!

The feature of allowing for these impossible worlds gives one the possibility to
deny all of the formulas LO1-LO7, so that none of them are validities with respect
to Rantala models. For instance, consider the possibility of denying LO7 in Rantala
models. This is very easy: just by taking a model M=(S, o, T, §*) with S={s, s*},
S§* ={s*}, T={(s, s*), (s*, s%)}, and o(s*)(@) = o(s*)(—¢) =T. Then M, s Hp A =g,
i.e., M, sF =LO7. Moreover by stipulating that o(s*)(¢ v —¢) =F one can deny the
validity of LO2, since now M, s¥ (¢ v —¢). In the same way, the other logical
omniscience properties can be denied. Finally, note too that, due to the condition of
‘Rantala-transitivity’ on the model, the positive introspection axiom is a validity
again, as can be easily verified.

9.5.2.  Sieve models

The second approach to avoiding logical omniscience of the agent is quite different.
Again a variation of a standard Kripke model is employed, but now instead of
introducing nonstandard worlds, the model is endowed with a function 4 that acts
as a kind of sieve: it determines whether some formula is allowed to be known
(believed) (Fagin and Halpern, 1988). Intuitively, the function 4 expresses some
kind of awareness on the agent’s part: it indicates whether the agent is aware of the
formula at hand in a particular situation (world), and thus is amenable to be known
(believed) by the agent in that world.

Formally these models have the following form (again, use £ for the whole logical
language):

Definition 9.3 A(n epistemic) sieve model is a structure M of the form (S, x, 7,
4), where

e §is a non-empty set (the set of states or possible worlds);

e 1:85— (P—{T, F}) is a truth assignment function to the atoms per state;

e T C SxS§is the belief accessibility relation, which is assumed to be serial,
transitive and Euclidean again;

e 4:85— (L) is the awareness function, assigning per state the set of formulas
that the agent is aware of; for any s€ §, A(s) is assumed to contain all
instances of the D-axiom and the introspection axioms.

Let the language contain an ‘awareness’ operator A as well as the epistemic operator .
These are interpreted on a sieve model M=(S, &, T, 4) and a state s € § as follows:

M, sk A iff ¢ € A(s)
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and
M, sk Qe iff ¢ € d(s) & M, tF ¢ for all ¢ such that T(s, 2)

So from the definition, one can see how indeed the function 4 acts as a sieve: only
those formulas are considered as knowledge (beliefs) that are indicated as being
aware of by it. By the condition put on this function (which states something like
that the agent is aware of the D-axiom and both introspection axioms), and the fact
that the rest of the model is a standard KD45 model, it is easy to see that these
axioms are validities again.

Since the sieve model approach can only filter out formulas to be known (believed),
by this approach only the validities LO1-LO6 can be avoided. This is obvious by
taking a model that contains a possible world s where the formula to be denied,
say Y, is not being aware of, namely take 4 such that y & A(s). Then immediately
M, s¥ Ay, and hence M, s¥ Oy. This can be used to show that LO1-LOG6 are
not valid.

9.5.3.  Cluster models

Finally, here is a method with which one can avoid LO7 while still keeping the
axiom D (or, in semantical terms, keeping serial accessibility relations). This method
is strongly related to the use of what Chellas (1980) calls minimal models for so-
called non-normal modal logic, and goes back to so-called neighborhood semantics
by Scott (1970) and Montague (1974 [1968]). Chellas was mainly interested in
applying it to deontic logic, but something very similar was re-invented by Fagin
and Halpern (1988) in the context of epistemic logic and dubbed local reasoning by
means of cluster models.

Cluster models are variants of standard Kripke models in the sense that instead of
a set of epistemic alternatives a set of sets of epistemic alternatives is incorporated in
the models. The intuition behind this is that what is normally the set of epistemic
alternatives (as viewed from an actual world) is partitioned in subsets (‘clusters’),
where these clusters correspond to coherent bodies of knowledge while two clusters
can be mutually incoherent. The typical example of such a partition of knowledge
(represented by a set of epistemic alternatives) is the theory of mechanics in physics
which can be partitioned into classical mechanics and quantum mechanics, where
these two subtheories of mechanics are mutually inconsistent. Nevertheless, and this
is very important, it is perfectly rational for a physicist to consider both theories and
apply them when appropriate. [See also chapter 13, section 13.4.]

Formally, cluster models are defined as follows:

Definition 9.4 A cluster model is a structure M of the form (S, 7, C), where

e Sis a non-empty set (the set of possible worlds),

o 1:85— (P—{T, F}) is a truth assignment function to the atoms per state;

o (C:8—> p(p(S)), such that, for every s, C(s) is a non-empty collection of
non-empty subsets (clusters) of S.
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The belief operator may now be interpreted as follows:
M, sk Bo itt AT € C(s)VtE€ T M, tE ¢

Validity is defined as usual again.

With this interpretation of belief, one may now indeed deny LO7: take a model
M=(S, m, C), with S={s, #}, C(s)={{s}, {#}}, and 7(s)(p) =T, n(#)(p)=F. Then M,
sE Bp A B—p, thus falsifying LO7. Note that, on the other hand, it is still the case
that 24, s¥ B(p A —p)!

Cluster models as defined above are not yet models of epistemic logic: they do
not yet satisfy the D-axiom and the two introspection axioms. Thijsse (1992) gives
necessary and sufficient conditions for turning cluster models into ‘epistemic cluster
models.” Since these are rather technical (they follow from a correspondence to
neighborhood semantics in the style of Scott—Montague, and have a topological
meaning), they are mentioned here without further comments.

Let C'(s) be defined as the set {X| T'C X for some T € ((s)}. Then to cater for
the positive introspection axiom, impose the condition that

Xec ()= r|XEC'(n) € ()
and for the negative introspection axiom impose the condition

X&c(9= | XeEc'mec

9.6. Further Refinements and Extensions

Having looked at the ‘standard’ treatment of knowledge by means of the systems S4
and S5, this section discusses some of the more advanced systems that have been
proposed to deal with knowledge more adequately.

9.6.1.  Other systems for knowledge

Philosophers, who do not judge the system S5 as an adequate formalization of
knowledge, have asked whether it is possible to find a suitable system for capturing
the properties of knowledge that goes beyond $4, but stays ‘below’ S5, so to speak.
Indeed, such systems between S4 and S5 have been proposed (Lenzen, 1980;
Voorbraak, 1991, 1993). For instance, Lenzen (1980) observed that if one takes
knowledge to be true belief, i.e., defining

K'¢o=BopA @

where B satisfies the logic KD45, one obtains a logic for K’ that is known under the
name S4.4, which is the logic S4 together with the axiom

0 — (=K'-K'¢o— K'p)
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It is not directly obvious whether this property is intuitively a suitable one for
knowledge. Other candidate logics of knowledge include that of rationally believed
objective knowledge K”, defined as

K”¢p= Ko A By

where K is the usual S5-style type of knowledge and B is a KD45-type of belief.
This operator K” appears to be axiomatized by the logic S4F, which consists of the
system S4 extended with the axiom (using M” as the dual of K”)

(M"oA M"K"y) > K" (M"pv y)

See Voorbraak (1993). Finally; the concept of justified knowledge (K’) that is con-
sidered by Voorbraak (1993). By giving a careful and rather ingenious semantic
analysis of this notion by means of a generalized form of Kripke models, he argues
that the logic for this type of knowledge should be the system S$4.2, which consists
of S4 together with the axiom

M/Klp — KMo

(using M’ as the dual of KY).

9.6.2.  Systems for combining knowledge and belief

After having looked at the notions of knowledge and belief separately, it is natural to
question what the relations between these two notions are, and whether these rela-
tions may be formalized in a logical system. Such a system might then be used in cases
where it is important to distinguish between an agent’s knowledge and beliefs, and
reason about both these notions. A starting point of such a combined logical system
would be to take the logic S5 for knowledge (K) and add to it the logic KD45 for
belief (B). Of course, to make this a little more exciting, one should also add some
connecting axioms. Kraus and Lehmann (1986) have done so by adding the axioms®

Ko — Bo
Bp — KBg

The former expresses that knowledge is stronger than belief, whereas the latter
expresses that if one believes something then one knows that one believes this (a
kind of generalized form of introspection). In itself, these two axioms are rather
intuitive and seem innocuous. However, as Kraus and Lehmann (1986) themselves
observe, they would have also liked to include another intuitive axiom — Bgp — BK¢,
stating that one believes to know what one believes — but this would cause the
notions of knowledge and belief to collapse, since then K¢ <> Bp would become
derivable! This indicates that something is wrong with the intuitions. Voorbraak
(1993) blames it on having the axiom K¢ — B, in line with his views on S5 being
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a weak form of objective knowledge that cannot be stronger than rational belief (as
represented by the logic KD45). Van der Hoek (1993) offers a different solution to
the problem; he sacrifices the negative introspection axiom for knowledge — thus
essentially adopting an S4-type of knowledge — which allows him to add the above
mentioned formula By — BK¢ as an axiom as well as the two KB-connecting axioms
of Kraus and Lehmann above. (In fact, Van der Hoek shows that by thus dropping
the negative introspection axiom for knowledge, some room is created for an
unproblematic (simultancous) addition of some more axioms like =Bp — K—B¢@ and
—K¢@ — B—Ke, expressing a kind of cross-over negative introspection.)

9.6.3. Knowledge in a group of agents

So far, only the notion of knowledge (and belief) of a single agent has been discussed.
When considering a group of agents, one can, of course, consider the knowledge
(K;) of every individual agent 7, so that a Kripke model of the form to describe the
knowledge of the various agents may be used:

Definition 9.5 An (7 agents) Kripke model is a structure M of the form (S, 7,
Ry, ..., R)), where

e §is a non-empty set (the set of possible worlds);

e 1:85— (P— (T, F})is a truth assignment function to the atoms per possible
world;

e for 1 =i=n, R;C §xS§is the knowledge accessibility relation for agent 7,
assumed to be an equivalence relation.

The validities with respect to these (multi-modal) models are simply axiomatized by
a multi-modal version of §5: for ecach K; one takes an S5-axiomatization.

However, it is also worthwhile examining notions of knowledge that have to do
with the group as a whole. This has been done by Halpern and Moses (1985). At
least two such notions come to mind immediately. The first is knowledge that is
shared by everyone: the facts that every agent in the group knows, denoted by E
(‘everybody knows’). The axiomatization of E-knowledge is trivial: just take as an
axiom (assuming there are » agents in the group):

Ep— Kion---AK,

Semantically E can be associated with an accessibility relation Ry= U’ R, (intuitively
this means that all agents put their sets of epistemic alternatives together in one big
set), and define

M, sE E@ ift M, tF ¢ for every ¢ with Ry(s, 1)

Now the above axiom becomes a validity. Intuitively, this is because since the agents
have collected their epistemic alternatives, the only things they can be sure of as a
group are those formulas that are true in a// of these alternatives.
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Moreover, E satisfies the basic properties of a modal (necessity-type) operator,
namely the K-axiom and necessitation rule:

E(9— y) —> (Ep — Ey)
o/ Ep

It also satisfies the T-axiom
Ep— o

E does not, however, satisty the introspection axioms. The technical reason is that
the union of reflexive, transitive, Euclidean relations is again reflexive, but not in
general transitive or Euclidean. That E fails to satisfy introspection should not come
as a surprise: It might very well be that every agent of a group (consisting, say, of
agents 1 and 2) knows some fact p, while, for example, agent 2 does not know that
1 knows p. This situation is described by the formula

Kip A Kop A —IGK p

As one might verify easily, this formula implies Ep A = EEp.
The second kind of group knowledge that comes to mind is perhaps the know-
ledge of some agent in the group, write F for this notion, axiomatized by the axiom

Fp— Kipov---v K,

However, this is not such an interesting notion. It does not even satisty the K-
axiom. A better idea is to look at knowledge that is implicit in the group in the sense
that if everyone shares his knowledge with everyone, it becomes knowledge in the
group. Semantically, this can be obtained as follows. Consider the sets of the epistemic
alternatives regarded by the agents separately. If there is communication between
the agents, they can help each other to rule out epistemic alternatives. In fact, what
remains after such a group communication, is the intersection of the sets of epistemic
alternatives. Thus, one can directly define an accessibility relation R;= N, R;, and
associate a modal operator G with it by means of

M, sE Go ift M, tE @ for every t with Ry(s, ?)

Of course, one may wonder as to the properties/axiomatization of such an operator.
It is directly clear that apart from K-axiom and necessitation it also satisfies

Ko = Go

However, somewhat surprisingly, since this axiom appears to express only that
R, C ML R,, this is already sound and complete, as shown by, for example, van der
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Hoek and Meyer (1992). The rather technical details are omitted here, but the
secret is that this type of modal logic is too coarse to distinguish between models
where R;=N7, R; and those where R; C N, R,, so that due to this ‘deficiency’
one can still obtain completeness!

Although the above notion of group knowledge seems intuitively clear at first
sight, it is not completely evident what it amounts to exactly. This is also reflected
somewhat in the history of the naming of the operator: the operator was first called
‘implicit” knowledge by, for example, Halpern and Moses (1985), then renamed
‘distributed’ knowledge by Halpern and Moses (1992). However, as it is shown
in van der Hoek et al. (1999 [1995]), both the properties of implicitness and of
‘distributedness’ are debatable for the notion of group knowledge as defined above.
In particular, it is shown that, without further restrictions on the models, it may
happen that group knowledge is really stronger than what can be derived from the
agents’ individual knowledge, when pooled together by means of communication,
which is rather counter-intuitive!

Another very interesting notion that has been introduced and studied in the
literature is that of common knowledge. Something is common knowledge within a
group of agents if not only everybody in the group knows it but also the fact that it
is known by everyone is known by everyone, and the same for this fact, ad infinitum.
Thus, intuitively one would define common knowledge of ¢, denoted Co, as
Ep A EEp A - - - . However, infinite formulas are not part of our logical language.

Formally, given an » agent Kripke model M=(S, &, Ry, ..., R,), the accessibility
relation R associated with the modal operator Cis given as the (reflexive) transitive
closure of the relation R;: R;= R}. This means that R.(s, #) iff there is a sequence
$=5p S1y- - -5 5, =t such that Rg(s; s;,,) for all 0 = 7= m— 1. This means that the
relation R connects all those possible worlds that are in 0 or more steps accessible
via the relation Ry, or in other words, via some relation R,, where at each step a
different R; may be chosen.

If the relations R; are assumed to be equivalence relations (S5), this definition
amounts to the following validities, which are taken as axioms for the modality C:

(Ke) Ao —y) = (Cp— Cy)
(Te) Co—o

(Ke) Glo—v) = (Gp— Gy)
(Te) Go— ¢

(4) Gy — GGy

(5¢) -Gp - GGy

(KE) Ep— (Kpn---AK,p)
(EC) Cop — ECop

(C-ind)  C(¢p— Eg) = (9 — Co)

and to complete the system one takes rules modus ponens (MP) and
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(N)  o/Keo
(No)  ¢/Co

In addition to a multi-agent version of the system S5 (with the axioms and rules
for each operator K;) the resulting system can again be proven to be sound and
complete, which due to the rather complex notion of C is not exactly obtained sine
cura (Meyer and van der Hoek, 1995). Note that the modality C satisfies the same
basic S5-like axioms and rules. Furthermore, note the axiom C-ind, which, as its name
suggests, is a kind of induction axiom to capture the infinite behaviour of the C-
modality in a finite axiom! In semantical terms, it really is about induction along the
R relation. It states that if anywhere along a chain of Rg-related worlds it holds that
if @ holds somewhere, it also holds one Rg-related world further, then if ¢ holds at
the beginning of such a chain then it holds also at every world along the chain (which
is exactly the same as saying that in the intial world it is common knowledge that ).

9.7. Conclusion

This chapter has taken a peek into epistemic (and doxastic) logic, the logic of
knowledge and belief. More accurately, it has looked at epistemic logic as a special
branch of modal logic. This has led to consideration of possible world models as a
suitable semantics for epistemic logic, and the modal systems S4 and S5 for know-
ledge, and K(D)45 for belief. As seen, this sometimes gave too idealized properties
of knowledge and belief, giving rise to the problem(s) of logical omniscience. This,
in turn, gave rise to approaches in the literature where the possible world semantics
was modified (or ‘polluted’ if one prefers this term) to cope with that problem. The
more properties one wants to avoid, the more one has to deviate (pollute) from
Kripke-style possible world semantics with non-standard elements. Finally some
more sophisticated notions and issues have been discussed, such as other systems for
knowledge that have been proposed in the literature, systems in which knowledge
and belief can be reasoned with at the same time, and epistemic notions that are
related to a group of agents.

Suggested further reading

First of all, Lenzen (1980) is a ‘classic’ comprehensive textbook on epistemic logic in German;
it is written from a philosophical perspective and also covers the notion of probability. A
number of issues touched on in this chapter are elaborated much more extensively by Meyer
and van der Hoek (1995). For example, much more attention is paid to the formal aspects of
the logics of knowledge and belief, such as the issue of completeness, while the logical
omniscience problem and various ways of dealing with it are also treated in more depth. Here
too one may find material on the relation of knowledge (and epistemic logic more in particu-
lar) with defeasible (or ‘nonmonotonic’) reasoning in Al. Some of the more technical material
on that will also appear in a compact form in the author’s forthcoming chapter (Meyer,

200



Epistemic Logic

2001), of the new edition of the Handbook of Philosophical Logic. Fagin et al. (1995) is an
influential book, which emphasizes employing epistemic logic for reasoning about dynamic
(computer-based) systems. Many fundamental results are presented on how knowledge may
evolve (e.g., be obtained) within computer networks where the communication links are not
completely secure, in the sense that information may be lost or mutilated in the communica-
tion process. The successful series of proceedings of the TARK (Theoretical Aspects of
Reasoning about Knowledge, and later Theoretical Aspects of Rationality and Knowledge)
and LOFT (LOgic and the Foundations of game and decision Theory) conferences on the
multi-disciplinary use of epistemic logic (especially in computer science and economic theory)
are also worth mentioning; see, for example, Bacharach et al. (1997), Gilboa (1998), and
Halpern (1986). Finally, Laux and Wansing (1995) offers a recent collection of papers on
modern topics in epistemic logic.
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Notes

1 Voorbraak (1991, 1993) generalizes the argument to defend S5 as the logic of distributed
systems to refer to S5 as the logic of objective knowledge, a weak kind of knowledge that
may be ascribed to artificial systems, like computer-based systems or even a thermometer.
In this case, the so-called introspective axioms have little to do with true introspection by
an agent, but rather are a way of expressing that nested forms of knowledge (like KK, or
K=K) can always be eliminated by reducing it to non-nested forms of knowledge (like K
and — K, respectively).

2 Admittedly, these conditions lack the elegance and beauty of those for standard Kripke
models in order to deal with impossible worlds where truth is defined rather syntactically
by means of the function o. However, it is rather natural to still demand the validity of the
introspection axioms, and therefore these conditions are added for the sake of completeness.

3 Actually, Kraus and Lehmann (1986) propose a much richer system involving notions like
common knowledge, which we will encounter later on. Here we consider the part of the
system involving only the modal operators K and B.
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