Epistemic Logic notes

PHIL 735 Week 2 Matt Kotzen and Jim Pryor

September 6, 2023

1 Basics of Modal Logic

- Modal logics are formal systems that allow us to capture the logic of a variety of different "necessitation" (or, perhaps, necessitation-like) relations.
- We're going to focus on "normal" modal logics, the weakest of which is System K (for Kripke).
 - System K is just propositional logic plus \Box , which this system understands to obey particular constraints. There are multiple equivalent ways to axiomatize System K:
 - * The standard way to axiomatize System K:
 - · (Rule of Necessitation): If p is a theorem of K, then so is $\Box p$
 - · (Axiom K): $\Box(p \supset q) \supset (\Box p \supset \Box q)$
 - * Another (perhaps more perspicuous) way to axiomatize System K:
 - · (Rule of Equivalents) If $p \subset \supset q$ is a theorem of K, then $\Box p \subset \supset \Box q$ is a theorem too
 - · (Axiom N) $\Box \top$
 - · (Axiom M) $\Box(p \land q) \supset (\Box p \land \Box q)$
 - · (Axiom Converse-M) $(\Box p \land \Box q) \supset \Box (p \land q)$
 - We understand $\Diamond p$ to be the "dual" of \Box i.e., to mean $\neg\Box\neg p$
- Should we also assume (Axiom T): $\Box p \supset p$?
 - If yes, we get System T
 - This looks to depend on what kind of necessitation relation we're dealing with
 - * Metaphysical necessity: Yes.
 - * Deontic necessity: Almost certainly no.

- * Other kinds of necessity?
- If we reject (Axiom T), we need to decide whether we want (Axiom D): $\Box p \supset \Diamond p$
 - If yes, we get System D
 - Again, this may depend on the necessitation relation under consideration
 - * Metaphysical necessity? Yes.
 - * Deontic necessity? Almost certainly yes.
 - * Other kinds of necessity?
 - Some deontic logicians also insist on $\Box(\Box p \supset p)$
- Suppose we accept (Axiom T)
 - Should we also accept (Axiom 4): $\Box p \supset \Box \Box p$?
 - * If yes, we get System S4
 - * In S4, iterated \Box 's collapse to one \Box , and iterated \Diamond 's collapse to one \Diamond
 - How about (Axiom B): $p \supset \Box \Diamond p$ (i.e., $p \supset \Box \neg \Box \neg p$, or $\neg \Box \neg \Box q \supset q$, or $\Diamond \Box q \supset q$)?
 - * If yes, we get System B
 - How about (Axiom 5): $\Diamond p \supset \Box \Diamond p$ (i.e., $\neg \Box q \supset \Box \neg \Box q$)?
 - * If yes, we get System S5
 - * In S5, all that matters is the last operator in a sequence of \Box 's and \Diamond 's
- It turns out that, once you've accepted (Axiom T), accepting (Axiom 5) is equivalent to accepting both (Axiom B) and (Axiom 4)
- You can also add (Axiom 4), or (Axiom 5), or both, to System K or to System D. You can also add (Axiom B) to System K or to System D, though that won't be very relevant for our purposes.

2 Model Theory

- In order to give a semantics for \Box (and hence \Diamond , on our understanding of \Diamond), we need:
 - A set of possible worlds, Ω
 - R, a binary relation over Ω (i.e., R's graph is a subset of $\Omega \ge \Omega$), known as the accessibility relation
 - I, which tells you which atomic propositions are true at each world
- The first two things are together called a "frame," and the three things together are called a "model"

- A model plus a choice of a world "makes true" or "satisfies" a formula ϕ
 - We write this $[[\phi]]_{M,w}$ = true
 - Or: $M, w \vDash \phi$
- And we assume that:
 - $-M, w \vDash \phi \land \psi$ iff $M, w \vDash \phi$ and $M, w \vDash \psi$
 - $-M, w \vDash \phi \lor \psi$ iff $M, w \vDash \phi$ or $M, w \vDash \psi$
 - $-M, w \vDash \neg \phi$ iff $M, w \nvDash \phi$
 - etc.
- And here's the crucial part:
 - $-M, w \models \Box \phi$ iff, for each $w, u \in \Omega$ such that $w Ru: M, u \models \phi$
 - i.e., $\Box \phi$ is true at w iff ϕ is true at every world accessible from w
- A consequence of the above is that $\Diamond \phi$ will be true at w iff ϕ is true at any world accessible from w
- OK, now, let's go back to the modal logics we discussed above
 - Assuming (Axiom D) is equivalent to assuming that access is serial
 - Assuming (Axiom T) is equivalent to assuming that access is reflexive
 - Assuming (Axiom 4) is equivalent to assuming that access is transitive
 - Assuming (Axiom B) is equivalent to assuming that access is symmetric
 - Assuming (Axiom 5) is equivalent to assuming that access is R-Euclidean
- Entailments among these properties of relations:
 - R-Euclideanness alone doesn't entail symmetry, transitivity, or reflexivity
 - But reflexivity and R-Euclideanness together entail both symmetry and transitivity
 - * Proof?
 - Reflexivity alone doesn't entail R-Euclideanness, transitivity, or symmetry; but reflexivity alone does entail seriality
 - Neither symmetry nor transitivity entails each other, even when we assume reflexivity.
 - So System S5 is (strictly) stronger than System S4, System B, and System T;
 System S4 and System B are each (strictly) stronger than System T; System S4 is neither stronger than nor weaker than System B; and System T is (strictly) strongly than System D. Each of these systems is (strictly) stronger than System K.

3 Logic of Knowledge

- Actual vs. ideal agents
- If \Box is interpreted as "knows," then \Diamond gets interpreted as "doesn't know to be false"
- Do we want (Axiom T) for knowledge? Almost certainly yes.
- Do we want (Axiom 4) for knowledge? Plausible.
- Do we want (Axiom B) for knowledge? Implausible.
- Assuming we want (Axiom T) and (Axiom 4) and don't want (Axiom B), that means we can't have (Axiom 5) (which we may not have wanted anyway)
- So we probably want something like S4, perhaps with some additional axioms that don't get us all the way up to S5. Some possible additional axioms:
 - (Axiom .2): $\Diamond \Box p \supset \Box \Diamond p$. Corresponds to assuming that access is "one-step confluent"—i.e., that if x Ry and x Rz, then $\exists u(y Ru \land z Ru)$.
 - (Axiom .3): Lots of different ways to formulate, but one is: $\Box(\Box p \supset q) \lor \Box(\Box q \supset p)$. Corresponds to assuming that access is non-R-branching—i.e., that if xRy and xRz and $y \neq z$, then yRz or zRy.
 - * Another way to formulate (Axiom .3): $(\Diamond p \land \Diamond q) \supset [\Diamond (p \land \Diamond q) \lor \Diamond (p \land q) \lor \Diamond (p \land q)]$
 - Note that, if we are assuming (Axiom T), then (Axiom .3) is strictly stronger than (Axiom .2)
 - * But if we are not assuming (Axiom T), then (Axiom .3) is independent of (Axiom .2)
 - * Regardless, accepting (Axiom .2) and (Axiom .3) is equivalent to accepting: (Axiom .3.2) $(\Diamond p \land \Diamond \Box q) \supset \Box(\Diamond p \lor q)$. This corresponds to assuming that access is semi-Euclidean: if xRy and xRz, then zRx or yRz.
 - (Axiom .4): $(p \land \Diamond \Box p) \supset \Box p$. As far as we're aware, this doesn't correspond to an easily articulable constraint on R.
 - System S4 supplemented with (Axiom .2) is called System S4.2, and similarly for (Axiom .3) and (Axiom .4)

4 Logic of Belief

• If \Box is interpreted as "believes," then \Diamond gets interpreted as "doesn't believe to be false"

- Knowledge is generally thought to be factive, so (Axiom T) was plausible for knowledge. But belief isn't factive, so (Axiom T) is implausible for belief. So we're "below" System T in the hierarchy of modal logics.
- Do we want (Axiom D) for belief? Plausible.
- Do we want (Axiom 4) for belief? Plausible.
- Do we want (Axiom B) for belief? Implausible.
- Do we want (Axiom 5) for belief? Maybe. Note that, since we're not assuming (Axiom T), we can have (Axiom 5) without committing to (Axiom B).
- So, System D4 (sometimes also called KD4) is one plausible logic for belief. If we accept (Axiom 5) too, we get System D45 (sometimes also called System KD45).
 - Do we also want (Axiom .2), (Axiom .3), and/or (Axiom .4) for belief? Recall that if we're rejecting (Axiom T), then (Axiom .2) and (Axiom .3) are independent.

5 Relation Between Knowledge and Belief

- (Axiom KB1): $Kp \supset Bp$. Very plausible.
- (Axiom KB2): $Bp \supset KBp$. Plausible.
- (Axiom KB3): $Bp \supset BKp$. AKA "Moore Principle." More controversial.
- Note that if knoweldge obeys (Axiom 5) and belief obeys (Axiom D), then (Axiom KB1) allows us to prove $BKp \supset Kp$, which is very implausible.
 - Assume BKp. Since B obeys (Axiom D), $BKp \supset \neg B\neg Kp$. By modus ponens, $\neg B\neg Kp$. By (Axiom KB1), $K\neg Kp \supset B\neg Kp$. By modus tollens, $\neg K\neg Kp$. Since K obeys (Axiom 5), $\neg Kp \supset K\neg Kp$. By modus tollens, Kp.
- Perhaps even worse: once we have $BKp \supset Kp$, (Axiom KB3) let us derive $Bp \supset Kp$.
 - Assume Bp. By (Axiom KB3), BKp. From above, Kp.
- Then, assuming only that knowledge obeys (Axiom T), we get $Bp \supset p$, which is *really* bad.
- If we want (Axiom 5) for knowledge, this puts pressure on us to give up (Axiom KB1). But the better lesson is probably that we should just reject (Axiom 5) for knowledge.
- Do we want what Meyer calls "cross-over negative introspection"—i.e., (KB4): $\neg Bp \supset K \neg Bp$ and/or (KB5): $\neg Kp \supset B \neg Kp$?