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1 Basics of Modal Logic

• Modal logics are formal systems that allow us to capture the logic of a variety of
different “necessitation” (or, perhaps, necessitation-like) relations.

• We’re going to focus on “normal” modal logics, the weakest of which is System K (for
Kripke).

– System K is just propositional logic plus �, which this system understands to
obey particular constraints. There are multiple equivalent ways to axiomatize
System K:

∗ The standard way to axiomatize System K:
· (Rule of Necessitation): If p is a theorem of K, then so is �p
· (Axiom K): �(p ⊃ q) ⊃ (�p ⊃ �q)

∗ Another (perhaps more perspicuous) way to axiomatize System K:
· (Rule of Equivalents) If p ⊂⊃ q is a theorem of K, then �p ⊂⊃ �q is a
theorem too

· (Axiom N) �>
· (Axiom M) �(p ∧ q) ⊃ (�p ∧�q)

· (Axiom Converse-M) (�p ∧�q) ⊃ �(p ∧ q)
– We understand ♦p to be the “dual” of � — i.e., to mean ¬�¬p

• Should we also assume (Axiom T): �p ⊃ p?

– If yes, we get System T

– This looks to depend on what kind of necessitation relation we’re dealing with

∗ Metaphysical necessity: Yes.
∗ Deontic necessity: Almost certainly no.
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∗ Other kinds of necessity?

• If we reject (Axiom T), we need to decide whether we want (Axiom D): �p ⊃ ♦p

– If yes, we get System D

– Again, this may depend on the necessitation relation under consideration

∗ Metaphysical necessity? Yes.
∗ Deontic necessity? Almost certainly yes.
∗ Other kinds of necessity?

– Some deontic logicians also insist on �(�p ⊃ p)

• Suppose we accept (Axiom T)

– Should we also accept (Axiom 4): �p ⊃ ��p?

∗ If yes, we get System S4

∗ In S4, iterated �’s collapse to one �, and iterated ♦’s collapse to one ♦

– How about (Axiom B): p ⊃ �♦p (i.e., p ⊃ �¬�¬p, or ¬�¬�q ⊃ q, or ♦�q ⊃ q)?
∗ If yes, we get System B

– How about (Axiom 5): ♦p ⊃ �♦p (i.e., ¬�q ⊃ �¬�q)?
∗ If yes, we get System S5

∗ In S5, all that matters is the last operator in a sequence of �’s and ♦’s

• It turns out that, once you’ve accepted (Axiom T), accepting (Axiom 5) is equivalent
to accepting both (Axiom B) and (Axiom 4)

• You can also add (Axiom 4), or (Axiom 5), or both, to System K or to System D.
You can also add (Axiom B) to System K or to System D, though that won’t be very
relevant for our purposes.

2 Model Theory

• In order to give a semantics for � (and hence ♦, on our understanding of ♦), we need:

– A set of possible worlds, Ω

– R, a binary relation over Ω (i.e., R’s graph is a subset of Ω x Ω), known as the
accessibility relation

– I, which tells you which atomic propositions are true at each world

• The first two things are together called a “frame,” and the three things together are
called a “model”
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• A model plus a choice of a world “makes true” or “satisfies” a formula φ

– We write this [[φ]]M,w = true
– Or: M,w � φ

• And we assume that:

– M,w � φ ∧ ψ iff M,w � φ and M,w � ψ

– M,w � φ ∨ ψ iff M,w � φ or M,w � ψ

– M,w � ¬φ iff M,w 2 φ
– etc.

• And here’s the crucial part:

– M,w � �φ iff, for each w, u ∈ Ω such that wRu: M,u � φ

– i.e., �φ is true at w iff φ is true at every world accessible from w

• A consequence of the above is that ♦φ will be true at w iff φ is true at any world
accessible from w

• OK, now, let’s go back to the modal logics we discussed above

– Assuming (Axiom D) is equivalent to assuming that access is serial
– Assuming (Axiom T) is equivalent to assuming that access is reflexive
– Assuming (Axiom 4) is equivalent to assuming that access is transitive
– Assuming (Axiom B) is equivalent to assuming that access is symmetric
– Assuming (Axiom 5) is equivalent to assuming that access is R-Euclidean

• Entailments among these properties of relations:

– R-Euclideanness alone doesn’t entail symmetry, transitivity, or reflexivity
– But reflexivity and R-Euclideanness together entail both symmetry and transi-

tivity
∗ Proof?

– Reflexivity alone doesn’t entail R-Euclideanness, transitivity, or symmetry; but
reflexivity alone does entail seriality

– Neither symmetry nor transitivity entails each other, even when we assume re-
flexivity.

– So System S5 is (strictly) stronger than System S4, System B, and System T ;
System S4 and System B are each (strictly) stronger than System T ; System S4
is neither stronger than nor weaker than System B; and System T is (strictly)
strongly than SystemD. Each of these systems is (strictly) stronger than System
K.
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3 Logic of Knowledge

• Actual vs. ideal agents

• If � is interpreted as “knows,” then ♦ gets interpreted as “doesn’t know to be false”

• Do we want (Axiom T) for knowledge? Almost certainly yes.

• Do we want (Axiom 4) for knowledge? Plausible.

• Do we want (Axiom B) for knowledge? Implausible.

• Assuming we want (Axiom T) and (Axiom 4) and don’t want (Axiom B), that means
we can’t have (Axiom 5) (which we may not have wanted anyway)

• So we probably want something like S4, perhaps with some additional axioms that
don’t get us all the way up to S5. Some possible additional axioms:

– (Axiom .2): ♦�p ⊃ �♦p. Corresponds to assuming that access is “one-step
confluent”—i.e., that if xRy and xRz, then ∃u(yRu ∧ zRu).

– (Axiom .3): Lots of different ways to formulate, but one is: �(�p ⊃ q)∨�(�q ⊃
p). Corresponds to assuming that access is non-R-branching—i.e., that if xRy
and xRz and y 6= z, then yRz or zRy.

∗ Another way to formulate (Axiom .3): (♦p ∧ ♦q) ⊃ [♦(p ∧ ♦q) ∨ ♦(p ∧ q) ∨
♦(♦p ∧ q)]

– Note that, if we are assuming (Axiom T), then (Axiom .3) is strictly stronger
than (Axiom .2)

∗ But if we are not assuming (Axiom T), then (Axiom .3) is independent of
(Axiom .2)

∗ Regardless, accepting (Axiom .2) and (Axiom .3) is equivalent to accepting:
(Axiom .3.2) (♦p ∧ ♦�q) ⊃ �(♦p ∨ q). This corresponds to assuming that
access is semi-Euclidean: if xRy and xRz, then zRx or yRz.

– (Axiom .4): (p ∧ ♦�p) ⊃ �p. As far as we’re aware, this doesn’t correspond to
an easily articulable constraint on R.

– System S4 supplemented with (Axiom .2) is called System S4.2, and similarly
for (Axiom .3) and (Axiom .4)

4 Logic of Belief

• If � is interpreted as “believes,” then ♦ gets interpreted as “doesn’t believe to be false”
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• Knowledge is generally thought to be factive, so (Axiom T) was plausible for knowl-
edge. But belief isn’t factive, so (Axiom T) is implausible for belief. So we’re “below”
System T in the hierarchy of modal logics.

• Do we want (Axiom D) for belief? Plausible.

• Do we want (Axiom 4) for belief? Plausible.

• Do we want (Axiom B) for belief? Implausible.

• Do we want (Axiom 5) for belief? Maybe. Note that, since we’re not assuming
(Axiom T), we can have (Axiom 5) without committing to (Axiom B).

• So, System D4 (sometimes also called KD4) is one plausible logic for belief. If we
accept (Axiom 5) too, we get System D45 (sometimes also called System KD45).

– Do we also want (Axiom .2), (Axiom .3), and/or (Axiom .4) for belief? Recall
that if we’re rejecting (Axiom T), then (Axiom .2) and (Axiom .3) are indepen-
dent.

5 Relation Between Knowledge and Belief

• (Axiom KB1): Kp ⊃ Bp. Very plausible.

• (Axiom KB2): Bp ⊃ KBp. Plausible.

• (Axiom KB3): Bp ⊃ BKp. AKA “Moore Principle.” More controversial.

• Note that if knoweldge obeys (Axiom 5) and belief obeys (Axiom D), then (Axiom
KB1) allows us to prove BKp ⊃ Kp, which is very implausible.

– Assume BKp. Since B obeys (Axiom D), BKp ⊃ ¬B¬Kp. By modus ponens,
¬B¬Kp. By (Axiom KB1), K¬Kp ⊃ B¬Kp. By modus tollens, ¬K¬Kp.
Since K obeys (Axiom 5), ¬Kp ⊃ K¬Kp. By modus tollens, Kp.

• Perhaps even worse: once we have BKp ⊃ Kp, (Axiom KB3) let us derive Bp ⊃ Kp.

– Assume Bp. By (Axiom KB3), BKp. From above, Kp.

• Then, assuming only that knowledge obeys (Axiom T), we get Bp ⊃ p, which is really
bad.

• If we want (Axiom 5) for knowledge, this puts pressure on us to give up (Axiom KB1).
But the better lesson is probably that we should just reject (Axiom 5) for knowledge.

• Do we want what Meyer calls “cross-over negative introspection”—i.e., (KB4): ¬Bp ⊃
K¬Bp and/or (KB5): ¬Kp ⊃ B¬Kp?
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