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1 Accuracy and partial beliefs

• So far, we’ve seen arguments for various aspects of Bayesianism that (at least initially
appear to) rest on practical premises

• Today, we’re going to focus on arguments that are designed to rely only on con-
siderations of accuracy, which (according to the proponents of these arguments) is
properly understood in this context as a purely epistemic value

• It’s reasonably clear how to think about accuracy for full beliefs: a full belief is (fully)
accurate if its content is true, and a full belief is (fully) inaccurate if its content is false

• By contrast, for partial beliefs, there’s an intuitive sense in which accuracy isn’t
an all-or-nothing affair—one partial belief can be more accurate than another partial
belief, even if the first partial belief isn’t maximally accurate

• So, the question then arises of how to measure the “gradational accuracy” of partial
beliefs. Is there a unique correct way to measure how accurate some particular
partial belief, or some credence function, is relative to a particular world? If not,
are there plausible constraints that would at least rule out some ways of measuring
gradational accuracy?

2 Joyce 1998

• Strategy: Articulate several constraints on any adequate function that endeavors to
measure (in)accuracy. Then, show that, for any non-probabilistic credence function
(defined over a given algebra), there is a probabilistic credence function (defined
over that same algebra) that is guaranteed to be less inaccurate (as measured by that
function), no matter which possible world is actual.
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• “What I have in mind here is a kind of ‘epistemic Dutch book argument’ in which
the relevant scoring rule assigns each credence function b and possible world ω a
penalty I(b, ω) assessed in units of gradational inaccuracy. The rule I will gauge the
extent to which the truth-value estimates sanctioned by b diverge from the truth-
values that propositions would have were ω actual. My claim is going to be that,
once we appreciate what I must look like, we will see that violations of the laws of
probability always decrease the accuracy of partial beliefs.”

– And, for any probabilistic credence function, there does not exist an alternative
credence function that is guaranteed to be less inaccurate, no matter which
possible world is actual.

• Joyce’s notation:

– B is the family of all credence functions defined on a countable Boolean algebra
of propositions Ω

– V is the subset of B containing all consistent truth-value assignments to mem-
bers of Ω (i.e., the possible worlds ω)

* And the possible worlds ω are treated as functions that assign a value of 1
to propositions that are true at the world, and a value of 0 to propositions
that are false at the world

– I is defined over pairs in B ×V

– The collection of all probability functions in B is V’s convex hull V+

* The convex hull of a set is the set of all “weighted averages” of elements of
the set where the weights are non-negative and sum to 1. So, the convex
hull of the set of possible worlds is the set of all weighted averages of the
possible worlds, using coefficients that sum to 1.

– B ∼ V+ is everything that is in B but not in V+—i.e., the set of credence functions
that violate the laws of probability

• Structure of B

– Always contains a unique “line” L = {λb+ (1−λ)b∗ : λ ∈ R} that passes through
any two of its “points” b and b∗

– The line segment from b to b∗, bb∗, is the subset of L for which 0 ≤ λ ≤ 1. A
credence function λb + (1 − λ)b∗ that falls on bb∗ is a “mixture” of b and b∗.
If λ > 1/2, then the mixture favors b; if λ < 1/2, then the mixture favors b∗; if
λ = 1/2, then the mixture is even, halfway in between b and b∗.
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• Constraints on I

– Structure: For each ω ∈ V, I(b, ω) is a non-negative, continuous function of b
that goes to infinity in the limit as b(X) goes to infinity, for any X ∈ Ω

– Extensionality: At each possible world ω, I(b, ω) is a function of nothing other
than the truth-values that ω assigns to propositions in Ω and the degrees of
confidence that b assigns these propositions.

– Dominance: If b(Y) = b∗(Y) for every Y ∈ Ω other than X, then I(b, ω) > I(b∗, ω)
if and only if |ω(X) − b(X)| > |ω(X) − b∗(X)|

– Normality: If |ω(X)−b(X)| = |ω∗(X)−b∗(X)| for all X ∈ Ω, then I(b, ω) = I(b∗, ω∗)

– Weak Convexity: Let m = (1/2b + 1/2b∗) be the midpoint of the line segment
between b and b∗. If I(b, ω) = I(b∗, ω), then it will always be the case that
I(b, ω) ≥ I(m, ω) with identity only if b = b∗

– Symmetry: If I(b, ω) = I(b∗, ω), then for any λ ∈ [0, 1] one has I(λb + (1 −
λ)b∗, ω) = I((1 − λ)b + λb∗, ω)

• Main Theorem: If gradational accuracy is measured by a function I that satisfies
Structure, Extensionality, Dominance, Normality, Weak Convexity, and Symmetry,
then for each c ∈ B ∼ V+ there is a c∗ ∈ V+ such that I(c, ω) > I(c∗, ω) for every ω ∈ V

– Joyce notes that the Brier score satisfies all of his axioms

* Brier score: where Ω = {X1,X2, . . . ,Xn}, I(b, ω) = (ω(X1)− b(X1))2 + (ω(X2)−
b(X2))2 + · · · + (ω(Xn) − b(Xn))2

• Titelbaum gives helpful illustrations of the proof strategy for all three Kolmogorov
axioms, on pp. 348–50 (and endnote 15).

3 Proper scoring rules

• One putative advantage of the Brier score is that it is a “proper” scoring rule: an
agent with a probabilistic credence distribution who uses the Brier score expects her
own credences to be more accurate than any other distribution over the same set of
propositions

• The dialectical role of properness here is a bit subtle

– When we’re trying to construct an argument for probabilism, it can seem circular
to impose properness as an adequacy condition on scoring rules:

3



* Titelbaum, pp. 359–60: “A proper scoring rule is one on which proba-
bilistic distributions always expect themselves to be more accurate than
the alternatives. But why focus on what probabilistic distributions expect?
. . . [W]hen an inaccuracy measure is used to argue for probabilism—as in
the Gradational Accuracy Argument—it seems question-begging to privi-
lege probabilistic distributions in selecting that scoring rule.”

* Joyce 1998, p. 589: “Though I am happy to grant that [the principle that
a rational agent should aim to minimize her expected inaccuracy and the
principle that an agent’s own credences are the ones that minimize expected
inaccuracy] hold for partial beliefs that obey the axioms of probability, the
problem is that they must also hold when the axioms are violated if they
are to serve as premises in a justification for the fundamental dogma of
probabilism.”

– Still, it would seem awkward if someone were to argue for some constraint on
credences by appealing to a scoring rule (or class of scoring rules) which has
the consequence that agents who obey that constraint are failing to maximize
expected accuracy. And at least Joyce’s argument for probabilism doesn’t have
that defect.

– And, if we could generate an argument that probabilistic credences are ratio-
nally permitted, then perhaps that could be used as a premise in an argument
for a proper scoring rule: the idea would be that an acceptable scoring rule
shouldn’t ever tell a rational agent to regard her own credences to be less
accurate than an alternative. See Joyce 2009.

– And, it’s plausible that committed probabilists should be interested only in
proper scoring rules. There are lots of proper scoring rules, and lots of improper
ones, so considerations of propriety can at least help the probabilist to narrow
down their search.

• Some possible scoring rules. Assume that the agent has a probabilistic credence
function and that his actual p(X) = a. x is a variable that takes value x = 1 when X is
true, and takes value x = 0 when X is false.

– Linear rule: Accuracy of p(X) = b is measured by xb + (1 − x)(1 − b). An agent
for whom p(X) = b has accuracy b if X is true, and 1 − b if X is false.

* Since the agent’s actual p(X) = a, her expected accuracy of having credence
b is: ab + (1 − a)(1 − b)

* If a > 1/2, this is maximized when b = 1

* If a < 1/2, this is maximized when b = 0

* For example, suppose the agent’s actual p(X) = 3/4. Their expected ac-
curacy for p(X) = 1 is (3/4)(1) + (1/4)(0) = 3/4, whereas their expected
accuracy for p(X) = 3/4 is only (3/4)(3/4) + (1/4)(1/4) = 5/8.
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* Improper!

– Another scoring rule: Accuracy of p(X) = b is measured by xb − b2/2. The
agent’s accuracy is b − b2/2 if X is true, and −b2/2 if X is false.

* Since the agent’s actual p(X) = a, her expected accuracy of having credence
b is: ab − b2/2

* For any given a, this is at a maximum at b = a. Proper!

* But, this scoring rule is weirdly asymmetric. For example, when X is false,
accuracy of p(X) = 1 is −1/2, whereas when X is true, accuracy of p(X) = 0
is 0.

– Brier score: Inaccuracy of p(X) = b is measured by (x − b)2. So, accuracy of
p(X) = b is 1 − (x − b)2. An agent for whom p(X) = b has accuracy 1 − (1 − b)2 if
X is true, and 1 − b2 if X is false.

* Since the agent’s actual p(X) = a, her expected accuracy of having credence
b is: 1 − (a − b)2

* For any given a, this is at a maximum at b = a. Proper!

* And it’s nicely symmetric: For example, when X is false, accuracy of p(X) =
1 is 0, and when X is true, accuracy of p(X) = 0 is 0.
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