
Jeffrey Conditionalization 
Phil 735/fall 2023 – Oct 25 
 
Start with a probability distribution that we’ll call Old(-), for example 
 

 
Let’s make a photocopy of that, magnified by some factor which is allowed to be smaller or larger than 1.0: 
 

 magnified by b = 1.2:  
 
Then discard the not-E part of the photocopy, retaining the E part and joining it with the original distribution: 
 

 
 
There are three regions here: 

(a) the E region of the original distribution, whose size is Old(E) 
(b) the not-E region of the original distribution, whose size is Old(not-E) 
(c) the photocopied E region, whose size is b Old(E) 

Add their sizes together and you get n = 1 + b Old(E). We can scale/renormalize all three regions by dividing them by n, so that 
our result adds up again to size 1. Call the result our new probability function New(-). 
 
New(H3) = ( Old(H3 & E)  + Old(H3 & not-E) + Old(H3 & E) * b ) / n = ( Old(H3) + Old(H3 & E) * b ) / n 
New(E)                                                                                                          = ( Old(E)   + Old(E) * b ) / n 
 
Notice that because the newly added region is a (magnified by b) copy of the original Old(E) region, the 
value of New(H|E) for any H will still be Old(H|E). 
 
  



Another way to think of the operation we described is that, instead of adjoining a copy of the original E region, we keep a single picture, 
but the picture has sand or mud piled on it. We start with 1 liter of sand. Then we add b Old(E) new liters of sand, distributed only over the 
E region, and distributed in such a way as to maintain all the ratios of the subregions of E to each other. The new volume of sand is now n 
= 1 + b Old(E). 
 
The “X: Y Bayes Factor” of a change from Old(-) to New(-) is defined as: ( New(X)/New(Y) ) / ( Old(X) / Old(Y) ). 
 
Let’s calculate the E: not-E Bayes Factor of the operation we’ve described: 
 
[ New(E) = ( Old(E) + Old(E) * b ) / n ] / [ New(not-E) = Old(not-E) / n ]      ( Old(E) * (1+b) ) / Old(not-E) 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– =   –––––––––––––––––––––––– =  1 + b 
                                                      Old(E) / Old(not-E)                                                          Old(E) / Old(not-E) 
 
Field’s a = ½ log(1 + my b). 
My b = (e2a) – 1 
Since (log x) + (log y) = log xy, where I’m multiplying bs, Field will add as. That’s the main point of his using logs. 
 
Adding a Second Operation 
This time let’s start with New(-) and add a new magnification factor b´, ending with New´(-). For simplicity, we’ll again use an E 
versus not-E partition, keeping the E region of the copy. But you could also consider different operations, where it’s the not-E 
region that you keep instead, or (E Ú H1) or (E Ù (H2 Ú H3 É H3)). 
 

   
 
The first three regions are from New(-), and have a combined size of 1: 

(a) the first region’s size is Old(E) / n 
(b) the second region’s size is Old(not-E) / n 
(c) the third region’s size is Old(E) b / n 

 
The fourth and fifth regions are copies of the E regions from New(-), and are magnified by our new factor b´. Here b´ < 1.	

(d) The fourth region’s size is Old(E) / n * b´ 
(e) The fifth region’s size is Old(E) b /n * b´ 

 
The combined size of regions (d) and (e) is New(E) b´. 
 
The combined size of all five regions is 1 + New(E) b´	=	1 + Old(E) (1+b) / n * b´. Let this be n´, and we scale/renormalize by 
dividing each region’s size by n´, so that our result adds up again to size 1. 
New´(H3) = ( New(H3)  + New(H3 & E) * b´ ) / n´ 
New´(E)    = ( New(E) + New(E) * b´ ) / n´ 
 
The E: not-E Bayes Factor of the change from New(-) to New´(-) will be 1 + b´. 
The E: not-E Bayes Factor of the cumulative change from Old(-) to New´(-) will be: 
 
  New´(E)  /  New´(not-E)       ( New(E) * (1+b´) ) / New(not-E) 
––––––––––––––––––––– = ––––––––––––––––––––––––––––– =  (1 + b) (1 + b´) 
      Old(E) / Old(not-E)                               Old(E) / Old(not-E) 
  



What would be the result of “doing these operations in reverse order”? 
 
We want to formally represent “receiving/processing the same information/evidence in reverse order.” But if it’s to be the 
same information, then it shouldn’t include facts about which information was received first. It shouldn’t be that in one case 
we’re thinking “she laughed then it became a scowl” and in the other case we’re thinking “she scowled then it became a laugh” 
(Lange 2000). Our information needs to say the same thing in both cases. It’d be OK if our information was silent about the 
order in which it was received; or if it said it was received simultaneously; or if in one case it misrepresented which information 
was received first (so long as our formalism was equipped to handle false information). 
 
If we’re going to do the same operations in reverse order, we need first to perform the same operation that took us from 
New(-) to New´(-), only now we start with distribution Old(-) instead of distribution New(-). But what counts as “performing the 
same operation” on a different starting distribution? This is a substantive question, that could be answered in different ways. 
There isn’t a single obvious choice. 
 
We’ll assume that “performing the same operation” means using the same partition (E versus not-E), and that the 
transformation is “rigid” with respect to the cells of that partition. Let’s call this a transformation from Old(-) to New´´(-), and 
what this claim about “rigidity” means is that for every H, New´´(H|E) = Old(H|E) and New´´(H|not-E) = Old(H|not-E). 
 
That still leaves further choices unsettled. 
 

• One idea for “applying the same operation” to Old(-) (or any other starting distribution) is to use the same 
magnification factor b´ (and thus the same E: not-E Bayes Factor 1+b´). 
It turns out that if we understand “applying the same operation” in that way, then yes doing the operations in reverse 
order gives us the same final result, in other words the operations commute. This holds in general, even if the 
operations used different partitions, so long as we identify an operation with the partition it uses, the X: Y Bayes Factors 
of the operation, with X and Y being each pair of cells of that partition, and we assume the operation is “rigid” with 
respect to those cells. 
 

• Another idea for “applying the same operation” to Old(-) is that we should end at the same result — or at least at the 
same final values for E and not-E. That is, E should go from Old(E) to New´(E). That will involve a larger change to the 
value of E than when it merely went from New(E) to New´(E). Moreover, consider what “applying the same operation,” 
understood in this way, would involve when starting from each of these distributions: 

 

 
 

We’d be applying a huge increase to the value of E when operating on Other1(-); and a decrease to the value of E when 
operating on Other2(-). It’s not absurd to view this “doing the same thing” — since E is always ending at the same value 
— but neither is it absurd to view it as “doing something different.” 
 
If we understand “applying the same operation “ in this way — that is, preserving the final values of the cells, so that 
New´´(E) = New’(E) and New´´(not-E) = New´(not-E) — then clearly we won’t get commutativity. In fact New´´(-) would 
be the same as New´(-) for all values, and whereas in the first place we went: Old(-) ® New(-) ® New´(-),	now we’d 
instead be going Old(-) ® New´(-)	® New(-). So our ending distribution would be different. 
 

• Perhaps there are other natural ideas for how to understand “performing the same operation” as when we moved from 
New(-) to New´(-), but starting with a different distribution. But it turns out that our first choice, as well as being 
intuitively natural, is on modest assumptions not only sufficient but also necessary for commutativity. (Keeping fixed 
our assumption that “the same operation” involves using the same partition and being “rigid” with respect to its cells.) 

  



Undermining Evidence 
 
Species of defeating evidence: 
• Opposing/rebutting/overturning evidence 
• Undermining / undercutting evidence 
 
Many real cases are mixed, but the notion of “pure” undermining evidence seems intelligible 
Undermining comes in degrees (even if certain that U, may not entirely neutralize your original evidence E’s support of H) 
Undermining evidence can itself be defeated/strengthened 
 
Undermining seems to be ubiquitous (strategies for generating) 
“Confirmational holism” can be understood as: 
(i) All epistemic justification depends (at least in part) on independent/antecedent justification to believe other things 
(ii) Every belief can be defeated, or more specifically undermined [Weak Holism] 
Weisberg: “in general, a belief’s empirical justification is sensitive to background belief.” 
Our discussion is just about (ii), and just for empirical beliefs, and even so understood, (ii) is much stronger than needed to 
generate a problem. 
 
One example of Undermining: 
   Experiential impact ===>  hypothesis E goes up   --->  by virtue of bridge premises linking E with H ---> H also goes up 
   The undermining evidence U threatens the bridge premises. 
   “By itself” U doesn’t speak against H, but when your confidence in H is partly based on support from E via those 
   bridge premises, gaining evidence for U will make H go down. 
Call this “downstream” undermining (Pryor 2013: “quotidian undermining”) 
 
But what about the support you acquired for E itself: the alleged first impact of your experience. Can that support be 
undermined? Or is undermining always restricted to happening downstream from the proposition E you update on? 
We’ll rely on Weak Holism only to support the thought that it’s at least possible for this support for E itself to be undermined. 
 
We get a problem if we try to capture the idea that this can ever happen with Jeffrey Conditionalization’s representations of 
your updating. 
 
Three Arguments to Discuss 
 

1. Garber’s Complaint 
Given Field’s proposal, “…after nine repetitions of the same rather uninformative experience [seeing a ball in dim light, 
initially taking you from .3 to .4 for “this ball is blue”], S will become virtually certain [credence > .95] that the ball is 
blue” (Garber 1980, p. 144). 
 
The underlying issue is that the experiences aren’t sufficiently independent to justify how far and how fast the 
hypothesis “this ball is blue” rises. 
 
Compare a case where you read a newspaper reporting that H. Reading another copy of the same newspaper? Not 
evidentially useless (the first could have been a single prank copy your friends planted), but its evidential impact will be 
negligible. Reading a different paper? More useful, but still not entirely independent. If one paper turns out to be 
misleading, it’s not inevitable but it is likely that others will too, in similar ways. 
 
When sources of evidence are independent: p(Source2 favors H | H & Source1 favors H) = p(Source2 favors H | H) 
 
Seeing the same report in multiple copies of the same newspaper, or repeating Garber’s casual glance, are extremely 
far from being independent in this sense. 
 
This kind of redundancy (lack of independence) in one’s evidence operates like a kind of undermining. 
 
We’ll see that Jeffrey Conditionalization has difficulties capturing undermining effects (when they’re operating at the 
source of one’s learning, rather than downstream from it). Garber’s complaint is just another manifestation of this 
difficulty. 



2. Christensen’s Argument (his 1992, pp. 532-4; also Weisberg 2009, p. 11; also Pryor 2013, p. 127) 
The posterior for E should depend on more than just experiential input, and your priors in E. Your prior credence in U 
should matter too. But Field’s proposal is naturally understood as making the posterior for E depend on just those first 
factors. 
 

3. Weisberg’s Main Complaint (his pp. 14-16; also Pryor 2013, pp. 123-5) 
Suppose U is a pure underminer of the support you will get for E: thus Old(E|U) = Old(E). 
When you learn E, should be that: Old(E) ≤ New(E|U) < New(E). 
 
But Theorem “Rigidity preserves Independence”: an update rigid with respect to E cannot take propositions E, U that 
were independent and make them probabilistically correlated / no longer independent. 
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