
Chapter 16 

Basic Concepts 

16.1 Languages, grammars and automata 

At one level of description, a natural language is simply a set of strings-finite 
sequences of words, morphemes, phonemes, or whatever. Not every possible 
sequence is in the language: we distinguish the grammatical strings from 
those that are ungrammatical. A grammar, then, is some explicit device for 
making this distinction; it is, in other words, a means for selecting a subset 
of strings, those that are grammatical, from the set of all possible strings 
formed from an initially given alphabet or vocabulary. 

In this chapter we will consider two classes of formal devices which can 
function as grammars in this very general sense: (1) automata, which are 
abstract com pu ting machines, and (2) string rewriting systems, which gen-
erally bear the name "grammar-" or "formal grammar". The latter will be 
familiar to linguists inasmuch as grammars in this sense have formed the 
basis of much of the work in generative transformational theory. 

\Ve begin by considering certain properties of strings and sets of strings. 
Given a finite set A, a string on (or over) .4 is a finite sequence of occurrences 
of elements from rL For example, if A = {a, b, c}, then acbaab is a string on 
A. Strings are by definition finite in length. (Infinite sequences of symbols 
are also perfectly reasonable objects of study, but they are not suitable as 
models for natural language strings.) The set from which strings are formed 
is often called the vocabulary or alphabfl. and 1 his too is always assumed 
to be finite. The length of a string i". or course, the number of occurrences 
of symbols in it (i.e .. the' Humber of tokens. not the number of types). The 
string arbaab thus is of length G. 



432 CHAPTER 16 

Because we are dealing with tokens of an alphabet, there is an impor-
tant difference between the linearly ordered sequences we call strings and a 
linearly ordered set. If the set A ::: {a, b, c} were linearly ordered, say, as 
b --+ a --+ c, each element of A would occupy a unique place in the order-
ing. In a string, e.g., acbaab, tokens of a occur in the first, fourth, and fifth 
positions. 

To be formal, one could define a string of length n over the alphabet A 
to be a function mapping the first n positive integers into A. For example, 
acbaab would be the function {(I, a),(2, c), (3, b), (4, a),(5, a),(6, b)}. There is 
little to be gained in this case by the reduction to the primitives of set theory, 
however, so we will continue to think of strings simply as finite sequences 
of symbols. A string may be of length 1, and so we distinguish the string b 
of length 1 from the symbol b itself. We also recognize the (unique) string 
of length 0, the empty string, which we will denote e (some authors use A). 
Two strings are identical if they have the same symbol occurrences in the 
same order; thus, acb is distinct from abc, and strings of different length are 
always distinct. 

An important binary operation on strings is concatenation, which a-
mounts simply to juxtaposition. For example, the strings abca and bac can be 
concatenated, in the order mentioned, to give the string abcabac. Sometimes 
concatenation is denoted with the symbol" -"" thus, abca ""bac. Concate-
nation is associative since for any strings o,jJ",(o "'(3) "',::: 0 

but it is not commutative, since in general ° -"(3 :j::. (3 -" a. The empty string 
is the identity element for concatenation; for any string a, 0 t::: 

"" e a:::o. 

Given a finite set A, the set of all strings over A, denoted A *, together 
with the operation of concatenation constitutes a monoid. Concatenation is 
well-defined for allY pair of strings in A* and the result is a string in A*; the 
operatioll is associative; and there is an identity element. (A *, fails to be 
a group since no element other than e has an inverse: no string concatenated 
with a non-empty string x will yield the empty string. Since concatenation 
is not commutative, (A*, is not an Abelian monoid. 

A frequently encountered ullary operation on strings is reversal. The 
reversal of a string x, denoted xR, is simply the string formed by writing the 
symbols of x ill the reverse order. Thus (acbab)R ::: babca. The reversal of 
c is just (; itself. To be formal, we could define reversal by induction 011 tlte 



LANGUAGES, GRAMMARS AND AUTOMATA 433 

length of a string: 

DEFINITION 16.1 Given an alphabet A: 

(1) If x is a string of length 0, then x R = x (i.e., eR = e) 

(2) If x is a string of length k + 1, then it is of the form wa, where a E A 
and w E A*; then x R = (wa)R = awR. 

• 
Concatenation and reversal are connected in the following way: For all 
strings x and" y, (x "'y)R = yR "'xR. For example, 

Given a string x, a substring of x is any string formed from contiguous 
occurrences of symbols in x taken in the same order in which they occur 
in x. For example, bae is a substring of abaeea, but neither bee nor eb is 
a substring. Formally, y is a substring of x iff there exist strings z and 
w such that x = z "'y '-"w. In general, z or w (or both) may be empty, 
so every string is trivially a substring of itself. (Non-identical substrings 
can be called proper substrings.) The empty string is a substring of every 
string; i.e., given x we can choose z in the definition as e and w as x so that 

'" '" x = e e x. 

An initial substring is called a prefix, and a final substring, a suffix. 
Thus, ab is a (proper) prefix of abaeea, and eea is a (proper) suffix of this 
string. 

We may now define a language (over a vocabulary A) as any subset of 
A*. Since A* is a denumerably infinite set, it has cardinality its power 
set, i.e., the set of all languages over A, has cardinality 2No and is thus non-
denumerably infinite. Since the devices for characterizing languages which 
we will consider, viz., formal grammars and automata, form denumerably 
infinite classes, it follows that there are infinitely many languages-in fact, 
non-denumerably infinitely many-which have no grammar. What this means 
in intuitive terms is that there are languages which are such motley collec-
tions of strings that they cannot be completely characterized by any finite 
device. The languages which are so characterizable exhibit a certain amount 



434 CHAPTER 16 

of order or pattern in their strings which allows these strings to be distin-
guished from others in A * by a grammar or automaton with finite resources. 
The study of formal languages is essentially the investigation of a scale of 
complexity in this patterning in strings. For example, we might define a 
language over the alphabet {a, b} in the following way: 

(16-2) L = {x I x contains equal numbers of a's and b's (in any order)} 

We might then compare this language with the following: 

(16-3) L} = {x E {a,b}* I x = anbn(n 2': O)}, i.e., strings consisting of 
some number of a's followed by the same number of b's 
L2 = {x E {a,b}* I x contains a number of a's which is the square 
of the number of b's} 

Is L1 or L2 in some intuitive sense more complex than L? Most would 
probably agree that L2 is a more complex language than L in that greater 
effort would be required to determine that the numbers of a's and b's stood 
in the "square" relation than to determine merely that they were equal. In 
other words, a device which could discriminate strings from non-strings of 
L2 would have to be more powerful or more "intelligent" than a device for 
making the comparable discrimination for L. 

What of L} and L? Here intuitions are much less clear. Some might 
think that it would require a less powerful device to recognize strings in L 
reliably than to recognize strings in L 1 ; others might think it is the other way 
around or see no difference. As it happens, the particular scale of complexity 
we will investigate (the so-called Chomsky Hierarchy) does regard L2 as more 
complex than L but puts L1 and L in the same complexity class. At least this 
is so for the overall complexity measure. Finer divisions could be established 
which might distinguish L} from L. 

One linguistic application of these investigations is to try to locate nat-
ural languages on this complexity scale. This is part of the overall task of 
linguistics to characterize as precisely as possible the class of (potential and 
actual) natural languages and to distinguish this class from the class of all 
language-like systems which could not be natural languages. One must keep 
clearly in mind the limitations of this enterprise, however, the principal one 
being that languages are regarded here simply as string sets. It is clear that 
sentences of any natural language have a great deal more structure than 
simply the concatenation of one element with another. Thus, to establish a 



GRAMMARS 435 

complexity scale for string sets and to place natural languages on this scale 
may, because of the neglect of other important structural properties, be to 
classify natural language along an ultimately irrelevant dimension. Extend-
ing results from the study of formal languages into linguistic theory must 
therefore be done with great caution. 

16.2 Grammars 

A formal grammar (or simply, grammar) is essentially a deductive system of 
axioms and rules of inference (see Chapter 8), which generates the sentences 
of a language as its theorems. By the usual definitions, a grammar contains 
just one axiom, the string consisting of the initial symbol (usually 5), and a 
finite number of rules of the form 1jJ -> w, where 1jJ and ware strings, and the 
interpretation of a rule is the following: whenever 1jJ occurs as a substring 
of any given string, that occurrence may be replaced by w to yield a new 
string. Thus if a grammar contained the rule AB -> CDA, we could derive 
from the string EBABCC the string EBC DACC. 

Grammars use two alphabets: a terminal alphabet and a non-terminal 
alphabet, which are assumed to be disjoint. The strings we are interested 
in deriving, i.e., the sentences of the language, are strings over the terminal 
alphabet, but intermediate strings in derivations (proofs) by the grammar 
may contain symbols from both alphabets. We also require in the rules of 
the grammar that the string on the left side not consist entirely of terminal 
symbols. Here is an example of a grammar meeting these requirements: 

(16-4) VT (the terminal alphabet) = {a,b} 
VN (the non-terminal alphabet) = {S,A,B} 
5 (the initial sym bol-a member of V N ) 

5 -> ABS 
5 ->e 
AB -> BA 

R (the set of rules) = BA -> AB 

A ->a 
B ->b 

A common notational convention is to use lower case letters for the terminal 
alphabet and upper case letters for the non-terminal alphabet. 

A derivation of the string abba by this grammar could proceed as follows: 


