8.5.6 Axioms for string concatenation

In this section we will axiomatize a very simple structure, the structure of
string concatenation. A string concatenation system consists of a set A
of strings of symbols from some alphabet together with the operation of
concatenation, which is an operation that applies to two strings and consists
simply of writing the second down after the first so as to combine them into
a single longer string. In order for the system to be well-defined, the set A of
strings must be closed under the concatenation operation; that is, the result
of concatenating any two strings in A must itself be in A.

There are two formally different kinds of string concatenation systems,
differing in whether they include an empty string among the strings of the
system or not We can show how that difference corresponds to a difference
of one axiom in otherwise identical axiom systems.

For concatenation systems without an empty string, we can axiomatize
them as shown below; structures with a binary operation satisfying these
axioms are called semigroups

DEFINITION 8.17 A system consisting of a set A and a binary operation
on A is a semigroup iff:
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1. A is closed under ™ : Vavy((z € A&y € A) >z y€ A)

2. The operation " is associative: VaVyVz((z y) 2=z (¥ 2))

To write these axioms in pure predicate logic form, we would need
to eliminate the operator notation “z” y”. (Similar conversions must be
made in going from the function-oriented programming language LISP to
the predicate-logic-based language PROLOG.) We can do that by using the
notation Czyz with the intended interpretation “z” y = 2”. That would
also force us to stipulate more carefully the existence and uniqueness re-
quirements implicit in the operator notation. The revised first axiom would

read as follows:

DEFINITION 818

1. A is closed under C: VeVy3z(Cryz & Vw(Cryw — w = 2))
2. ...

Axiom 2 of our earlier definition would also have to be revised, of course,
but it merely becomes more complicated and harder to read, so we refrain
from carrying out the revision,

An example of a concatenation system of this kind, i.e. a model of the
above axioms where the set A is indeed a set of strings and the operation
" is interpreted as concatenation, is the set of all strings of a’s, b’s, and ¢’s
whose total length is even: A = {aa,ab,ac,ba,bd,...,abaa,abab,abac, ...,
cbeeab, ...}, The set A is closed under concatenation and the concatenation
operation is associative.

The set A’ which is just like A above except that all the strings in A’
have odd length, together with the operation of concatenation, would not
form a model of the axioms, because it does not satisfy Axiom 1. (Why
not?)

Turning now to systems that include the empty string, the first question
is what that means. The empty string, like the number zero or the empty
set, has more formal than intuitive motivation. It has length zero; it is a
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substring of every string; and it has the property that when concatenated
with any string it yields that string itself. This last is its defining property
in the axiomatic characterization of concatenation systems with the empty
string: letting e designate the empty string, te=1z, and ¢ ¢ = z, for
any string . The empty string therefore satisfies the definition of being
an sdentity element with respect to concatenation, just as 0 is an identity
element for addition, 1 is for multiplication, and the empty set is for set
union

A concatenation system with empty string therefore satisfies both of the
earlier axioms plus an axiom specifying the existence of an identity element;
structures that satisfy these axioms are called monoids. A monoid is there-
fore characterizable in general as a semigroup with an identity element

DEFINITION 8.19 A system consisting of a set A and a binary operation
on A is a monoid iff:

1 Ais closed under 7 VaVy((z € A&y e A) 2 y€ A)
2. The operation " is associative: VaVyvz((z " y) 2=z (v 2))
3. A contains an identity element e: JeVz(z e =e 'z = z)

Both monoids and semigroups are examples of kinds of algebras. We
will return to them in Chapter 10 in the context of group theory and other
related algebras. Some parts of the study of algebras relate closely to the
study of model theory, since algebras are usually characterizable with a small
set of simple axioms whose models can be shown to share rich and significant
structural properties. (Among the algebras to be studied in Chapters 9-12,
lattices, Boolean algebras, and Heyting algebras have played a particularly
important role in model theoretic investigations.)



