
LOGIC
The Laws of Truth

NICHOLAS J. J. SMITH

PRINCETON UNIVERSITY PRESS . PRINCETON AND OXFORD

Copyright © 2012 by Princeton University Press

Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock,
Oxfordshire OX20 1TW

press.princeton.edu

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Smith, Nicholas J. J. (Nicholas Jeremy Josef), 1972–
Logic : the laws of truth / Nicholas J.J. Smith.

pages cm
Includes bibliographical references and index.

ISBN 978-0-691-15163-2 (hardcover : alk. paper)
1. Logic. I. Title.

BC71.S616 2012
160—dc23 2011048269

British Library Cataloging-in-Publication Data is available

This book has been composed in Minion and Myriad Pro using ZzTEX
by Princeton Editorial Associates, Inc., Scottsdale, Arizona.

Printed on acid-free paper.

Printed in the United States of America

1 3 5 7 9 10 8 6 4 2

16
Set Theory

This chapter—more in the nature of an appendix—explains basic concepts
from set theory, some of which have been employed earlier in this book; it is
not a full introduction to the field of set theory.

16.1 Sets
A set is a collection of objects. These objects are said to be members or elements
of the set, and the set is said to contain these objects.

If we are in a position to name all elements of a set, we can name the set
itself by putting braces (“{” and “}”) around them. For example, we denote
the set containing the numbers 1, 2, and 3 as {1, 2, 3} and the set containing
Alice, Bob, and Carol as {Alice, Bob, Carol}. If we cannot name all elements
of a set, we might do one of two things. If the elements come in some known
order, we can name the first few of them and then write an ellipsis (“. . .”).
For example, we denote the set of all positive integers as {1, 2, 3, . . .} and the
set of all even positive integers as {2, 4, 6, . . .}. Alternatively, we can state a
condition C that is satisfied by all and only the elements of the set, and we
then denote the set as {x : C} (or {x|C}). For example, the set of all red things
is denoted {x : x is red} (read as “the set of all x such that x is red”), and the
set of all even numbers is denoted {x : x is even} (read as “the set of all x such
that x is even”).

We use the symbol ∈ (epsilon) to denote membership, as in 1∈ {1, 2, 3} and
Alice ∈ {Alice, Bob, Carol}. To say that something is not a member of a set,
we use the symbol "∈, as in 4 "∈ {1, 2, 3} and Dave "∈ {Alice, Bob, Carol}. The
symbol ∈ is a two-place relation symbol, but as with =, we write it in between
its arguments (as in x ∈ S), not in front of them. The expression x "∈ S can be
seen as an abbreviation for ¬x ∈ S.

When asked to picture the set containing, say, Alice and Bob, many people
will simply picture Alice and Bob standing side by side. This isn’t the best way
to think of sets. Alice and Bob are the members of the set containing Alice

Alice Bob

Set containing Alice and Bob

Figure 16.1. Alice, Bob, and the set that contains them.

and Bob, but the set itself is a third thing, distinct from its two members. So
we should picture the situation as in Figure 16.1, where the arrows indicate
membership (i.e., the thing at the tail of an arrow is a member of the thing at
the head of that arrow). This is the guiding idea behind set theory: to treat a
collection of objects—that is, a set—as an object in its own right. Set theory is
then the theory of these objects—of sets. As Georg Cantor—the founder of set
theory—put it: a set is a many or multiplicity that can be conceived of as one
or single.1 Note that—unlike its members, Alice and Bob—the set containing
Alice and Bob is not visible or tangible. For this reason sets are often referred
to as abstract objects.

There is a set called the empty set or null set, symbolized by ∅, which has no
elements. This may sound odd. A set is supposed to be a collection of things—
but we cannot collect together nothing! So how can there be a set containing
no things? Actually, the idea makes perfect sense, once we think of it in the
right way—that is, once we remember to think of sets as objects, distinct from
their members, with membership indicated by arrows (as in Figure 16.1). We
then picture the empty set (i.e., the set with no members) as a dot—an object,
a thing, just like all other sets—that simply has no arrows pointing to it.

16.1.1 Extensionality
Suppose we have some kind of thing: P s. We make a first choice of a P —call
it x. We make a second choice of a P (maybe a different thing from our first
choice, or maybe we have chosen the same thing a second time)—call it y. An
identity condition for P s determines whether x = y; that is, whether we chose
the same thing twice or chose two different things, for any choices x and y.
Sets have a very simple identity condition: for any sets x and y, x and y are
identical (i.e., x = y) iff every member of x is a member of y, and vice versa.
This property of sets—that they are individuated by their members; that if
“two” sets have exactly the same members, then they are in fact one and the
same set—is known as extensionality.

Here are some examples:

{1, 2} = {2, 1}

16.1 Sets 439

The set on the left has two elements (1 and 2), and each of them is a member
of the set on the right. The set on the right has two elements (2 and 1), and
each of them is a member of the set on the left. Thus, every member of the
set on the left is a member of the set on the right, and vice versa, so they are
two different ways of writing the same set. When we name a set by listing its
members with braces around them, the order in which we write the elements
of the set within the braces does not matter.

{1} = {1, 1}

The set on the left has one element (1), and it is a member of the set on the
right. The set on the right has just one element (1)—we have simply named
this element twice when writing the set on the right—and it is a member of the
set on the left. Thus, every member of the set on the left is a member of the set
on the right, and vice versa, so they are two different ways of writing the same
set. When we name a set by listing its members with braces around them, it
makes no difference whether we write a given element once or multiple times:
the only significant thing is whether a certain object is named as an element
at all.

{4} = {2 + 2}

The expressions “2 + 2” and “4” pick out the same number: thus, the only
element of the set on the left is a member of the set on the right, and vice
versa. Note here that even though extensionality fixes the facts as to whether
set x is identical to set y, for any sets x and y, it need not always enable us to
see whether sets x and y are identical. For example, because 2 + 2 and 4 are
the same number, extensionality fixes that the set {4} is the same object as the
set {2 + 2}. However, if someone does not know that 2 + 2 = 4, then simply
knowing the principle of extensionality will not enable him to see that {4} and
{2 + 2} (described thus) are the same set.

{2, 4, 6, . . .} = {x : x is an even positive integer}

Again, the expressions on the left and right of the identity sign are just two
different ways of writing the same set.

Properties—in contrast with sets—are intensional. Consider a property, say,
the property of redness. The set of all things that possess a property is often
called the extension of the property; thus, the set containing all and only red
things is the extension of the property of redness.2 Now two distinct proper-
ties might be possessed by exactly the same objects; that is, they might have
the same extension. For example, the property of being a human being is not
(intuitively) the same as the property of being a featherless biped, but both
properties have the same extension (i.e., all humans are featherless bipeds and

440 Chapter 16 Set Theory

vice versa). Thus, we say that properties are intensional, as opposed to exten-
sional: knowing that properties P and Q are possessed by the same objects
does not allow you to conclude that properties P and Q are identical, whereas
knowing that sets S and T contain the same objects does allow you to conclude
that S and T are identical. So “being possessed by the same objects” is not the
identity condition for properties (whereas “containing the same objects” is the
identity condition for sets). In fact there is no obviously correct precise iden-
tity condition for properties. Certain cases might be clear enough—such as
the featherless biped example—but there is no widely accepted theory spelling
out a general precise identity condition for properties. One of the advantages
of working with sets—rather than properties—is their crystal clear identity
condition (i.e., extensionality).

16.1.2 Subsets
A set S is a subset of a set T —in symbols, S ⊆ T —iff every member of S is a
member of T :

S ⊆ T iff ∀x(x ∈ S → x ∈ T) (16.1)

Note that this definition leaves open whether or not S = T : that depends upon
whether there is anything in T that is not in S. If there is nothing in T that is
not in S (i.e., if T ⊆ S as well as S ⊆ T), then S = T . This is just the principle
of extensionality phrased in a new way. If there is something in T that is not
in S (i.e., S ⊆ T but not T ⊆ S), then S is a proper subset of T , symbolized by
S ! T .3 Note that every set is (trivially) a subset of itself, but no set is a proper
subset of itself.

The null set is a subset of every set. Given any set T , it is automatically
true—because ∅ has no members—that every member of ∅ is a member of T .
Recall (Exercises 9.4.3, question 5(i)) that “all F s are Gs” is true when there
are no F s. Similarly, because x ∈ ∅ is false for every x, the following comes out
true no matter what set T is:

∀x(x ∈ ∅→ x ∈ T)

But this is just the condition required for ∅ to be a subset of T ; hence, for all
T , ∅ ⊆ T .

We can now see that the empty set is unique; that is, there is only one
empty set (there are not two different sets, each of which has no members).
For suppose there were two empty sets, a and b. For the reasons just given,
a ⊆ b and b ⊆ a—but then, by extensionality, a = b.

A set containing just one element—for example, {3}—is a singleton or
unit set.

16.1 Sets 441

Note that 1 is an element of the set {1, 2, 3} but is not a subset of it, whereas
{1} is a subset of the set {1, 2, 3} but is not an element of it. Sometimes we
are given a set S and we want to consider a set of subsets of S. For example,
suppose we have the set S = {1, 2, 3, 4}, and we want to consider the set S2 of
all two-membered subsets of this set:

S2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

(Because {2, 3} = {3, 2}, we do not list {3, 2} separately. Similarly for {2, 1}
etc.) Note that:

{1, 2}⊆ S

{1, 2} ∈ S2

That is, an element of S2 is a subset of S.
One very important set of subsets of any set S is the power set of S—the set

of all subsets of S—symbolized by ℘S:

℘S = {x : x ⊆ S}

For example, for S = {1, 2, 3},
℘S = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

16.1.3 Operations on Sets
The union of two sets S and T , denoted S ∪ T , contains everything in either
S or T (or both):

S ∪ T = {x : x ∈ S ∨ x ∈ T }

or visually:

S T

Here, the left circle represents the set S (i.e., think of the members of S as the
things within this circle; note that these elements of S are not shown in the
picture); the right circle represents the set T ; the union of S and T is shaded
gray.

The intersection of two sets S and T , denoted S ∩ T , contains everything
which is in both S and T :

S ∩ T = {x : x ∈ S ∧ x ∈ T }

442 Chapter 16 Set Theory

or visually:

S T

Here, the intersection of S and T is shaded gray.
Two sets S and T are disjoint if they have no members in common; that is,

if S ∩ T = ∅:

S T

Often when dealing with some sets, it is useful to consider them as subsets of
some background set (e.g., the background set might be the domain of some
model). The complement of a set S, denoted S ′, is the set of all things that are
not in S.4 Here it is important that we are restricting ourselves to the contents
of some background set: S ′ contains everything in the background set that is
not in S, not everything at all that is not in S:

S ′ = {x : ¬x ∈ S}

or visually:

S

Here, the square represents the background set; the circle represents the set S;
the complement of S is shaded gray.

The set-theoretic difference of two sets S and T (taken in that order), de-
noted S \ T , is the set of things in S but not in T :

S \ T = {x : x ∈ S ∧ ¬x ∈ T }

16.1 Sets 443

or visually:

S T

Here, the shaded area is S \ T . The set S \ T is also known as the relative
complement of T in S. Note that if we think of S and T as subsets of a
background set U , then S \ T = S ∩ T ′, and S′ = U \ S.5

Note that, for any sets S and T , S ∪ T = T ∪ S and S ∩ T = T ∩ S.6 It is
not the case, however, that for any sets S and T , S \ T = T \ S. Compare the
following picture of T \ S to the previous picture of S \ T :

S T

Of course, if S = T then S \ T = T \ S = ∅.7

There is an evident parallel between the set-theoretic operations of comple-
ment, union, and intersection and the logical operations of negation, disjunc-
tion, and conjunction, respectively: the complement of S contains all objects
not in S; the union of S and T contains all objects in S or in T ; the inter-
section of S and T contains all objects in S and in T . Recall (§6.6) that every
possible two-place connective can be defined in terms of ¬, ∨, and ∧. Simi-
larly, suppose we have two sets, S and T , that are subsets of a background set
U . Suppose we want to specify a third subset, V , such that for any object x

in U , whether x is in V is completely determined by whether x is in S and
whether x is in T . Then, any such V can be defined in terms of S and T and
the operations of complement, union, and intersection. We have already seen
an example of this: S \ T = S ∩ T ′. Here is a second example. The symmetric
difference of two sets S and T , denoted S"T , contains everything that is in
exactly one of S and T :

S T

444 Chapter 16 Set Theory

This set may be defined in any of the following ways:

S"T = (S ∪ T) \ (S ∩ T)

S"T = (S \ T) ∪ (T \ S)

S"T = (S ∪ T) ∩ (S ∩ T)′

The third is a direct definition in terms of S and T and the operations of
complement, union, and intersection. The first two reduce to such definitions
when we define out the relative complement operation in these terms. Note
that, unlike the set-theoretic difference operation, the symmetric difference
operation is symmetric (hence its name); that is, for any sets S and T , S"T =
T"S.

You may notice that the symmetric difference operation is the set-theoretic
analogue of exclusive disjunction (§6.4). That is, we could specify the symmet-
ric difference of S and T as:

S"T = {x : x ∈ S ! x ∈ T }

If we take any other two-place connective, we can likewise obtain a corre-
sponding operation on sets. For example, corresponding to the conditional,
we could specify an operation

s→ on sets as follows (we put an “s” on top of
the arrow symbol to indicate that this new operation takes sets as arguments,
whereas the conditional → connects wffs):

S
s→ T = {x : x ∈ S → x ∈ T }

Remembering that α → β is equivalent to ¬α ∨ β and to ¬(α ∧ ¬β), the set
S

s→ T could be defined in either of the following ways:

S
s→ T = S ′ ∪ T

S
s→ T = (S ∩ T ′)′

As you can see by comparing the following picture of S
s→ T with the earlier

picture of S \ T , S
s→ T = (S \ T)′.

S T

16.1 Sets 445

To take a second example, corresponding to the biconditional, we could
specify an operation

s↔ on sets as:

S
s↔ T = {x : x ∈ S ↔ x ∈ T }

Remembering that α ↔ β is equivalent to (α ∧ β) ∨ (¬α ∧ ¬β) and to
¬((α ∨ β) ∧ ¬(α ∧ β)), the set S

s↔ T could be defined in either of the fol-
lowing ways:

S
s↔ T = (S ∩ T) ∪ (S ′ ∩ T ′)

S
s↔ T = ((S ∪ T) ∩ (S ∩ T)′)′

As you can see by comparing the following picture of S
s↔ T with the earlier

one of S"T , S
s↔ T = (S"T)′. Also, S

s↔ T = (S
s→ T) ∩ (T

s→ S). You can
see this identity by looking at the picture of S

s→ T , imagining a picture of
T

s→ S, and comparing them with the following picture of S
s↔ T , or by

noting that α ↔ β is equivalent to (α → β) ∧ (β → α).

S T

16.1.4 What Sets Exist?
An intuitively appealing principle is that every property has an extension: for
any property, there is a set of objects that have that property. (It may be the
empty set, but that is still a set.) We can make this idea more precise by replac-
ing the notion of “property” with that of a condition specifiable in a particular
formal language. Let’s take the fragment of GPLI including no nonlogical sym-
bols (no names, and no predicates apart from =) and add the set-theoretic
symbol ∈ (a two-place predicate). Call the resulting language GPLI with Set
Membership (GPLIS). An open formula α(x) of GPLIS—which contains free
occurrences of the variable x—can be thought of as a condition that objects
may or may not satisfy. Now the more precise version of the intuitive thought
is that for any such condition α(x), there exists a set containing all and only
the objects satisfying the condition—that is, the set:

{x : α(x)}

Note that the empty set can be specified in this way by giving a condition
α(x) in GPLIS:

∅= {x : ¬x = x}

446 Chapter 16 Set Theory

Because ∀xx = x is logically true, no object satisfies the condition ¬x = x;
hence, the set of all and only the objects that satisfy this condition is the empty
set. Assuming that sets S and T have been specified in this way—that is, that
we have introduced “S” as a name for a certain set specified by some condition
and “T ” as a name for a certain set specified by some condition—the sets S′,
S ∪ T , S ∩ T , and so on can also be specified in this way. That is precisely
how we did specify them in §16.1.3: with conditions stated using only logical
symbols of GPLI and the new symbol ∈ (and the names “S” and “T ”).

Let’s return to the precisified version of the intuitive thought. It is known as
the principle of unrestricted comprehension (or “unlimited comprehension”):

For any wff α(x) in GPLIS containing one or more free occurrences of x, there
exists a set:

{x : α(x)}

The term naı̈ve set theory is often used for the theory of sets that takes exten-
sionality and unrestricted comprehension as its basic principles. Unrestricted
comprehension determines which sets exist; extensionality determines when
sets x and y are one and the same set. Frege [1964, p. 105] took as an axiom
(Basic Law V) in his later formal system a principle that implies both a ver-
sion of unrestricted comprehension and extensionality. However—as Russell
[1902] pointed out to Frege in a now-famous letter, we can derive a contra-
diction from the principle of unrestricted comprehension. Let α(x) be the
formula ¬x ∈ x. Then the principle yields a set {x : ¬x ∈ x}. Call this set R

(the Russell set). By pure logic, either R ∈ R or ¬R ∈ R. Suppose the for-
mer: then ¬R ∈ R (because the condition required for R to be in R is ¬R ∈
R). Suppose the latter: then it is not the case that ¬R ∈ R (again because
the condition required for R to be in R is ¬R ∈ R, so if R is not in R, it
must be that the condition is not satisfied); that is, R ∈ R. Thus, we have
R ∈ R ∨ ¬R ∈ R, R ∈ R → ¬R ∈ R and ¬R ∈ R → R ∈ R. From these, the
contradiction R ∈ R ∧ ¬R ∈ R follows by pure logic. We have derived a con-
tradiction (R ∈ R ∧ ¬R ∈ R) from the principle of unrestricted comprehen-
sion. This is Russell’s Paradox.

We therefore need a new theory about which sets exist: unrestricted com-
prehension will not do. A common picture nowadays concerning which sets
exist is the iterative conception of set. In this view, sets are built up in stages. A
set S can only be built at stage x if all members of S already exist as of stage x.
In particular, a set that contains sets as members can only be built at stage x if
these member sets were built at some stage prior to x.

We start building sets at stage 0. At this stage—as we have not yet built any
sets—all we have available to put in the sets we are building are objects that

16.1 Sets 447

are not sets; these are called urelements. There may be no urelements; as we
shall see, we can still build plenty of sets in this case. At stage 0 we can always
build the empty set. If there are no urelements, this is the only set we can build.
If there is one urelement, a, we can build the sets ∅ and {a}. If there are two
urelements, a and b, the possible sets are ∅, {a}, {b}, and {a , b}; and so on if
there are more urelements.

At stage 1, we can build any set containing urelements or sets built at stage 0,
that is, any set whose members are already available at the beginning of stage 1.
If there are no urelements, we can build ∅ and {∅}. (Note that ∅ was already
built at stage 0. At every stage, we can always build again everything built at any
earlier stage. In general, when talking about the stage at which a set is formed,
we mean the earliest stage at which it is formed.) If there is one urelement, a,
then at stage 1 we can build the following eight sets:

∅
{a} {∅} {{a}}

{a , ∅} {a , {a}} {∅, {a}}
{a , ∅, {a}}

(Two of these—∅ and {a}—were already built at stage 0.) If there are more
urelements, we can build even more sets at this stage.

At stage 2, we can build any set containing urelements, sets built at stage 0,
or sets built at stage 1, that is, any set whose members are already available at
the beginning of stage 2. If there are no urelements, we can build the following
four sets:

∅
{∅} {{∅}}

{∅, {∅}}

(The empty set ∅ was already built at stage 0 and at stage 1; {∅} was already
built at stage 1.) If there is one urelement, a, then at stage 2 we have nine
objects available to put into sets: a, and the eight sets built at stage 1 (the two
sets built at stage 0 were also built at stage 1, so we do not count them again).
Thus, we can build 29 = 512 sets (too many to show here). If we have more
urelements, we can build even more.

The progression of stages never stops: indeed, it extends to transfinite stages.
Thus, it is not just that there is a stage n for every finite n: after all these
finite stages (infinitely many of them), there is another stage, stage ω. At
this stage, we form sets whose members may be any urelement (if there are
any), or any set formed at any earlier stage (1, 2, 3, . . .). Next we have a
stage ω + 1, at which we form sets whose members may be any urelement (if
there are any), or any set formed at any earlier stage (1, 2, 3, . . . , ω); and so

448 Chapter 16 Set Theory

on, through stages ω + 2, ω + 3, . . . , ω + ω(= ω.2), ω.2 + 1, ω.2 + 2, ω.2 +
3, . . . , ω.2 + ω(= ω.3), . . . , ω.ω,

Sets built up in this way from no urelements are called pure sets. They can be
arranged into a hierarchy—known as the cumulative or iterative hierarchy—
according to the stage at which they are (first) formed. All the usual objects
considered in mathematics can be identified with sets in the cumulative hi-
erarchy. For example, the natural numbers 0, 1, 2, . . . can be identified with
the sets ∅, {∅}, {∅, {∅}}, . . . (note that each set in the sequence contains all
the earlier sets in the sequence). At the same time, certain problematic sets
are not built at any stage—and so they do not exist at all, in this conception.
For example, there is no Russell set. For note that no set in the cumulative
hierarchy is a member of itself: a set S can only have as members things that
have already been formed prior to the stage at which S is formed; so for S to
contain itself, S would have to be formed at some stage prior to the stage at
which S is formed—which is impossible. Thus, the set of all sets that are not
members of themselves would simply be the set of all sets in the cumulative hi-
erarchy. But there is no such set. For if there were, it would have to be formed
at some stage—and then it would not contain the sets formed at subsequent
stages (remember, the progression of stages never ends).

The iterative conception thus provides a theory about what sets exist that
yields enough sets for mathematics and promises to avoid contradictions, such
as Russell’s paradox. Of course, the theory—as we have presented it here—is
not precise. Greater precision may be attained by formulating axioms that are
true in the cumulative hierarchy and then working directly from the axioms;
this is known as axiomatic set theory.8

16.2 Ordered Pairs and Ordered n-tuples
Roughly speaking, an ordered pair consists of two objects, given in a partic-
ular order: one first, the other second. The ordered pair consisting of Alice
first and Bob second is represented as 〈Alice, Bob〉 or (Alice, Bob). An or-
dered triple consists of three objects, given in a particular order. The ordered
triple consisting of Alice first, Bob second and Carol third is represented as
〈Alice, Bob, Carol〉 or (Alice, Bob, Carol). In general, an ordered n-tuple (or
just an n-tuple, for short) consists of n objects in a particular order. The or-
dered n-tuple consisting of Alice first, Bob second, . . . , and Carol in nth
position is represented as 〈Alice, Bob, . . . , Carol〉 or (Alice, Bob, . . . , Carol).
“Ordered pair” is then just another term for an ordered 2-tuple, and “ordered
triple” is another term for an ordered 3-tuple.

I said “roughly speaking” because in fact an ordered pair does not have to
comprise two different objects, an ordered triple does not have to comprise
three different objects, and so on. For example, 〈1, 1〉, 〈Alice, Alice〉, and

16.2 Ordered Pairs and Ordered n-tuples 449

〈Bob, Bob〉 are perfectly good ordered pairs. Here we have just one object (in
each case) that occupies both positions in the pair. Thus, we should think of
an ordered pair not as “two objects” given in a certain order, but as an abstract
ranking or ordering with two positions, first and second: a stipulation of a first
object and a second object (which may or may not be the same object). There
is, in general, no reason why Alice (or any other individual) should not be
ranked first and second. For example, suppose that some children are working
out an ordering of who gets to go on the swing. If Alice has been sick in bed
for a week and has just rejoined the group, the children might deem that not
only should she have first go, she should have two goes in a row. Thus, she
occupies positions one and two in the ordering. The idea is not that she is
standing behind herself in a queue: that she is both first and second in line.
That is impossible. Rather, the ordering—in which she occupies both first and
second position—is an abstract thing.

The same point applies to ordered triples, and indeed to ordered n-tuples
in general. Thus, the following are all perfectly good ordered triples, and they
are all different triples:

〈1, 2, 3〉 〈1, 2, 1〉 〈1, 2, 2〉 〈3, 2, 3〉 〈1, 1, 1〉 〈3, 3, 3〉 〈2, 2, 1〉

In general, there must be at least one, and at most n, distinct objects in an or-
dered n-tuple. At one extreme we have the same object occupying all positions;
at the other extreme we have different objects in every position.

We saw that for sets, the order in which one writes the members is irrelevant;
for example, {1, 2} = {2, 1}, and {1, 2, 3} = {2, 1, 3}. For ordered n-tuples,
this is not the case: 〈1, 2〉 "= 〈2, 1〉 and 〈1, 2, 3〉 "= 〈2, 1, 3〉. We also saw that
{1, 1} is just another way of writing {1}, {1, 1, 2, 2} is just another way of
writing {1, 2}, and so on. For ordered n-tuples, this is not the case: 〈1, 1〉 "= 〈1〉
and 〈1, 1, 2, 2〉 "= 〈1, 2〉. The n-tuple 〈1, 1〉 is an ordered pair with 1 in both
positions (first and second); 〈1〉 is an ordered 1-tuple with 1 in its first (and
only) position. Similar remarks apply to 〈1, 1, 2, 2〉 and 〈1, 2〉.

For any object and any set, there are only two possibilities: the object is
either in the set, or it isn’t. So, a is in the set {a , c}, b isn’t, and c is. If we write
something like {a , a , c}, we have just written the same set as before—the one
that has a and c in it, and nothing else—only in a more long-winded way. We
can write a twice, but a can’t be in the set twice: it is either in, or it isn’t—
there are no different grades or ways of being in a set. For an object and an
ordered n-tuple, however, the question is not simply whether the object is in
the n-tuple. The question is: where in the n-tuple is the object? The following
are therefore three different n-tuples:

〈a , c〉 〈a , a〉 〈a , a , c〉

450 Chapter 16 Set Theory

The first is a 2-tuple (i.e., an ordered pair) in which a appears in first position,
c appears in second position, and no other object appears. The second is also a
2-tuple, but this time, a appears twice—in first and second positions—and no
other object appears. The third is a 3-tuple (i.e., an ordered triple), in which a

appears in first and second positions, c appears in third position, and no other
object appears.

For any sets S and T , their Cartesian product S × T is the set of all ordered
pairs whose first member is an element of S and whose second member is an
element of T . For example, if S = {1, 2} and T = {3, 4}, then

S × T = {〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉}

Where S and T are the same set, the Cartesian product S × S is denoted S2.
For example, if S = {1, 2, 3}, then

S2 = {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉}

The set of all ordered triples of elements of S is denoted S3, and in general
the set of all ordered n-tuples of elements of S is denoted Sn. For example, if
S = {1, 2}, then

S3 = {〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 1〉, 〈1, 2, 2〉, 〈2, 1, 1〉, 〈2, 1, 2〉, 〈2, 2, 1〉, 〈2, 2, 2〉}

Note that the rows in the matrix of a truth table for a proposition (or collection
of propositions) containing n basic propositions are precisely the ordered n-
tuples in {T, F}n, where {T, F} is the set of truth values. (In each row of the
matrix, the first entry is the truth value of the first basic proposition, the
second entry is the truth value of the second basic proposition, . . . , and
the final—nth—entry is the truth value of the nth basic proposition. The
rows cover all possible assignments of values to these propositions—that is,
all possible n-tuples of values.)

16.2.1 Reduction to Sets
Ordered pairs do not have to be thought of as a new kind of primitive entity:
they can be identified with sets of a certain sort. This can be done in various
ways; the now-standard approach is due to Kuratowski [1921, 171]:9

〈a , b〉= {{a , b}, {a}}

The essential thing about an ordered pair is that it specifies which object
comes first and which comes second. In other words, the identity condition
for ordered pairs is: if we have an ordered pair x and an ordered pair y, they
are one and the same ordered pair iff x’s first object is the same as y’s first
object and x’s second object is the same as y’s second object. In symbols:

〈x , y〉= 〈z, w〉 ↔ (x = z ∧ y = w)

16.2 Ordered Pairs and Ordered n-tuples 451

The key aspect of a reduction of ordered pairs to sets is that this identity
condition should then follow from the identity condition (i.e., extensionality)
for the sets to which 〈x , y〉 and 〈z, w〉 are reduced (i.e., here, {{x , y}, {x}} and
{{z, w}, {z}}). That is, it should follow from extensionality that:

{{x , y}, {x}} = {{z, w}, {z}}↔ (x = z ∧ y = w)

The right-to-left direction holds trivially. For the left-to-right direction, sup-
pose that {{x , y}, {x}} = {{z, w}, {z}} (call this identity A). We want to show
that x = z and y = w. There are two cases to consider:

(i) x = y. In this case, {x , y} = {x , x} = {x}, so {{x , y}, {x}} = {{x}, {x}} =
{{x}}. So A becomes {{x}} = {{z, w}, {z}}, from which it follows, by extension-
ality, that both {z, w} and {z} are in {{x}}; that is, {z, w} = {x}, and {z} = {x}.
By extensionality the former yields z = x (and so x = z) and w = x; from
x = y and w = x we get y = w.

(ii) x "= y. Hence, {x , y} is a two-membered set, so {x , y} "= {x} (as {x} is
a one-membered set, and by extensionality a two-membered set cannot be
identical to a one-membered set), and so {{x , y}, {x}} is a two-membered
set. Hence, given A, {{z, w}, {z}} must also have two members, so z "= w.
Furthermore, one of the members of {{z, w}, {z}} must be {x , y}, and the
other must be {x}. As {x , y} and {z, w} are both two-membered and {x} and
{z} are one-membered, (a) {x , y} = {z, w}, and (b) {x} = {z}. From (b), x = z.
From (a), and x "= y and z "= w and x = z, it follows that y = w.

Other reductions would also work—for example, we could say that 〈a , b〉=
{{a , b}, {b}}. Not anything would work, however—for example, if we said that
〈a , b〉 = {{a}, {b}} then it would turn out that 〈a , b〉 = 〈b, a〉 (even when
a "= b).

What about ordered n-tuples, where n is a number other than 2? An ordered
1-tuple 〈x〉 can simply be identified with the set {x}. An ordered triple 〈x , y , z〉
can be identified with the ordered pair 〈〈x , y〉, z〉. Note that the first member
of this ordered pair is itself an ordered pair. An ordered 4-tuple 〈x , y , z, w〉
can then be identified with the ordered pair 〈〈x , y , z〉, w〉. Note that the first
member of this ordered pair is an ordered triple. Given that we have seen how
to reduce an ordered triple to ordered pairs, this representation shows how
to reduce an ordered 4-tuple to ordered pairs. In general, we can reduce the
ordered (n + 1)-tuple 〈x1, . . . , xn, y〉 to the ordered pair 〈〈x1, . . . , xn〉, y〉,
and thus all ordered n-tuples (n > 2) may ultimately be reduced to ordered
pairs—which, as we have seen, may be reduced to sets.10

A second approach to ordered n-tuples, for n > 2, is to view an ordered n-
tuple as a sequence of length n—in the precise sense of “sequence” introduced
in §16.5. As we shall see, a sequence in this sense is a certain sort of function,
and a function may be seen as a certain sort of set of ordered pairs. Thus, it

452 Chapter 16 Set Theory

would be circular to identify ordered pairs with sequences of length 2. How-
ever, once we identify ordered pairs with sets in the way discussed above, we
are then free to identify ordered n-tuples, for n > 2, with sequences of length n.

16.3 Relations
An n-place relation is a condition that an n-tuple of objects may or may not
satisfy; thus, we think of it as a set of n-tuples. For example, consider the
relation “x is a brother of y.” Let’s say Bill is a brother of Ben, and vice versa;
Bill is a brother of Carol, but not vice versa; and Ben is a brother of Carol,
but not vice versa. Then we can think of this relation as the following set of
ordered pairs:

{〈Bill, Ben〉, 〈Ben, Bill〉, 〈Bill, Carol〉, 〈Ben, Carol〉}

A 2-place relation is also called a binary relation; a 3-place relation is also called
a ternary relation.

Often we want to be quite specific about the sets from which the elements
of the ordered n-tuples in a relation (a set of n-tuples) are drawn. We say that
a binary relation from a set S to a set T is a subset of S × T , that is, a set of
ordered pairs whose first elements are in S and whose second elements are in
T . Where S and T are the same set, a binary relation from S to T —that is,
from S to itself—is also called a binary relation on S. A binary relation on S is
a subset of S2. Similarly, a ternary relation on S is a subset of S3 (i.e., a set of
ordered triples of elements of S), and in general an n-place relation on S is a
subset of Sn.

There are various properties that a binary relation R on S may have. For
example,

Reflexivity: for every x in S, 〈x , x〉 ∈ R. That is, the relation holds between
every object x and itself.

Irreflexivity: for every x in S, 〈x , x〉 "∈ R. That is, the relation holds between
no object x and itself.

Transitivity: for every x, y, and z in S, if 〈x , y〉 ∈ R and 〈y , z〉 ∈ R, then
〈x , z〉 ∈ R. That is, if the relation holds between x and y and between y

and z, then it holds between x and z.

Symmetry: for every x and y in S, if 〈x , y〉 ∈ R, then 〈y , x〉 ∈ R. That is, if
the relation holds between x and y in one order, then it holds between
them in the other order as well.

Antisymmetry: for every x and y in S, if 〈x , y〉 ∈ R and 〈y , x〉 ∈ R, then
x = y. That is, the only case in which the relation holds between x and y

in both directions is the case where x and y are one and the same object.11

16.3 Relations 453

Asymmetry: for every x and y in S, if 〈x , y〉 ∈ R then 〈y , x〉 "∈ R. That is, if
the relation holds between x and y in one direction, then it does not hold
in the other direction.12

Connectedness: for every x and y in S such that x "= y, either 〈x , y〉 ∈ R or
〈y , x〉 ∈R (or both). That is, for any distinct objects x and y, the relation
holds between them in at least one direction.13

Relations having certain groups of these properties are important in certain
contexts and hence have been given special names. Three examples of such
relations are equivalence relations, partial orders, and linear orders.

R is an equivalence relation if it is reflexive, symmetric, and transitive. Note
that if R is an equivalence relation, then it divides S into subsets—equivalence
classes—with the following features: every member of S is in exactly one equiv-
alence class (i.e., the equivalence classes are nonoverlapping and between them
they cover all of S; i.e., they constitute a partition of S); for any x and y in S

(including the case x = y), 〈x , y〉 ∈ R iff x and y are in the same equivalence
class. The identity relation on any set S is an equivalence relation; each equiv-
alence class contains exactly one object. The relation of logical equivalence on
the set of wffs of PL is an equivalence relation; if an equivalence class contains
a wff α, then it also contains all and only the wffs that are logically equivalent
to α.

R is a partial order if it is reflexive, transitive, and antisymmetric. It is a
strict partial order if it is irreflexive and transitive (it follows that it must also
be asymmetric). R is a (strict) linear order if it is a (strict) partial order that is
also connected. The relation ≤ on the natural numbers is a linear order (and
hence also a partial order); the relation < on the natural numbers is a strict
linear order (and hence also a strict partial order). For any set S, the relation
⊆ on ℘S is a partial order (but not in general a linear order);14 the relation !
on ℘S is a strict partial order (but not in general a strict linear order). Note
that given any partial order, if we remove all pairs 〈x , x〉, the result will be a
strict partial order; given any strict partial order, if we add all pairs 〈x , x〉 (for
all x in S), the result will be a partial order. An analogous result holds for linear
orders and strict linear orders.

16.4 Functions
A function (aka map, mapping, operation) f from a set S to a set T , written:15

f : S → T

assigns particular objects in T to objects in S. S is called the domain of the
function and T the codomain. The essential feature of a function is that it never
assigns more than one object in T to any given object in S. If x is a member of

454 Chapter 16 Set Theory

S
f

T

Figure 16.2. Picturing a function as a collection
of arrows.

S, f (x) is the object in T that the function f assigns to x. We say that f (x) is
the value or output of the function f for the argument or input x, or it is the
value at x; we also say x is sent to f (x), that f (x) is hit by x, or that f (x) is
the image of x under f . Note that S and T may be the same set. In this case
we call a function from S to T —that is, from S to itself—a function on S.

A function f : S → T is commonly identified with the set of ordered pairs
〈x , f (x)〉, where x is an object in S that is sent to some object in T by f , and
f (x) is the object in T to which x is sent. For example, consider the successor
function on the set of natural numbers, which, given a number as input, yields
as output the next number in the sequence of natural numbers. Represented
as a set of ordered pairs, it is:

{〈0, 1〉, 〈1, 2〉, 〈2, 3〉, . . .}

The crucial feature of a function—that it never assigns more than one object in
T to any given object in S—emerges here as the requirement that no element
of S appears more than once as the first element of an ordered pair in the set.

Another useful way to picture a function f : S → T is as a collection of ar-
rows pointing from objects x in S to objects f (x) in T (Figure 16.2). Binary
relations can also usefully be pictured as collections of arrows. In this depic-
tion, functions are distinguished from relations in general by the requirement
on functions that no object has more than one arrow departing from it.

As with relations, there are various properties which a function f : S → T

may have. For example:
A function f : S → T is said to be total if it satisfies the condition that every

member of S is sent to some member of T . A function that is not total is
called partial. Such a function assigns nothing to some member(s) of S. In
the representation of a function as a set of ordered pairs, to say that x ∈ S is
assigned no value by the partial function f : S → T means that x does not
appear as the first element of any ordered pair in the set; in the representation
of a function as a collection of arrows, it means that x has no arrow leading
from it.16

16.4 Functions 455

S
function
(we never see two arrows
leaving the same object)

S
total
(every object has an
arrow leaving it)

T
one-one
(we never see two arrows
hitting the same object)

T
onto
(every object gets hit by
an arrow)

Figure 16.3. Kinds of function from S to T .

A function f : S → T is said to be onto (aka surjective, a surjection) if it
satisfies the condition that every member of T is hit at least once; one-one (aka
one-to-one, into, injective, an injection) if no member of T is hit more than
once; and a correspondence (aka bijective, a bijection) if it is total, onto, and
one-one. (See Figure 16.3. Note that the top property in the table, unlike the
three below it, is a sine qua non for functions: if a subset of S × T does not
possess this property, then it is not a function. Also, do not be misled by the
picture of an onto function: a function can be onto without being one-one.)

Note that if (as discussed above) we identify a function f with the set of all
ordered pairs 〈x , y〉 such that f (x) = y, then the following identity condition
for functions holds: f = g iff f assigns values to all and only the objects to
which g assigns values, and for all such objects x, f (x) = g(x). This condition
follows from the identity condition for sets (extensionality) together with the
identity condition for ordered pairs given in §16.2.1 (which itself follows from
extensionality, if we identify ordered pairs with sets in the way discussed in
§16.2.1).

456 Chapter 16 Set Theory

So far we have considered functions that take a single object as argument
and assign to it an object as value. What about functions, such as addition or
multiplication, that take two objects as arguments and assign to them an object
as value? (These are called binary functions.) In general, what about functions
that take three, four, or in general n objects as arguments? One common way
of conceiving of such functions, which brings them within the framework
articulated above for one-place functions, is to conceive of an apparently n-
place function from S to T as a (one-place) function from Sn to T . That is, it
is a one-place function that takes as input an n-tuple of objects. (An n-tuple,
like a set, is considered to be a single object.) So, for example, the addition
function, which we normally think of as taking two numbers as input, may be
thought of as taking a single input: an ordered pair of numbers.

16.4.1 Operations on Functions
Given a function f : S → T , we can invert the function: switch the first and
second members of each ordered pair (make each arrow point the opposite
way). If the result of this process is a function (from T to S), this resulting
function is called the inverse function of f and is denoted by f−1. If the result
is not a function, we say f−1 does not exist. (Of course, the set of switched-
around ordered pairs always exists: it’s just that it might not be a function:
f−1 names the inverse function, if it exists.) It’s not too hard to see that
the condition required for the set of switched-around ordered pairs to be a
function is that f is one-one. Furthermore, provided f−1 exists:

. f−1 is one-one (because f is a function).

. If f is total, then f−1 is onto.

. If f is onto, then f−1 is total.

To see why these statements are true, it is helpful to recall Figure 16.3.
Given a function f : S → T and a function g : T → U , the composite func-

tion g ◦ f (read as “g after f ”) from S to U is defined thus: for every x in S,
(g ◦ f)(x) = g(f (x)). The idea here is that we first apply f to the input x (a
member of the set S) and then apply g to the result (i.e., to the output of f for
input x, which is a member of T). In terms of arrows, the composite function
is found by taking each f arrow from an object x in S to an object y in T and
extending it so that it hits whatever object z in U the g arrow from y hits. (If
there is no g arrow from y, then in the composite function there is no arrow
from x.) Think through why the following must be true:

. If f and g are both total, so is g ◦ f .

. If f and g are both onto, so is g ◦ f .

16.4 Functions 457

. If f and g are both one-one, so is g ◦ f .

. If f and g are both bijections, so is g ◦ f .

16.4.2 Characteristic Function of a Set
Given a subset S of a background set U , the characteristic (or indicator) func-
tion of S is a total function IS : U → {0, 1} defined as follows. For all x in U :

IS(x) =
{

1 if x ∈ S

0 if x "∈ S

We can think of the characteristic function as answering “yes” (1) or “no” (0),
for every object in U , to the question whether that object is in S.

Instead of the set {0, 1}, we might take the set {T, F} of truth values as the
codomain of the characteristic function (with T being “yes” and F being “no”).
Conversely, it is also common to take {0, 1} as the set of truth values: that is,
to use 1 everywhere we have used T and 0 everywhere we have used F (e.g., in
truth tables).

Think through why the following are true for any subsets S and T of a
background set U .

For every x ∈ U , IS∪T (x) = max{IS(x), IT (x)}
= IS(x) + IT (x)− [IS(x)× IT (x)]

Note here that where x and y are numbers, max{x , y} is the greater of x and
y; if x = y, then max{x , y} = x.

For every x ∈ U , IS∩T (x) = min{IS(x), IT (x)}
= IS(x)× IT (x)

Note here that where x and y are numbers, min{x , y} is the lesser of x and y;
if x = y, then min{x , y} = x.

For every x ∈ U , IS′(x) = 1− IS(x)

S ⊆ T iff for every x ∈ U , IS(x)≤ IT (x)

For every 〈x , y〉 ∈ U 2, IS×T (〈x , y〉) = IS(x)× IT (y)

In relation to the last of these facts, note that S × T is a subset of U 2, so the
characteristic function of S × T is a function from U 2 to {0, 1}.

16.5 Sequences
Whereas a set is a collection of objects, a sequence is a collection of objects
given in a particular order: first, second, third, and so on—either up to nth (for
a finite sequence of length n), or forever (for an infinite sequence). Intuitively,
the idea of a finite sequence of length n of members of a set S is just the idea of

458 Chapter 16 Set Theory

feature that each operator should appear only in its own introduction and elimination
rules. Gentzen’s solution was to replace the wff (β1∧ . . . ∧ βn)→ α with the sequent
{β1, . . . , βn}⇒ {α}, where the latter has the same intuitive meaning as the former;
that is, the sequent holds just in case its corresponding conditional is true.

42. If assumptions are allowed, then the aim is that the last line should be true in
any model in which all the (undischarged) assumptions are true; that is, the argument
whose premises are those assumptions and whose conclusion is the last line should be
valid.

43. Note that we write simply {B}⇒ {A} on the left branch, not {B}⇒ {A, A},
and likewise {B}⇒ {A} on the right branch, not {B , B}⇒ {A}. This is because a set
either contains something, or it does not: a set cannot contain the same thing twice.
So {B , B} is just another—more long-winded—way of writing the set {B} (i.e., the set
containing the wff B and nothing else). For further discussion, see §16.1.1.

44. We do not look, for example, at negated atomic formulas (i.e., atomic formulas
that are supposed to be false).

45. To increase readability, I omit auxiliary sets of wffs & and " on the left and right.
46. In predicate logic, of course, this is not the case: we can have an infinite search

for a sequent proof, just as we can have infinite trees.
47. The proof also makes use of Thinning and the axiom {β}⇒ {β}.
48. The notion of a sequence is explained in §16.5.
49. The symbol ' represents concatenation of sequences; see §16.5 for an explana-

tion of this notion. Note also that we have hitherto used & and " to represent sets of
wffs. In this last sentence, we use them to represent sequences of wffs. It will always
be clear from the context whether capital Greek letters are being used to represent se-
quences or sets.

50. The notion of a multiset is explained in more detail in §16.6.
51. Note that a terminated failed systematic search for a proof that a sequent holds

logically constitutes a proof that it does not hold logically (of course, as with trees, the
search might not terminate).

Chapter 16: Set Theory
1. “Unter einer ‘Mannigfaltigkeit’ oder ‘Menge’ verstehe ich nämlich allgemein jedes

Viele, welches sich als Eines denken läßt” [Cantor, 1932, 204].
2. This usage is not the same as—but clearly related to—the usage of “extension” to

mean the value of a predicate.
3. Some works use the symbol⊂ to indicate proper subset (and use⊆ in the way we

do here), but others use ⊂ to mean exactly what we mean by ⊆.
4. Sometimes S̄ or Sc is written instead of S ′.
5. Sometimes S − T is written instead of S \ T ; sometimes the former notation is

restricted to contexts where T ⊆ S.
6. Consider the definitions of union and intersection. For any x, x ∈ S ∪ T iff

x ∈ S ∨ x ∈ T , and x ∈ T ∪ S iff x ∈ T ∨ x ∈ S. But α ∨ β and β ∨ α are equivalent,
so x ∈ S ∪ T iff x ∈ T ∪ S—hence, S ∪ T = T ∪ S. Likewise, for any x, x ∈ S ∩ T iff
x ∈ S ∧ x ∈ T , and x ∈ T ∩ S iff x ∈ T ∧ x ∈ S. But α ∧ β and β ∧ α are equivalent,
so x ∈ S ∩ T iff x ∈ T ∩ S—hence, S ∩ T = T ∩ S.

7. Consider the definition of set-theoretic difference. For any x, x ∈ S \ T iff x ∈
S ∧ ¬x ∈ T , and x ∈ T \ S iff x ∈ T ∧ ¬x ∈ S. In general, α ∧ ¬β is not equivalent

506 Notes to Pages 421--444

to β ∧ ¬α, so it is not in general the case that x ∈ S \ T iff x ∈ T \ S—hence, in
general S \ T "= T \ S. However, when α and β are equivalent, α ∧ ¬β is equivalent
to β ∧ ¬α: both are equivalent to the contradiction α ∧ ¬α. This corresponds to the
fact that when S = T (i.e., x ∈ S iff x ∈ T), S \ T = T \ S = ∅.

8. There are various systems of axiomatic set theory. Not all of them feature axioms
that are true in the cumulative hierarchy. However, what is generally considered to
be the standard set of axioms for set theory—ZFC (Zermelo-Fraenkel set theory with
the axiom of Choice)—does: see Boolos [1971], Shoenfield [1977], and Devlin [1993,
pp. 29–65].

9. For the history of early reductions of ordered pairs to sets, see van Heijenoort
[1967, 224].

10. Of course, there are other equally good options; for example, we could reduce
the ordered (n + 1)-tuple 〈x , y1, . . . , yn〉 to the ordered pair 〈x , 〈y1, . . . , yn〉〉.

11. In this case, “both” directions are really one and the same. If x = y, then R hold-
ing between x and y in that order, and R holding between x and y in the other order,
are just the same thing: R holding between x and x. While there are two ordered pairs
containing both the objects 1 and 2 (i.e., 〈1, 2〉 and 〈2, 1〉), there is just one ordered
pair containing the object 1 (i.e., 〈1, 1〉). This follows from the identity condition for
ordered pairs discussed in §16.2.1.

12. Given what we said in n. 11, evidently a relation that is asymmetric must also be
irreflexive.

13. This condition says nothing about the case x = y: all the different possibilities—
〈x , x〉 ∈R for all x (reflexivity), 〈x , x〉 ∈R for no x (irreflexivity), 〈x , x〉 ∈R for some
but not all x (neither reflexive nor irreflexive)—are compatible with connectedness.

14. That is, a partial order on ℘S, not on S.
15. This use of the arrow symbol has nothing to do with our use of this symbol

for the conditional: these are simply two different uses of the same symbol. This
phenomenon—where the same term or symbol means different things in different
contexts—is common in logic and mathematics.

16. Readers coming from certain backgrounds might not be used to thinking of
partial functions as functions at all. They might take a “function” from S to T to mean
a subset of S × T , where every element of S appears exactly once as the first element
of an ordered pair in the set. Here—and this is standard in logic—we take a function
from S to T to be a subset of S × T , where every element of S appears at most once
as the first element of an ordered pair in the set. If, in addition, every element of S

appears once as the first element of an ordered pair in the set, it is a total function; if
not, it is a partial function—but we still count it as a function. Partial functions arise
naturally at many points in logic.

17. It is also useful in some contexts to countenance the empty sequence of members
of S: the sequence with no entries, which has length zero (no positions). In the sense in
which we have just defined finite and infinite sequences, the empty sequence is neither
a finite sequence nor an infinite sequence (it is not a total function from any initial
segment—as we defined “initial segment”—of Z+ to S, nor is it a total function from
Z+ to S). We shall not consider the empty sequence further here, but note that if we
did wish to include it when we spoke of “all sequences of members of S” (which, as
mentioned, is useful in some contexts), we would need to alter or augment our existing
definition of a sequence to include it.

Notes to Pages 449--459 507

18. If we chose instead to take the other fact about characteristic functions of inter-
sections stated in §16.4.2 as our starting point—that is, IS∩T (x) = IS(x)× IT (x)—
then we would obtain a very different notion of intersection of multisets: one ac-
cording to which the intersection of a multiset that contains a twice and a multiset
that contains a five times contains a ten times. Likewise, in the case of union, it is
more natural to take the first fact stated in §16.4.2 as our starting point—that is,
IS∪T (x) = max{IS(x), IT (x)}.

19. The notion of complement of multisets is a bit more subtle. For a start, the
fact about characteristic functions of complements stated in §16.4.2—that is, IS′(x) =
1− IS(x)—is not much help when I may take values greater than 1. For a discussion,
see Hickman [1980]. For more details about multisets, see, for example, Syropoulos
[2001].

20. In the case of PL, the corresponding clause says “any basic proposition is a wff.”
This clause tells us that for any basic proposition x in S, the length-1 sequence 〈x〉,
which has x in its only position, is in W .

21. Again, because concatenation is defined on sequences, we cannot concatenate
α directly with the symbols ∀ and x: we have to concatenate α with the length-1
sequences 〈∀〉 and 〈x〉.

508 Notes to Pages 461--462

