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APPENDIX A

Sets
A.� Extensionality

A set is a collection of objects, considered as a single object. The
objects making up the set are called elements or members of the
set. If x is an element of a set a, we write x 2 a; if not, we write
x 8 a. The set which has no elements is called the empty set and
denoted “;”.

It does not matter how we specify the set, or how we order
its elements, or indeed how many times we count its elements.
All that matters are what its elements are. We codify this in the
following principle.

De�nition A.� (Extensionality). If A and B are sets, then A =
B i� every element of A is also an element of B , and vice versa.

Extensionality licenses some notation. In general, when we
have some objects a1, . . . , an , then {a1, . . . ,an} is the set whose
elements are a1, . . . ,an . We emphasise the word “the”, since ex-
tensionality tells us that there can be only one such set. Indeed,
extensionality also licenses the following:

{a,a,b} = {a,b} = {b ,a}.

���
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This delivers on the point that, when we consider sets, we don’t
care about the order of their elements, or how many times they
are specified.

Example A.�. Whenever you have a bunch of objects, you can
collect them together in a set. The set of Richard’s siblings, for
instance, is a set that contains one person, and we could write it as
S = {Ruth}. The set of positive integers less than 4 is {1,2,3}, but
it can also be written as {3,2,1} or even as {1,2,1,2,3}. These are
all the same set, by extensionality. For every element of {1,2,3}
is also an element of {3,2,1} (and of {1,2,1,2,3}), and vice versa.

Frequently we’ll specify a set by some property that its ele-
ments share. We’ll use the following shorthand notation for that:
{x : i(x)}, where the i(x) stands for the property that x has to
have in order to be counted among the elements of the set.

Example A.�. In our example, we could have specified S also
as

S = {x : x is a sibling of Richard}.

Example A.�. A number is called perfect i� it is equal to the
sum of its proper divisors (i.e., numbers that evenly divide it but
aren’t identical to the number). For instance, 6 is perfect because
its proper divisors are 1, 2, and 3, and 6 = 1 + 2 + 3. In fact, 6
is the only positive integer less than 10 that is perfect. So, using
extensionality, we can say:

{6} = {x : x is perfect and 0  x  10}

We read the notation on the right as “the set of x ’s such that x
is perfect and 0  x  10”. The identity here confirms that,
when we consider sets, we don’t care about how they are spec-
ified. And, more generally, extensionality guarantees that there
is always only one set of x ’s such that i(x). So, extensionality
justifies calling {x : i(x)} the set of x ’s such that i(x).
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Extensionality gives us a way for showing that sets are iden-
tical: to show that A = B , show that whenever x 2 A then also
x 2 B , and whenever y 2 B then also y 2 A.

A.� Subsets and Power Sets

We will often want to compare sets. And one obvious kind of
comparison one might make is as follows: everything in one set is
in the other too. This situation is su�ciently important for us to
introduce some new notation.

De�nition A.� (Subset). If every element of a set A is also
an element of B , then we say that A is a subset of B , and write
A ✓ B . If A is not a subset of B we write A * B . If A ✓ B but
A < B , we write A ( B and say that A is a proper subset of B .

Example A.�. Every set is a subset of itself, and ; is a subset of
every set. The set of even numbers is a subset of the set of natural
numbers. Also, {a,b} ✓ {a,b ,c }. But {a,b ,e } is not a subset of
{a,b ,c }.

Example A.�. The number 2 is an element of the set of integers,
whereas the set of even numbers is a subset of the set of integers.
However, a set may happen to both be an element and a subset
of some other set, e.g., {0} 2 {0, {0}} and also {0} ✓ {0, {0}}.

Extensionality gives a criterion of identity for sets: A = B
i� every element of A is also an element of B and vice versa.
The definition of “subset” defines A ✓ B precisely as the first
half of this criterion: every element of A is also an element of B .
Of course the definition also applies if we switch A and B : that
is, B ✓ A i� every element of B is also an element of A. And
that, in turn, is exactly the “vice versa” part of extensionality. In
other words, extensionality entails that sets are equal i� they are
subsets of one another.
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Proposition A.�. A = B i� both A ✓ B and B ✓ A.

Now is also a good opportunity to introduce some further
bits of helpful notation. In defining when A is a subset of B
we said that “every element of A is . . . ,” and filled the “. . . ” with
“an element of B”. But this is such a common shape of expression
that it will be helpful to introduce some formal notation for it.

De�nition A.�. (8x 2 A)i abbreviates 8x (x 2 A!i). Similarly,
(9x 2 A)i abbreviates 9x (x 2 A ^ i).

Using this notation, we can say that A ✓ B i� (8x 2 A)x 2 B .
Now we move on to considering a certain kind of set: the set

of all subsets of a given set.

De�nition A.�� (Power Set). The set consisting of all subsets
of a set A is called the power set of A, written ®(A).

®(A) = {B : B ✓ A}

Example A.��. What are all the possible subsets of {a,b ,c }?
They are: ;, {a}, {b}, {c }, {a,b}, {a,c }, {b ,c }, {a,b ,c }. The set
of all these subsets is ®({a,b ,c }):

®({a,b ,c }) = {;, {a}, {b}, {c }, {a,b}, {b ,c }, {a,c }, {a,b ,c }}

A.� Some Important Sets

Example A.��. We will mostly be dealing with sets whose el-
ements are mathematical objects. Four such sets are important
enough to have specific names:

N = {0,1,2,3, . . .}
the set of natural numbers

Z = {. . . ,�2,�1,0,1,2, . . .}
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the set of integers
Q = {m/n : m,n 2 Z and n < 0}

the set of rationals
R = (�1,1)

the set of real numbers (the continuum)

These are all in�nite sets, that is, they each have infinitely many
elements.

As we move through these sets, we are adding more numbers
to our stock. Indeed, it should be clear that N ✓ Z ✓ Q ✓ R:
after all, every natural number is an integer; every integer is a
rational; and every rational is a real. Equally, it should be clear
that N ( Z ( Q, since �1 is an integer but not a natural number,
and 1/2 is rational but not integer. It is less obvious that Q ( R,
i.e., that there are some real numbers which are not rational.

We’ll sometimes also use the set of positive integers Z+ =
{1,2,3, . . . } and the set containing just the first two natural num-
bers B = {0,1}.

Example A.�� (Strings). Another interesting example is the
set A⇤ of �nite strings over an alphabet A: any finite sequence
of elements of A is a string over A. We include the empty string L
among the strings over A, for every alphabet A. For instance,

B⇤ = {L,0,1,00,01,10,11,
000,001,010,011,100,101,110,111,0000, . . .}.

If x = x1 . . . xn 2 A⇤is a string consisting of n “letters” from A,
then we say length of the string is n and write len(x) = n.

Example A.�� (In�nite sequences). For any set A we may
also consider the set Al of infinite sequences of elements of A.
An infinite sequence a1a2a3a4 . . . consists of a one-way infinite
list of objects, each one of which is an element of A.



APPENDIX A. SETS 172

Figure A.�: The union A [ B of two sets is set of elements of A together with
those of B .

A.� Unions and Intersections

In appendix A.�, we introduced definitions of sets by abstraction,
i.e., definitions of the form {x : i(x)}. Here, we invoke some
property i, and this property can mention sets we’ve already
defined. So for instance, if A and B are sets, the set {x : x 2
A_x 2 B } consists of all those objects which are elements of either
A or B , i.e., it’s the set that combines the elements of A and B .
We can visualize this as in Figure A.�, where the highlighted area
indicates the elements of the two sets A and B together.

This operation on sets—combining them—is very useful and
common, and so we give it a formal name and a symbol.

De�nition A.�� (Union). The union of two sets A and B , writ-
ten A [ B , is the set of all things which are elements of A, B , or
both.

A [ B = {x : x 2 A _ x 2 B }

Example A.��. Since the multiplicity of elements doesn’t mat-
ter, the union of two sets which have an element in common con-
tains that element only once, e.g., {a,b ,c }[{a,0,1} = {a,b ,c ,0,1}.

The union of a set and one of its subsets is just the bigger set:
{a,b ,c } [ {a} = {a,b ,c }.
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Figure A.�: The intersection A \ B of two sets is the set of elements they have
in common.

The union of a set with the empty set is identical to the set:
{a,b ,c } [ ; = {a,b ,c }.

We can also consider a “dual” operation to union. This is the
operation that forms the set of all elements that are elements of A
and are also elements of B . This operation is called intersection,
and can be depicted as in Figure A.�.

De�nition A.�� (Intersection). The intersection of two sets A
and B , written A \ B , is the set of all things which are elements
of both A and B .

A \ B = {x : x 2 A ^ x 2 B }

Two sets are called disjoint if their intersection is empty. This
means they have no elements in common.

Example A.��. If two sets have no elements in common, their
intersection is empty: {a,b ,c } \ {0,1} = ;.

If two sets do have elements in common, their intersection is
the set of all those: {a,b ,c } \ {a,b ,d } = {a,b}.

The intersection of a set with one of its subsets is just the
smaller set: {a,b ,c } \ {a,b} = {a,b}.
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The intersection of any set with the empty set is empty:
{a,b ,c } \ ; = ;.

We can also form the union or intersection of more than two
sets. An elegant way of dealing with this in general is the follow-
ing: suppose you collect all the sets you want to form the union
(or intersection) of into a single set. Then we can define the union
of all our original sets as the set of all objects which belong to at
least one element of the set, and the intersection as the set of all
objects which belong to every element of the set.

De�nition A.��. If A is a set of sets, then
–
A is the set of

elements of elements of A:ÿ
A = {x : x belongs to an element of A}, i.e.,
= {x : there is a B 2 A so that x 2 B }

De�nition A.��. If A is a set of sets, then
—
A is the set of

objects which all elements of A have in common:
Ÿ

A = {x : x belongs to every element of A}, i.e.,
= {x : for all B 2 A,x 2 B }

Example A.��. Suppose A = {{a,b}, {a,d ,e }, {a,d }}. Then–
A = {a,b ,d ,e } and —

A = {a}.

We could also do the same for a sequence of sets A1, A2, . . .ÿ
i

Ai = {x : x belongs to one of the Ai }
Ÿ
i

Ai = {x : x belongs to every Ai }.

When we have an index of sets, i.e., some set I such that
we are considering Ai for each i 2 I , we may also use these
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Figure A.�: The di�erence A \ B of two sets is the set of those elements of A
which are not also elements of B .

abbreviations: ÿ
i 2I
Ai =

ÿ
{Ai : i 2 I }

Ÿ
i 2I
Ai =

Ÿ
{Ai : i 2 I }

Finally, we may want to think about the set of all elements
in A which are not in B . We can depict this as in Figure A.�.

De�nition A.�� (Di�erence). The set di�erence A \B is the set
of all elements of A which are not also elements of B , i.e.,

A \ B = {x : x 2 A and x 8 B }.

A.� Pairs, Tuples, Cartesian Products

It follows from extensionality that sets have no order to their
elements. So if we want to represent order, we use ordered pairs
hx ,yi. In an unordered pair {x ,y}, the order does not matter:
{x ,y} = {y ,x}. In an ordered pair, it does: if x < y , then hx ,yi <
hy ,xi.

How should we think about ordered pairs in set theory? Cru-
cially, we want to preserve the idea that ordered pairs are iden-
tical i� they share the same first element and share the same
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second element, i.e.:

ha,bi = hc ,d i i� both a = c and b = d .

We can define ordered pairs in set theory using the Wiener-
Kuratowski definition.

De�nition A.�� (Ordered pair). ha,bi = {{a}, {a,b}}.

Having fixed a definition of an ordered pair, we can use it
to define further sets. For example, sometimes we also want or-
dered sequences of more than two objects, e.g., triples hx ,y ,z i,
quadruples hx ,y ,z ,ui, and so on. We can think of triples as spe-
cial ordered pairs, where the first element is itself an ordered pair:
hx ,y ,z i is hhx ,yi,z i. The same is true for quadruples: hx ,y ,z ,ui
is hhhx ,yi,z i,ui, and so on. In general, we talk of ordered n-tuples
hx1, . . . ,xni.

Certain sets of ordered pairs, or other ordered n-tuples, will
be useful.

De�nition A.�� (Cartesian product). Given sets A and B ,
their Cartesian product A ⇥ B is defined by

A ⇥ B = {hx ,yi : x 2 A and y 2 B }.

Example A.��. If A = {0,1}, and B = {1,a,b}, then their prod-
uct is

A ⇥ B = {h0,1i, h0,ai, h0,bi, h1,1i, h1,ai, h1,bi}.

Example A.��. If A is a set, the product of A with itself, A ⇥A,
is also written A2. It is the set of all pairs hx ,yi with x ,y 2 A. The
set of all triples hx ,y ,z i is A3, and so on. We can give a recursive
definition:

A1 = A

Ak+1 = Ak ⇥ A
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Proposition A.��. If A has n elements and B has m elements, then
A ⇥ B has n · m elements.

Proof. For every element x in A, there are m elements of the form
hx ,yi 2 A ⇥ B . Let Bx = {hx ,yi : y 2 B }. Since whenever x1 < x2,
hx1,yi < hx2,yi, Bx1 \ Bx2 = ;. But if A = {x1, . . . ,xn}, then
A ⇥ B = Bx1 [ · · · [ Bxn , and so has n · m elements.

To visualize this, arrange the elements of A ⇥ B in a grid:

Bx1 = {hx1,y1i hx1,y2i . . . hx1,ymi}
Bx2 = {hx2,y1i hx2,y2i . . . hx2,ymi}

.

.

.
.
.
.

Bxn = {hxn ,y1i hxn ,y2i . . . hxn ,ymi}

Since the xi are all di�erent, and the y j are all di�erent, no two of
the pairs in this grid are the same, and there are n ·m of them.⇤

Example A.��. If A is a set, a word over A is any sequence of
elements of A. A sequence can be thought of as an n-tuple of ele-
ments of A. For instance, if A = {a,b ,c }, then the sequence “bac”
can be thought of as the triple hb ,a,ci. Words, i.e., sequences of
symbols, are of crucial importance in computer science. By con-
vention, we count elements of A as sequences of length 1, and ;
as the sequence of length 0. The set of all words over A then is

A⇤ = {;} [ A [ A2 [ A3 [ . . .

A.� Russell’s Paradox

Extensionality licenses the notation {x : i(x)}, for the set of x ’s
such that i(x). However, all that extensionality really licenses is
the following thought. If there is a set whose members are all
and only the i’s, then there is only one such set. Otherwise put:
having fixed some i, the set {x : i(x)} is unique, if it exists.

But this conditional is important! Crucially, not every prop-
erty lends itself to comprehension. That is, some properties do not
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define sets. If they all did, then we would run into outright contra-
dictions. The most famous example of this is Russell’s Paradox.

Sets may be elements of other sets—for instance, the power
set of a set A is made up of sets. And so it makes sense to ask or
investigate whether a set is an element of another set. Can a set
be a member of itself? Nothing about the idea of a set seems to
rule this out. For instance, if all sets form a collection of objects,
one might think that they can be collected into a single set—the
set of all sets. And it, being a set, would be an element of the set
of all sets.

Russell’s Paradox arises when we consider the property of not
having itself as an element, of being non-self-membered. What if we
suppose that there is a set of all sets that do not have themselves
as an element? Does

R = {x : x 8 x}

exist? It turns out that we can prove that it does not.

Theorem A.�� (Russell’s Paradox). There is no setR = {x : x 8
x}.

Proof. If R = {x : x 8 x} exists, then R 2 R i� R 8 R, which is a
contradiction. ⇤

Let’s run through this proof more slowly. If R exists, it makes
sense to ask whether R 2 R or not. Suppose that indeed R 2 R.
Now, R was defined as the set of all sets that are not elements of
themselves. So, if R 2 R, then R does not itself have R’s defining
property. But only sets that have this property are in R, hence, R
cannot be an element of R, i.e., R 8 R. But R can’t both be and
not be an element of R, so we have a contradiction.

Since the assumption that R 2 R leads to a contradiction, we
have R 8 R. But this also leads to a contradiction! For if R 8 R,
then R itself does have R’s defining property, and so R would be
an element of R just like all the other non-self-membered sets.
And again, it can’t both not be and be an element of R.
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How do we set up a set theory which avoids falling into Rus-
sell’s Paradox, i.e., which avoids making the inconsistent claim that
R = {x : x 8 x} exists? Well, we would need to lay down axioms
which give us very precise conditions for stating when sets exist
(and when they don’t).

The set theory sketched in this chapter doesn’t do this. It’s
genuinely naïve. It tells you only that sets obey extensionality and
that, if you have some sets, you can form their union, intersection,
etc. It is possible to develop set theory more rigorously than
this.

Problems

Problem A.�. Prove that there is at most one empty set, i.e.,
show that if A and B are sets without elements, then A = B .

Problem A.�. List all subsets of {a,b ,c ,d }.

Problem A.�. Show that if A has n elements, then ®(A) has 2n
elements.

Problem A.�. Prove that if A ✓ B , then A [ B = B .

Problem A.�. Prove rigorously that if A ✓ B , then A \ B = A.

Problem A.�. Show that if A is a set and A 2 B , then A ✓ –
B .

Problem A.�. Prove that if A ( B , then B \ A < ;.

Problem A.�. Using Definition A.��, prove that ha,bi = hc ,d i
i� both a = c and b = d .

Problem A.�. List all elements of {1,2,3}3.

Problem A.��. Show, by induction on k , that for all k � 1, if A
has n elements, then Ak has nk elements.



APPENDIX B

Relations
B.� Relations as Sets

In appendix A.�, we mentioned some important sets: N, Z, Q, R.
You will no doubt remember some interesting relations between
the elements of some of these sets. For instance, each of these sets
has a completely standard order relation on it. There is also the
relation is identical with that every object bears to itself and to no
other thing. There are many more interesting relations that we’ll
encounter, and even more possible relations. Before we review
them, though, we will start by pointing out that we can look at
relations as a special sort of set.

For this, recall two things from appendix A.�. First, recall
the notion of a ordered pair : given a and b , we can form ha,bi.
Importantly, the order of elements does matter here. So if a < b
then ha,bi < hb ,ai. (Contrast this with unordered pairs, i.e., 2-
element sets, where {a,b} = {b ,a}.) Second, recall the notion of
a Cartesian product: if A and B are sets, then we can form A ⇥ B ,
the set of all pairs hx ,yi with x 2 A and y 2 B . In particular,
A2 = A ⇥ A is the set of all ordered pairs from A.

Now we will consider a particular relation on a set: the <-
relation on the set N of natural numbers. Consider the set of all
pairs of numbers hn,mi where n < m, i.e.,

R = {hn,mi : n,m 2 N and n < m}.

���
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There is a close connection between n being less than m, and the
pair hn,mi being a member of R, namely:

n < m i� hn,mi 2 R .

Indeed, without any loss of information, we can consider the set
R to be the <-relation on N.

In the same way we can construct a subset of N2 for any rela-
tion between numbers. Conversely, given any set of pairs of num-
bers S ✓ N2, there is a corresponding relation between numbers,
namely, the relationship n bears to m if and only if hn,mi 2 S .
This justifies the following definition:

De�nition B.� (Binary relation). A binary relation on a set A
is a subset of A2. If R ✓ A2 is a binary relation on A and x ,y 2 A,
we sometimes write Rxy (or xRy) for hx ,yi 2 R.

Example B.�. The set N2 of pairs of natural numbers can be
listed in a �-dimensional matrix like this:

h0,0i h0,1i h0,2i h0,3i . . .

h1,0i h1,1i h1,2i h1,3i . . .

h2,0i h2,1i h2,2i h2,3i . . .

h3,0i h3,1i h3,2i h3,3i . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

We have put the diagonal, here, in bold, since the subset of N2

consisting of the pairs lying on the diagonal, i.e.,

{h0,0i, h1,1i, h2,2i, . . . },

is the identity relation on N. (Since the identity relation is popular,
let’s define IdA = {hx ,xi : x 2 X } for any set A.) The subset of
all pairs lying above the diagonal, i.e.,

L = {h0,1i, h0,2i, . . . , h1,2i, h1,3i, . . . , h2,3i, h2,4i, . . .},
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is the less than relation, i.e., Lnm i� n < m. The subset of pairs
below the diagonal, i.e.,

G = {h1,0i, h2,0i, h2,1i, h3,0i, h3,1i, h3,2i, . . . },

is the greater than relation, i.e., Gnm i� n > m. The union of L
with I , which we might call K = L [ I , is the less than or equal to
relation: Knm i� n  m. Similarly, H = G [ I is the greater than
or equal to relation. These relations L, G , K , and H are special
kinds of relations called orders. L and G have the property that
no number bears L or G to itself (i.e., for all n, neither Lnn nor
Gnn). Relations with this property are called irre�exive, and, if
they also happen to be orders, they are called strict orders.

Although orders and identity are important and natural re-
lations, it should be emphasized that according to our defini-
tion any subset of A2 is a relation on A, regardless of how un-
natural or contrived it seems. In particular, ; is a relation on
any set (the empty relation, which no pair of elements bears),
and A2 itself is a relation on A as well (one which every pair
bears), called the universal relation. But also something like
E = {hn,mi : n > 5 or m ⇥ n � 34} counts as a relation.

B.� Special Properties of Relations

Some kinds of relations turn out to be so common that they have
been given special names. For instance,  and ✓ both relate their
respective domains (say, N in the case of  and ®(A) in the case
of ✓) in similar ways. To get at exactly how these relations are
similar, and how they di�er, we categorize them according to
some special properties that relations can have. It turns out that
(combinations of) some of these special properties are especially
important: orders and equivalence relations.
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De�nition B.� (Re�exivity). A relation R ✓ A2 is re�exive i�,
for every x 2 A, Rxx .

De�nition B.� (Transitivity). A relation R ✓ A2 is transitive
i�, whenever Rxy and Ryz , then also Rxz .

De�nition B.� (Symmetry). A relation R ✓ A2 is symmetric i�,
whenever Rxy , then also Ryx .

De�nition B.� (Anti-symmetry). A relation R ✓ A2 is anti-
symmetric i�, whenever both Rxy and Ryx , then x = y (or, in
other words: if x < y then either ¬Rxy or ¬Ryx).

In a symmetric relation, Rxy and Ryx always hold together,
or neither holds. In an anti-symmetric relation, the only way for
Rxy and Ryx to hold together is if x = y . Note that this does not
require that Rxy and Ryx holds when x = y , only that it isn’t ruled
out. So an anti-symmetric relation can be reflexive, but it is not
the case that every anti-symmetric relation is reflexive. Also note
that being anti-symmetric and merely not being symmetric are
di�erent conditions. In fact, a relation can be both symmetric
and anti-symmetric at the same time (e.g., the identity relation
is).

De�nition B.� (Connectivity). A relation R ✓ A2 is connected
if for all x ,y 2 A, if x < y , then either Rxy or Ryx .

De�nition B.� (Irre�exivity). A relation R ✓ A2 is called ir-
re�exive if, for all x 2 A, not Rxx .
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De�nition B.� (Asymmetry). A relationR ✓ A2 is called asym-
metric if for no pair x ,y 2 A we have both Rxy and Ryx .

Note that if A < ;, then no irreflexive relation on A is reflex-
ive and every asymmetric relation on A is also anti-symmetric.
However, there are R ✓ A2 that are not reflexive and also not
irreflexive, and there are anti-symmetric relations that are not
asymmetric.

B.� Equivalence Relations

The identity relation on a set is reflexive, symmetric, and transi-
tive. Relations R that have all three of these properties are very
common.

De�nition B.�� (Equivalence relation). A relation R ✓ A2

that is reflexive, symmetric, and transitive is called an equivalence
relation. Elements x and y of A are said to be R-equivalent if Rxy .

Equivalence relations give rise to the notion of an equivalence
class. An equivalence relation “chunks up” the domain into di�er-
ent partitions. Within each partition, all the objects are related
to one another; and no objects from di�erent partitions relate
to one another. Sometimes, it’s helpful just to talk about these
partitions directly. To that end, we introduce a definition:

De�nition B.��. Let R ✓ A2 be an equivalence relation. For
each x 2 A, the equivalence class of x in A is the set [x]R = {y 2
A : Rxy}. The quotient of A under R is A/R= {[x]R : x 2 A}, i.e.,
the set of these equivalence classes.

The next result vindicates the definition of an equivalence
class, in proving that the equivalence classes are indeed the par-
titions of A:
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Proposition B.��. If R ✓ A2 is an equivalence relation, then Rxy
i� [x]R = [y]R .

Proof. For the left-to-right direction, suppose Rxy , and let z 2
[x]R . By definition, then, Rxz . SinceR is an equivalence relation,
Ryz . (Spelling this out: as Rxy and R is symmetric we have
Ryx , and as Rxz and R is transitive we have Ryz .) So z 2 [y]R .
Generalising, [x]R ✓ [y]R . But exactly similarly, [y]R ✓ [x]R . So
[x]R = [y]R , by extensionality.

For the right-to-left direction, suppose [x]R = [y]R . Since R is
reflexive, Ryy , so y 2 [y]R . Thus also y 2 [x]R by the assumption
that [x]R = [y]R . So Rxy . ⇤

Example B.��. A nice example of equivalence relations comes
from modular arithmetic. For any a, b , and n 2 N, say that a ⌘n b
i� dividing a by n gives the same remainder as dividing b by n.
(Somewhat more symbolically: a ⌘n b i�, for some k 2 Z, a � b =
kn.) Now, ⌘n is an equivalence relation, for any n. And there
are exactly n distinct equivalence classes generated by ⌘n ; that
is, N/⌘n has n elements. These are: the set of numbers divisible
by n without remainder, i.e., [0]⌘n ; the set of numbers divisible
by n with remainder 1, i.e., [1]⌘n ; . . . ; and the set of numbers
divisible by n with remainder n � 1, i.e., [n � 1]⌘n .

B.� Orders

Many of our comparisons involve describing some objects as be-
ing “less than”, “equal to”, or “greater than” other objects, in a
certain respect. These involve order relations. But there are di�er-
ent kinds of order relations. For instance, some require that any
two objects be comparable, others don’t. Some include identity
(like ) and some exclude it (like <). It will help us to have a
taxonomy here.
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