Chapter 11

Lattices

11.1 Posets, duality and diagrams

In the previous chapter we have seen that the arithmetical properties of ele-
ments of formal systems may be described in operational structures. Opera-
tions may serve to generate new elements from a given set of basic elements,
and thus we may view an operational or an algebraic structure naturally as
a syntactic system which generates elements in a formally precise way. The
relation of this dynamic conception of such systems and the linguistic notion
of a grammar which generates strings as elements of a natural or formal lan-
guage will be explored in much more detail in Part E The present chapter
is concerned with certain ordering relations between elements of systems or
domains of objects and the order-theoretic or ‘topological’ properties of such
ordered structures. We will see that the concepts introduced in this chapter
provide a universal perspective on set theory and algebra in which impor-
tant correlations between the two mathematical theories can be insightfully
described. Recently linguistic applications of lattices have been made pri-
marily to semantic topics such as plural NPs, mass terms and events, using
the ordering relations to structure the domains of an interpretation of a lan-
guage. The potential usefulness in linguistics of syntactic applications of
lattice theory is explored in research on feature systems, for instance In
this chapter we will introduce lattice theory without paying attention to any
particular linguistic applications or motivations.

In Chapter 3 we pointed out the set-thecretic importance of partial or-
derings on sets, i.e. sets of objects ordered by a reflexive, anti-symmetric
and transitive relation Here we will call any partially ordered set A together
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with its ordering <, ie. (4,< ), a poset, often writing just A and tacitly
assuming the intended partial ordering, which is widely accepted practice.

A poset which also satisfies the property of linearity (for all a,b € 4 :
a <borb < a)is called a chain, or a fully or linearly ordered set. Addi-
tional properties and operations may be defined on posets which constitute
a stronger structure. Thus the real numbers form a poset, but also a chain,
disregarding the arithmetical operations,

If Ais a poset and a,b € A, then a and b are comparable elements or
comparable objects if a < b or b < a If a and b are not comparable, they are
incomparable, written as a || b In a chain there are of course no incomparable
elements.

In an arbitrary poset A we define an upper bound of B C A as an element
a € A, if it exists, such that for all b € B, b < a. An upper bound a of B is
the least upper bound of B (abbreviated to lub of B) or the supremum of B
(abbreviated to sup B) if, for any upper bound ¢ of B, we have a < c. We
often write @ = V' B, or a =sup B, since by antisymmetry of the ordering
relation we know that if B has a least upper bound, this is a unique least
upper bound.

If (A,< ) is a poset, then inversion of the partial ordering preserves
the poset characteristics, i.e. writing a > b for b < a in the given poset we
have defined a new poset (4, > ). Verification of the three requirements on a
partial order in this new poset (A4, > ) is straightforward: e.g., antisymmetry
holds since if @ > b and b > a, the definition of > gives us 6 < a and a < b,
and we know that in (4, <) in that case a =6 We call (4,> ) the dual of
(A, <), which is obviously a symmetric relation between posets. This notion
will come in handy in proving statements about posets, since it allows us to
replace all occurrences of < in a true statement S by >, thus obtaining the
(equally true) dual S’ of S, without actually carrying out the entire proof
for the inverse of the partial ordering.

To appreciate the importance of this duality in posets, we define the dual
of an upper bound of B C A, called a lower bound of B C A, as an element
a € A such that for all 6 € B, b > a which is equivalent to a < b A lower
bound a of B is the greatest lower bound of B (abbreviated to glb of B) or
the infimum of B (abbreviated to inf B) if, for any lower bound ¢ of B we
have a > ¢. We write a = A B, or a = inf B. Supremum and infimum are
thus duals; hence whatever we may prove about one of them holds also of
the other. For instance, we proved above that if a subset B in a poset has
a supremum, it has a unique supremum, so we know by duality that the
infimum of B, if its exists, is unique.
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Partial orderings may be represented visually by so called Hasse dia-
grams The diagram of a poset (A,< ) tepresents the elements or objects
by o, and if the ordering relation holds between two elements, they are
connected by a line, reflecting the order from bottom to top in the represen-
tation

For instance, writing out the ordering set-theoretically, let the poset
A =1(0,0),(0,a),(0,8),(0,1),(a,a),{a,1), (6,6),(b,1),(1,1)}. Assuming re-
flexivity and transitivity of the connecting lines, we represent A by the dia-
gram in Figure 11-1 (cf the immediate successor diagrams of Section 3-5)

1
Q

Figure 11-1: The diagram of a poset
A={{0,a,6,1}, <)

We call a diagram planar or flat if it does not contain any intersecting
lines, as in Figure 11-1. In general greater clarity of representation is ob-
tained if the number of intersecting lines is kept as small as possible. From
Figure 11-1 we can read off that 0 < I since we assumed transitivity of the
connecting lines, and also we generally know that z < z for any arbitrary
element z.

We say that a covers b (or that b is covered by a) if @ > b and for no
c:a>e¢>b (Recall that @ < b means a < b and a # b.) By induction on
the length of chains, we may prove that the covering relation determines the
partial ordering in a finite poset.

Diagrams usually represent finite posets, but infinite posets are sometime
partially represented by diagrams and need further explanation in the text.
Note that the real and the rational numbers, despite their essential order-
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theoretic differences, are represented by the same linear diagram, due to the
‘paverty’ of the covering relation which determines the diagram. Dualization
of a given poset turns the diagram upside down, but preserves the connecting
lines,

Set-theoretic inclusion induces a natural partial order on the power set
of a given set A, ie, p(A4) is a poset. We represent this inclusion relation
on the power set for the set 4 = {a,$,¢} in Figure 11-2.

{a,b,¢}

{a,b} {a,c} {b,¢}

@ (e

0

Figure 11-2: The diagram of the poset p(A4)
for A = {a,b,¢c}.

Intersecting lines may not define an element In Figure 11-3 a poset is
represented in which all pairs of elements have an upper and lower bound,
but these are not always unique. E.g., both ¢ and d are upper bounds for
{a, b}, but neither ¢ nor d is a supremum for {a,b}.

11.2 Lattices, semilattices and sublattices

There is a special class of posets, called latiices, which have proven to be very
important in the general study of a variety of mathematical theories includ-
ing analysis, topology, logic, algebra and geometry. They have led to many
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Figure 11-3: The diagram of a poset with
non-unique upper and lower bounds

fruitful interactions and new results in various theories and to a productive
development of universal algebra and more recently category theory Lin-
guistic applications of lattice theory are currently being developed in syntax
and semantics.

There are two ways of defining laftices, one from a given poset and
the other, more in line with the group-theoretic definitions, by requiring
properties on operations We present the two definitions in this order.

A poset (A, <) is a lattice if sup{a, b} and inf{a, b} exist for all a,b € A.
We will introduce two new operations a A b = inf{a,b}, calling a A b the
meet of a and b, and a V b =sup{a,b}, calling a V b the join of @ and 6. In
lattices the operations of meet and join are always binary, i.e., we may view
them dynamically as maps from A x A toc A. This allows us to characterize a
lattice as an algebra,ie. as anon-empty set with two operations with certain
algebraic properties. The four properties characteristic of lattice operations
are:

(L1) aha=a,aVa=a idempotent law
(L2) aAb=bAa,aVb=bVa commutative law
(L3) (anb)rhe=ahn(bAc) associative laws

(avd)Ve=aVv(bVe)

The important fourth property of lattice operations connects the two
operations. Note first that if @ < b, then inf{a,b} = a,ie. a Ab = a, and
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dually, if @ > b, then sup{a,b} = a,ie,aV b =a Since a < aVb by
definition of sup{a,b}, we let aV b substitute for 4 in the first equations to
derive a A (aV b) = a. Similarly, since @ > a A b by definition of inf{a, b},
we derive from the second equations @ V (a A b) = a. Thus we have the two
absorption laws:

(L4) an(aVvd)=a absorption law
avV(aAb)=a

Any algebra with two binary operations that have these four properties
(L1)-(L4) constitutes a lattice. It will often be very useful to view lattices
as algebras, since all that we know about algebraic structures can readily be
transferred to lattices. In fact, we often make use of the following theorem,
provable from (L1)-(L4), about the connection between lattices represented
as posets and lattices represented as algebras.

THEOREM 11.1

(i) Let the poset A = (A,< ) be a lattice. Set aAb = inf{a,b} andaVb =
sup{a,b} Then the algebra A% = (A, A,V) is a lattice.

(ii) Let the algebra A = (A,A,V) be a lattice. Set a < b ifaAb = a,
Then AP = (A,<) is a poset and the poset AP is a Jattice.

(iii) Let the poset A = (A, <) be a lattice. Then (A2)P = A,
(iv) Let the algebra A = (A, A,V) be a lattice. Then (AP)2 = A,

Proof. (i) We leave it to the reader to verify that the meet and join operations
as defined in (i) satisfy (L1)-(L4). Absorption becomes a = sup{a,inf{a,b}},
which is clearly true since inf{a, b} < a.

(i) From a A a = a follows a < a (reflexive). If a < b and b < a then
aAb=aand bAa =b; hence a = b (anti-symmetry). Ifa < band b<¢
thenaAb=aandbAc=bsoa=arb=ar(brc)=(anb)Ac=alc
hence a < ¢ (transitivity). Le., < is a partial order on A4, To show that this
poset is a lattice we verify existence of sup and inf for any a,b in A. From
a=ah(avb)andb=>bA(aVb) folowsa<aVbandb< aVbd SoaVb
is an upper bound of both a and 5. We now want to show that it is a least
upper bound, ie., if for some ¢, a < ¢ and b < ¢, then a Vv b < ¢. Suppose
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a<cand b < cthenaVe= (aAc)Ve=cand similarly for bV ¢ = ¢,
so(ave)Vv(bVve)=cVe=c Hence(aVb)Ve=c Absorption gives us
(avb)he=(aVb)A[(avb)Vve]=aVb,ie avb< e ThusaVb=sup{a,b}.
Dual reasoning gives us a A b = inf{a, b}

(iii) and (iv) check to see that the orderings in (A#)P, A and (AP)? are the
same. =

These facts guarantee a smooth transition between lattices as posets and
as algebras. We may choose whatever perspective is most convenient for our
purposes, while knowing that all results will be preserved when the same
lattice is represented differently

Duality in lattices as algebras is simply cbtained by exchanging the two
operations in any statement about lattices.

Next we consider parts of the structure of a lattice and we will see that
the algebraic definition and the order-theoretic definition of a lattice show
some discrepancy concerning their substructures.

If L is a lattice and L’ is a non-empty subset of L such that for every
pair of elements a,b in L’ both a A b and aV b are in L' (where A and V
are the lattice operations of L), then L’ with the same operations restricted
to L' is a sublattice of L. If L’ is a sublattice of L, then for any a,b in L’
a<bisinL'iff a < bisin L But note that for a given lattice L there may
be subsets which as posets are lattices, but which do not preserve the meets
and joins of L, and hence are not sublattices of L. An example is given in
Figure 11-4 where L = {{a,b,¢,d,e},< ) and L' = ({a,¢,d,e}, <’ ), which
is a lattice as poset but which is not a sublattice of L, sincein Levd =15
whereas in L' eV d = a

In the next section we will come to understand the reason for defining
the sublattice notion algebraically, rather than on the poset representation
of a lattice. For the present it suffices to note that the algebraic sublattice
notion is stronger than the sub-poset which is also a lattice. It is important
to realize that the above theorem about the equivalences between poset
representation and algebraic representation of a lattice may break down
once we have to consider parts of their structure. There are lattice-theoretic
structures which are ‘weaker’ in the sense of representing just parts of a
lattice with less of its structure. The following notions are special cases of
sublattices called semilattices A poset is a join semilattice if sup{a, b} exists
for any elements a, b. Dually, a poset is a meet semilattice if inf{a, b} exists
for any a,b. In a diagram, conventionally, a join semilattice is represented
top-down, and a meet semilattice bottom-up. There are again equivalent
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Q

Figure 11-4: The sub-poset
L' = {{a,c,d,e},< ) is a lattice, and a
subalgebra, but not a sublattice.

algebraic definitions: If (4, ¢) is an algebra with one binary operation ¢, it is
a semilattice if o is idempotent, commutative and associative. Theorem 11-1
for poset and algebraic representations of lattices holds with the appropriate
modifications for both kinds of semilattices.

THEOREM 11.2

(i) Let the poset A = (A,< ) be a join semilattice Set aV b =sup{a,b}.
Then the algebra A® = (4,V) is a semilattice.

(ii) Let the algebra A = (A4,0) be a semilattice. Set a < b iff aob =b.
Then AP = (A,< ) is a poset and the poset AP is a join semilattice,

(iii) Let the poset A = (A4,<) be a join semilattice Then (A®)P = A.

(iv) Let the algebra A = (A,V) be a semilattice. Then (AP)* = A.

The proof is deferred to the exercises,
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a a
b d e b d e b d e
i f \:>f/o
g

g

Figure 11-5: A lattice with examples of join
and meet semilattices.

11.3 Morphisms in lattices

Mappings from one lattice to another compare their structures, algebraically
or order-thecretically.

Two lattices Ly = (L;,A,V) and Ly = (Ls,A,V) are {algebraically)
isomorphic if there is a bijection F from Ly to Lo such that for every a,b
in L1

(i) F(avb)= F(a)V F(b), and
(i) F(anb)= F(a)A F(b)

If two lattices are isomorphic, F is called the lattice isomorphism. Note
that F~! is also a lattice isomorphism, if F is, and that if F : Ly — Lg
and F': Lg — Lg are lattice isomorphisms, then their composition F'o F :
L; — Lg is also a lattice isomorphism.

Isomorphism of lattices as posets is defined by requiring the bijection to
be order-preserving. If Py = (P;,< ) and Py = (P, <) are two posets and
F : Py — Pg, F is called an order-preserving map if F(a) < F(b) holds
in Py whenever a < b holds in P;. Sometimes an order-preserving map is
called a monotone or an isotone mapping.

TrHEOREM 11.3 Two posets which are lattices Ly = (L1,< ) and Lg =
(Ly, <) are (order-theoretically) isomorphic iff there is a bijection

F: Ly — Ly such that both F and F~! are order-preserving.
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Proof: (=) If F:Ly — Lg is an isomorphism and a < b holds in Ly then
a=aAb,so F(a) = F(aAb) = F(a) A F(b), therefore F(a) < F(b), and F
is order-preserving. Dually, the inverse of an order-preserving isomorphism
is also order-preserving.

(=) Let F:Lj — Ly and its inverse F~! be order-preserving. If a,b in
Lithena<avband b<aVb, so Fla) < F(avb)and F(b) < FlaVb),
therefore F(a) v F(b) < F(aV b). Suppose F(a)V F(b) < ¢, then F(a) <e¢
and F(b) < ¢, and then a < F71(¢) and & < F~I(c), s0 (aVb) < F~I(c) and
therefore F(aV b) < e It follows that F(a)V F(b) = F(a Vv b) Dually, it is
provable that F(a) A F(b) = F(aAb). =

The diagrams can represent such order-preserving mappings clearly. Fig-
ure 11-6 shows an order-preserving bijection F(a) = a,..., F(d) = d from a
lattice to a chain which is not an algebraic isomorphism.

a
i a
b b

Figure 11-6: An order-preserving bijection
which is not an isomorphism

The following notions are weaker than isomorphisms, and often suffice to
characterize the structural similarity between two domains, especially when
the mappings are intended to represent information-preserving relations.

A homomorphism of the semilattice S; = (S;,0) into the semilattice
Sy = (S2,0) is a mapping F : S; — Sy such that F(aoc b) = F(a)c F(b).
Since any lattice consists of a join and a meet semilattice, this homomor-
phism notion is split into a join homomorphism and a meet homomorphism.
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A (full) lattice homomorphism is a map that is both a join and a meet
homomorphism, ie. a map F such that F(a V 5) = F(a) vV F(b) and
F(aAb)= F(a)\ F(b).

Note that lattice homomorphisms and join and meet homomorphisms
are order-preserving, but the converse is not generally true. In Figure 11-7
the three diagrams show the distinct notions; (11-7 1) is an order-preserving
mapping that is neither a join nor a meet homomorphism (cf Figure 11-
6), (11-7.2) a join homomorphism that is not a meet homomorphism and

(11-7.3) a (full) lattice homomorphism.
L5

(7.1) (72) (7.3)

Figure 11-7: An order-preserving mapping,
a join homomorphism and a lattice
homomorphism

Finally we define an embedding of a lattice Ly into a lattice Ly as an
isomorphism F from Lj into a sublattice of Ly. If such an embedding exists,
Lo contains a copy or an image of Ly as sublattice. This notion will be useful
in determining whether a given lattice has a special structure, as we will see
below in Section 11 5.

11.4 Filters and ideals

In a lattice we may construct various special subsets with nice properties
based on their closure under the ordering relation and the operations.

An ideal I of a lattice L is a non-empty subset of L such that both of
the following hold:

(i) ifacl,be Land b<a,thenb€el

(i) if @,b € I, then (aV b) €
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An ideal I is proper if I # L and I is mawzimal if it is not contained in
another proper ideal of L.

Dualizing these notions, we define a filter F of a lattice L as a non-empty
set of L such that both of the following hold:

(i) ifac F,b€ Land b> a,then b€ F
(i) if @,b € F, then (aAb) € F

A filter is proper if F # L and F is maximal if it is not contained in another
proper filter of L. Maximal filters are often called ulirafilters.

The set of ideals and the set of filters of a lattice are closed under finite
intersection, and under arbitrary intersection in case the intersection is not
empty (proof is an easy exercise). This finite intersection property guaran-
tees existence of the least ideal generated by any non-empty subset X C L,
written as (X]. If X is a singleton {z} C L, then we often write (z] and call
this a principal ideal. (Dually, the filter [X) generated by X C L, etc ).

If L is a lattice and I(L) the set of all ideals in L, then I(L) is a poset with
set inclusion and constitutes a lattice, called the ideal lattice. Together with
the (provable) claim that any non-empty subset of I(L) has a supremum,
which makes I(L) a complete lattice, we may prove that L can be embedded
in I(L) by an embedding function G(z) = (z]. Sometimes the image of
this embedding G is called the ideal representation of a lattice (dually, filter
representation), The proof appeals to a form of the axiom of choice but
Tequires no ingenuity and can be found in any standard reference on lattices
(e.g. Gratzer (1971)).

To illustrate this notion of an ideal representation, consider the following
simple lattice L = ({a,b,¢,d}, <) in Figure 11-8,

The set of all ideals in L, I(L) , consists of {a,b,¢,d}, {b,¢,d}, {b,d}, {c, d}
and the principal ideal {d}. (Why is e.g. {a,b,d} not an ideal?) L can be
embedded into I(L) by the following embedding function: G : L — I(L)
such that

Gl{a) ={a,b,e,d}

G(b) ={b,d}

G(e) ={ec,d}

G(d) ={d}
The ideal representation of L is {{a,b,¢,d},{b,d}, {c, d}, {d}}.

The following notions provide ‘bounds’ to a lattice in a very general way.
An element a of a lattice L is join-irreducible if @ = bV ¢ implies that a = b
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d

Figure 11-8,

o1 a = ¢; dually, a is meet-irreducible if @ = b A ¢ implies that a = bor a = ¢.
We call a lattice L = (L, A, V,0,1) a bounded lattice if

(i) (L, A, V) is alattice

(i) £ A0=0and z V1 =1, for any arbitrary element z.

These notions will again be useful in Chapter 12
The following is an important theorem establishing a connection between
join homomorphisms and ideals.

THEOREM 11.4 [ is a proper ideal of the lattice L iff there is a join homo-
morphism G from L onto the two element chain C = ({0,1}, <) such that
I=G-1(0),ie I ={z]|G(z)=0} ]

Proof: (==)I is a proper ideal and let G be defined by G(z) = 0ifz € I
and G(z) = 1if z ¢ I, which obviously is a join homomorphism.

(=) G :L — C is a join homomorphism and I = G~1(0), then for any
a,bel, Gla)= G(b)=0. SoG(aVvb)=G(a)VvG(B) =0V0 =0, hence
(avb)el Ma€clandz € L with z < a, then G(z) < G(a) = 0,1ie
G(z) = 0, so z € I. Furthermore, G is onto, so I # L, ie I is proper [ ]

Of course Theorem 11.4 may be dualized for proper filters.
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11.5 Complemented, distributive and modular lat
tices
In this section we will discuss some particularly well-known lattices which
have additional properties and operations providing more structure.
In a bounded lattice L we call the least element a, ie a < b for any
b € L, the bottom or zero of L, conventionally writing it as 0. Similarly,
the greatest element in a bounded lattice is called the top or wnit of L,
conventionally written as 1. A bounded lattice L = (L, A,V,0,1) is said to
be complemented if for each a € L there is a b € L such that
(Cl) avVb=1
(C2) anb=0
and b is called the complement of a. In general an element in a lattice may
have more than one complement or none at all. A lattice L is relatively
complemented if for any a < b < c in L there exists d in L with
(RC1) bAd=a
(RC2) bvd=c
and d is called the relative complement of b in the interval [a,c]. A lattice L
is distributive if it satisfies either one of the distributive laws
(D1) an(bvc)=(anb)V(ahc)
(D2) av(brc)=(aVb)A(aVc)
Since (D1) entails (D2) and vice versa (see exercises), satisfaction of
either one suffices for a lattice to be distributive.
It is important to realize that any lattice already satisfies the two lattice
inequalities
(LI1) [(anb)V(arc) <[an(bVc)
(L12) [av(bAc) <[(aVb)A(aVc)
Hence to check for distributivity of a lattice it suffices to check the in-

verses of these inequalities, which together entail (D1} and (D2)
A lattice L is modular if it satisfies the modular law

(M) a<b—-lav(bArc)=bA(aVc)]
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Again since any lattice satisfies a < b — [bA(aVe) < aV (bAc)] checking
the inverse inequality suffices to demonstrate modularity in a lattice.
The following theorem is straightforward.

THEOREM 11.5 Every distributive lattice is modular [

Proof: If a < b, aV b = b and use this in (D2). [ ]

Non-modularity and non-distributivity of a lattice can be verified by
embedding two special five element lattices into it, represented by the dia-
grams NM (Non-Modularity) and ND (Non-Distributivity) in Figure 11-9.
These results belong to the core of lattice theory, and are due respectively
to Dedekind and to the founder of lattice theory, Birtkhoff

e NN
(¢

D

Figure 11-9: Diagrams for non-modularity
and non-distributivity

THeorEM 11.6 (Dedekind) L is non-modular iff diagram NM can be em-
bedded into L L

Proof: (<=)In NM a < b, but it is not the case that av (bAc) = bA (aVc),
so L contains a copy of a non-modular lattice and hence cannot itself be
modular.

(=) Suppose L does not satisfy the modular law, then we will construct
a diagram isomorphic to NM as sublattice. For some a,b,¢c in L we have
a<b butaVv(bAc)<ba(avec) Leta; =aV (bAc)and b =bA(aVc)



by

o

cAb

Thench by =chAlbr(aVc)
[cA(cva)]Ab commutative, associative laws

I

=cAb absorption

andcVa; =cViaVv(bAc)
=[cV(bAc)]Va commutative,associative laws
=cVa absorption

Since cAb < a3 < b; wehave cAb < cha; S cAb =cAb, so
cAhay =cAb; =cAb Similarly for ¢Vb; =cVa; =cVa Itiseasytosee
that the above diagram is isomorphic to and hence a copy of NM [}

THEOREM 11.7 (Birkhoff) L is a non-distributive lattice iff ND can be
embedded into L |

Proof. (<==)aV (bAc)=(aVb)A(aVc)doesnot hold in ND, so if ND can
be embedded in L, it cannot be a distributive lattice

(=) Suppose L is non-distributive,ie for some a,b,c € L, [(arb)V(arc)] <
[aA(bVc)]. Assume also that L does not contain a copy of NM as sublattice,
ie, L is modular. Define the following elements, in order to construct a
sublattice in L which is isomorphic to ND.

d = (anb)V(arc)V(brc)
e = (avbiA(aVe)r(bVec)
a; = (ane)vd
b = (bre)vd
¢; = (che)vd

Now d < a1,b1,¢1 <e
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e
a1</ bl\Ocl

d

With absorption we derive from (a A e) = a A (bV c), that
and=ah((anb)V(anc)Vv(bAc))
Modularity allows exchanging a and (a A b) V (aAc)

={(anbd)V(anrc))Vv(an(brc))
=(aAb)V(ahc)

Now it follows that d < e To show that the above diagram is a copy of ND
inL, we prove a; Aby =a; Acy =b; Acgy =dand a; Vb; = a3 Ve, =
byver =4d

We prove this here for one case only, the others are similar.

ay Aby = ((ane)vd)A((bAe)vd)
((ane)r((breyvd)vd modularity
((ane)an((bvdineivd modularity
((aneyrnen(bvd))vd comm. assoc,
((aneya(dbvd))vd idempotent
(an(®Ve)n(bV(anc)))Vvd absorption
(an(bvbvec)ranc)))vd modularity
(an(bV(ahrc)))vd ahc<bVve
(ane)v(bra)vd modularity

d

The following theorems indicate clearly the force of complementation in
distributive lattices and correlate it to the weaker notion of relative comple-
mentation,

THEOREM 11.8 In a distributive, complemented lattice each element a has
a unique complement a”. H
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Proof. Suppose there were two complements a* and b~ of a, then a* =
aAl=a"A(aVb™)=(a"Aa)V(a"Ab") =0V (a Ab") = a” Ab"; similarly
b*=a*Ab™,s0a" = b". [

THEOREM 11.9 In a distributive lattice relative complements are unique, if
they exist [

Proof Let L be a distributive lattice witha < b <cin L If d and & were
both relative complements of b in the interval [a,c], then

d= dAc
dn(bvd)

(dAbYV(dAd)
(dnd)

Similarly, & = (dA d'),s0 d = d'

THEOREM 11.10 In a distributive lattice, if a has a complement, then it has
a relative complement in any interval containing it. [

Proof: Take b < a < ¢ and let d be the complement of a and z = (dV b} Ac
the relative complement of @ in [b,¢] To proveaAz =band aVz = c.

arhz=aAr((dVd)rc)=((and)V(aAnb))rc=(0VbE)Ac=b,

avVez=aV((dVbrc)=(avdVb)r(aVec)=1A(aVc)=c

THEOREM 11.11 In a distributive lattice, if a and b have complements a’
and b*, respectively, then a A b and a V b have complements (a A b)* and
(aV b)*, respectively, and the de Morgan identities hold:

(i) (anb)" =a"Vvob*
(ii) (aV b)* = a” A b
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Proof: By Theorem 118 we only need to prove (i) by verifying
(arnb)A(a”vb)=0and (anb)V(a“Vb)=1

(anb)A(a* V) =(anbAra™)V(aAbAb)=0V0=0,
(and)v(a"vb)=(ava " Vb )A(BVa VB )=1A1=1

The proof of (ii) is an exercise
Exercises

1. Which of the posets in the diagrams of figures 11-1, 11-2 and 11-3 are
lattices?

2. (i) Which of the following sets of sentences can be formally repre-

sented as posets (each name corresponds to an element):

{a) Alan is a descendant of Bob and Carol Carol is a descendant
of David and Eliza. Bob is a descendant of Fred and Gladys

(b) as in (a) adding: Fred and Eliza are descendants of Henry
and Isabella.

(c) as in (a) adding: Everyone is a descendant of Adam.

(d) David and Eliza, who told Fred about it, were told by Bob
and Carol, after Alan told them both.

(e) Jane told Jim and Joseph, who either told Jenny directly or
she heard from Julius who had heard from them.

(ii) Draw diagrams for the posets in (i) and indicate which are semi-
lattices and/or lattices.

(iii) For the lattices in (i) compute all meets and joins

3. Describe the poset formed by the power set of a four-element set and
draw its diagram, What corresponds to the set-theoretic operations in
an algebraic representation of this lattice? Check whether they satisfy
(L4).

4. Formulate and prove the dual of Theorem 11.2 for meet semilattices,

5. Draw a diagram for a meet homomorphism which is not a join ho-
momorphism from a four-element lattice to a four-element chain and
prove it does not represent a lattice homomorphism.
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6. Prove that the distributive laws (D1) and (D2} are equivalent,
7. Prove that in a complemented distributive lattice a = (a”)*.
8. Prove the second of the de Morgan identities of Theorem 11.11.

9. Supply the laws used for each of the proofs of Theorems 11.8~11 11



Chapter 12

Boolean and Heyting
Algebras

12.1 Boolean algebras

In this chapter we discuss two well-known algebras as specially structured
lattices and prove some of their properties as well as present some semantic
interpretations of these structures,

A Boolean lattice BL = (L, A, V, %, 0, 1) is a complemented distribu-
tive lattice. A Boolean algebra is a Boolean lattice in which 0, 1 and * (com-
plementation) are also considered to be operations; ie BA = (B, A, V, %,
0, 1) where Vv and A are the usual binary operations,  is a unary operation
and 0 and 1 are taken to be nullary operations, which simply pick out an
element of B. For easy reference, we repeat and relabel the laws which a
BA = (B, A, V, %, 0, 1) obeys:

(B0O) BA is an algebra
(B1) Associative Laws
(i) arn(bAc)=(anb)Ac
(ii) av(bve)=(aVvb)Vvec
(B2) Commutative Laws
(i) (anb)=(bAa)
(ii) (avbd)=(bVva)
(B3) Distributive Laws
(i) aAn(bvec)=(anbd)v(ahc)

297
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(i) av{(bAc)=(aVb)A(aVc)
(B4) Top and Bottom Laws

(i) aAl=aandaA0=0

(ii) av0=qandavl=1
{B5) Complementation Laws

(i) anax=0

(i) aVax=1

Often in the literature a special two-element Boolean algebra, called BOOL
or 2 is used to represent the two truth values ‘false’ and ‘true’ where 0 < 1,
0=1xand 1= 0%

In a BA an element a is called an atom when a covers 0. The dual notion
is less frequently encountered, but defined as an element a which covers 1,
called the dual atom. A BA is called an atomic BA when it contains an
atom a for each of its non-zero elements z such that a < z. Any finite BA
is atomic and an atomic BA may not be dually atomic.

We prove some central theorems about B A which illustrate their power
and structural elegance,

THEOREM 12.1 In a BA an element is join-irreducible iff it is an atom. W

Proof: (<) If a is an atom then a = bV c means that b=aor b= 0;if 6 =0
then a = 0V ¢ = ¢; so a is join-irreducible.

{=) Suppose a is not an atom o1 0, then a > z > 0 for some element z.
Whenz < a,a=aAl=aA(zVex)=(arz)V(aAzcx) =z V(aAzx)
Since aAzx < aand aAzx = @ would imply ¢ =aAz =aAc* Az =0, we
know a A ¢ < a, hence a would be join-reducible. |

The definitions of ideals and filters in a lattice given in Chapter 11 carry
over directly to ideals and filters in B A, but note the additional fact that in
a BA 0 is an element of every ideal and 1 is an element of every filter Due
to the strong notion of complementation and the universal top and bottom
element in any BA we have the following strong correlation between ideals
and filters.

THEOREM 12.2 In any BA (i) for any I C B, I is an ideal iff I is a filter;
(ii) for any F C B, F is a filter iff Fx is an ideal. u
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Proof- (i) Note that 0 € 7 iff 1 = 0x € Ix Take a,b € I thena Vb € I iff
(a\/b)*:a*/\b*ef* Ifaecl, weknow b < aiff ax < bx; so b € I iff
b+ € I*. The proof of (ii) is obtained dually. ]

THEOREM 123 If F is a filter in a BA, then F is an ultrafilter Iff for each
b€ Beitherbe Forbxe F B

Proof (<) Suppose for any b € B either b € F or bx € F and take F' to
be a filter which properly contains F, ie there is some ¢ € F' — F. Since
c@ F,ex € F CF' So F'is not proper Hence F' is a maximal proper
filter, an ultrafilter.

(=) Let F be an ultrafilter and take b ¢ F. Set F' = F U {b} which is
not proper since F is already maximal So F U {b} does not have the finite
intersection property and for some finite subset X of F', inf(X)Ab=0 So
inf(X) < bx. Inf(X) is in F and hence bx € F. ]

The following theorem is proven with a form of the axiom of choice, and
shows the existence of a rich class of ultrafilters in any BA.

THEOREM 12.4 (The Ultrafilter Theorem) Each filter in a BA can be ex-
tended to an ultrafilter. L]

Proof: Let F be the non-empty class of all filters in some BA, partially
ordered by set-theoretic inclusion. We want to show that every chain in this
ordering in F has an upper bound Let C = {C; : i € I} be a chain in P
and let C = UyesCi. e,y € C, then for some i, € I, z € C; and y € Cj.
Since C'is a chain, either C; < C; or C; < Cy; take C; < C; Thenz,y € Cy
and since Cjis afilter e Ay € C; € C. Ifbe Bandz < bthenbe C; € C
Since 0 g C; forany i € I, 0 € C So C is a filter, which is the upper bound
for C in F. With a form of the axiom of choice (called Zorn’s Lemma) we
derive that for any filter F, BA must contain a maximal filter extending
that filter. B

There is an important connection between ultrafilters and homomorphisms,
as indicated by the following theorem.

THEOREM 12.5 Let BA{ and BAg be two Boolean algebras and consider
a homomorphism F : BAy — BAy If U is an ultrafilter of BAg, then
F~Y(U) is an ultrafilter of BA 1. ]

The proof of Theorem 12.5 is not given here, since it requires a number of
algebraic concepts which have not been introduced.
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12.2 Models of BA

The Boolean laws may already have reminded you of the properties of set-
theoretic operations, and, indeed, sets provide simple models of Boolean
algebras Starting from any non-empty set X a model for BA can be con-
structed as follows:

Let B be p(X), the power set of X

Let V be set-theoretic union U

e L.et A be set-theoretic intersection (1
e Let x be set-theoretic complementation / relative to X
e Let 1 be X

e Let 0 be §

We may verify that all Boolean laws are true under this interpretation.

(12-1) Let X = {a,b,c} then B = {{a,b,c}, {a, b}, {a, c}, {b,c}, {a}, {B},
{c}, 8} Union and intersection are as usual and the complements

are: {a,b,c}x =0, {a,b}x = {c}, {a,c}x = {b} and {b,c}* = {a}.

Note that by starting from a set with n elements, we construct a BA with
2" elements. Thus for every positive power of 2 there is a Boolean algebra
whose set has exactly that cardinality. It can be proven, although we will
not do so, that every finite BA has a cardinality of 2" for some positive n.
In Section 3 we will prove that every finite model of BA is isomorphic to
a particular set-theoretic model based on the construction described above:
Thus this family of models is particularly important. For infinite models the
situation is not so simple. Every infinite set leads to a model for BA by the
given construction, but not every infinite BA is isomorphic to one of these
models There are, for instance, Boolean algebras of cardinality No, but Ng
is not the cardinality of the power of any set, as we know from Cantor’s
Theorem (see Section 4 4).

We can also show that the logic of statements familiar from Part B
constitutes a model of BA. Let L be the logical language whose syntax
was defined in Section 2 1, and S be the set of statements generated by its
syntactic rules For s and s’ € § we write s ~ s’ when s and s are provably
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logically equivalent in this logic of statements Now ~ is an equivalence
relation on § For each s € S we define the equivalence class
[s]={s'€S|s~s}
Let B be the set of all such equivalence classes of logically equivalent state-
ments. Define a partial ordering on B by
[s] < [s'] iff (s — ') is valid

Then ( B,< ) is a Boolean algebra called the Lindenbaum algebra of L. The
Boolean operations on B are defined by

[sIA[sT =[s & s'], [s]VIs]=1[svs], [s]x=][~s].

Top and bottom are then respectively

1 = [s] for any tautology s

= [s] for any contradiction s

An ultrafilter in the Lindenbaum algebra of L can be identified with a
maximally consistent set of statements, which would constitute the first step
in proving the completeness of I through its ultrafilter representation. Such
topics belong to more advanced model theory and are beyond the scope of
this book (Reference: Bell and Machover (1977)).

12.3 Representation by sets

The first example we gave of a model of BA was the power set algebra of
a set. In this section we show that each Boolean algebra is isomorphic to a
subalgebra of a power set algebra, or, in other words, each Boolean algebra
may be reprsented as a subalgebra of a power set algebra. This important
theorem is due to MLF. Stone and is called Stone Representation. We first
need to define two new notions:

DEFINITION 121

(1) A ring of sets is a family of subsets of a set X which contains for any
two subsets A and B of X also AU B and AN B.
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(2) A field of sets is a ring of sets which contains X and the empty set §
and the complement A’ of any subset A C X,

From these definitions it is easy to see that a field of subsets of X is a Boolean
subalgebra of the Boolean power set algebra of X, but that a ring of subsets
is a sublattice of the power set algebra of X, considered as a distributive
lattice. We will prove that any finite distributive lattice is isomorphic with a
ring of sets and that any finite Boolean algebra is isomorphic with the field
of all subsets of some finite set. (The proof follows essentially Birkhof and
MacLane, 377-380).

From Section 12.1 we need Theorem 12.1 and we define a set §(a) = {z |
z < a and z covers 0} of join-irreducible elements z for an element a in any
finite lattice L. Consider the mapping # which assigns each element a its
S(a).

LemMA 121 In any finite lattice L, F' carries meets in L into set-theoretic
intersections: S(aAb) = S(a) N S(b). ]

Proof. By definition of a A b we know that for any join-irreducible element
z, e <aAbife<aandz <b ]

LEMMA 12.2 In any finite distributive lattice L, F' carries joins in L into
set-theoretic unions: S(aV b) = S(a) U S(b). ]

Proof. Take any join-irreducible ¢, then z is contained in a Vb iff z =
zA(avb)=(zAa)V(zAb) NowzAha=zorzAb=2 So(aVb)
contains ¢ iff $(a) contains @ or S(b) contains . The converse is obvious in
any lattice. B

These two lemmas show that F is a homomorphism from L onto a ring
of subsets of the set X of join-irreducible elements of . Together with the
result of Exercise 3 at the end of this chapter we know that F is also a
one-to-one onto homomorphism. So we know

THEOREM 12.6 Any finite distributive lattice is isomorphic with a ring of
sets. B
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In the case of a finite Boolean algebra we know from Theorem 12.1 that each
element a is the join of the atoms ¢ < a. With the above two lemmas we

know
S(a)n S(a') = S(anax)=S5(0) =0

S(@)uS(d)=S8(avax)=S(1)=J

where J is the set of all join-irreducible element of L. So [S(a)]x = S(a')
and F as defined above is an isomorphism from any Boolean algebra to a
field of subsets of join-irreducible elements of L. We still need to prove that
this field contains all sets of join-irreducible elements of L.

THEOREM 12 7 Any finite Boolean algebra is isomorphic with the Boolean
algebra of all sets of its join-irreducible elements ]

Proof We need to prove that for any two distinct sets of join-irreducible
elements of L the joins of each set are distinct. The claim that the join of
all elements in such a set contains all the join-irreducible elements of that
set and nothing else follows from

LEMMA 123 If A is a set of join-irreducible elements, and there is some
join-irreducible element a such that a < \/{z |z € A}, then a € A. B

Proof a =aAV{z |z € A} = V(a A z) and since a is join-irreducible for
some such ¢ € A,aAz =a,s500< ¢ < a Butthena==z. B

The significance of Stone Representations for representing information
and structuring models for the semantic interpretation of natural language is
discussed in Landman (1986). The mathematical import of Boolean algebras
can be illustrated further by relating them to certain topological structures
and so called Boolean spaces, but the interested reader should consult the
exposition of such topics in Gratzer (1971) or Bell and Machover (1977)



