Chapter 4

Infinities

In the preceding chapters we have occasionally dealt with sets, such as the
set of positive integers, which we intuitively regard as infinite. We now want
to examine the concept of infinity in more detail.

Some initially plausible approaches to the problem of characterizing in-
finity are not satisfactory. A definition employing the terms ‘never-ending’
or ‘impossible, in principle, to list exhaustively,” for example, would be defec-
tive, since these expressions are themselves no clearer than the term ‘infinite’
that is to be explicated. What is needed is a definition that makes use of
set-theoretic concepts already at hand and that accords with our intuitions
about what sets should be regarded as infinite. Since an infinite set is in
some sense “larger” than any finite set, we start by defining what it means
for two sets to be of equal or unequal size,

4.1 Equivalent sets and cardinality

We say that two sets A and B have the same number of members, or are
equivalent, if and only if there exists a one-to-one correspondence between
them. Since a one-to-one correspondence is a function that is one-to-one and
onto, every member of A4 is paired with exactly one member of B, and vice
versa. In such a situation it would certainly be reasonable to say that the
sets are of equal size. We denote the equivalence of A and B by A ~ B
The terms equal and eguivalent must not be confused. Equal sets have
the same members while equivalent sets have the same number of members.
Equal sets, are therefore, necessarily equivalent but the converse is, in gen-
eral, not true. Further, nothing is said in the definition of equivalence about
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the exact nature of the one-to-one correspondence between the sets — only
that one exists.

For the case of finite sets this definition of equivalence leads to the ex-
pected conclusion. A set with just four distinct members, for example, can
be put into one-to-one correspondence with any other set having exactly four
distinct members, but not with any set with more or fewer members. The
relation of equivalence of sets is, as the name implies, an equivalence relation
with the property that all of the sets with the same number of members are
put into the same equivalence class. To each equivalence class we can assign
a number, called the cardinal number, denoting the size of each set in the
class. For finite sets, the cardinal numbers correspond exactly to the natural
numbers. Thus a set A with just four members is said to have a cardinality
of 4, written |4|= 4, as we indicated in Chapter 1.

In the case of infinite sets something rather surprising happens. Counsider,
for example, the set of positive integers P, the set E of positive even integers
(without zero), and the function F from P to E that maps every integer z
into 2z as indicated in Figure 4-1.
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Figure 4~1: A one-to-one mapping from the
positive integers to the positive even integers.

Every positive integer can be multiplied by 2 to give as a unique value a
positive even integer. This shows that F is a function whose range is in E.
The function F is one-to-one because for any integers ¢ and g, if 2z = 2y,
then z = y. Further F is onto, since every member of E can be represented
as 2z, for some positive integer . Thus, F is a one-to-one correspondence,
and P and E, being equivalent sets, have the same number of members. This
result is surprising in view of the fact that E is a proper subset of P (3, for
example, is in P but not in E). We are accustomed to thinking of a set as
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being “larger” than any of its proper subsets, but if we adopt the notion of
equivalence as the criterion for equal size of sets, then we are inescapably led
to conclude that sometimes a set and a proper subset of that set may have
the same number of members. If, on the other hand, we were to say that a
set is always “larger” than a proper subset of itself, we would have to accept
the puzzling consequence that sets of different size can be put into one-to-
one correspondence. Either way the situation seems paradoxical When we
examine the sets that exhibit this unusual behavior, however, we find that
they are just the ones that we would intuitively call infinite. Accordingly,
we define an infinite set in the following way:

DEFINITION 4.1 4 set is infinite iff it is equivalent to a proper subset of
itself. ]

(4-1) Ezample: The set of natural numbers N = {0,1,2,3,.. } is infinite.
Consider the set P = {1,2,3,4, ..}, which is a proper subset of N
and establish the mapping indicated in Figure 4-2 in which each
natural number n is carried into n+ 1. To each member of N there
corresponds a unique member of P, and vice versa. Therefore, G
is a one-to-one correspondence, and P ~ N.

Figure 4-2: Mapping showing that the set
N is equivalent to a proper subset of itself



58 CHAPTER 4

(4-2) Ezample: The set of all (finite) strings A* on the alphabet
{a,b} is infinite. Take as a proper subset of A* the set B =
{b,ba,bb,baa,bab,bba, ..} ie, all strings in A* beginning with b.
The mapping h shown in Figure 4-3 is a one-to-one correspondence
because for every string z in A* there is a unique string bz in B,
and vice versa (e is the empty string of zero length).

Figure 4-3: A one-to-one mapping of
{a,b}* onto a proper subset of itself.

It should be easy to see that no finite set can be equivalent to one of
its proper subsets (take, for example, the set {a,b,c} and any of its proper
subsets). One point about the definition of infinite sets sometimes causes
confusion: Only the existence of at least one equivalent proper subset is
required. The definition does not say that an infinite set is equivalent to
every proper subset of itself, a condition that in fact could never be met.
For example, N is not equivalent to its proper subset {0,3,18}.

4.2 Denumerability of sets

We have said that we can associate with each finite set a natural number
that represents its cardinality, and that sets with the same cardinality form
an equivalence class. Equivalent infinite sets can also be grouped into equiv-
alence classes, all members of which have the same cardinality, but there is
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no positive integer that can be associated uniquely with such an equivalence
class as its cardinal number. This follows from the fact that every integer
is the cardinal number of a class of finite sets, and no infinite set can be
equivalent to a finite set, since no one-to-one correspondence between them
is possible, Nonetheless, it is convenient to have symbols denoting the cardi-
nality of infinite sets; the one conventionally adopted as the cardinal number
of the set of natural numbers (and all sets equivalent to it) is Rq (aleph null
or aleph zero). It must be emphasized as we have said, that Rg is not a
natural number, ie., not a member of the set N = {0,1,2,3,...}. Each
natural number has a corresponding cardinal number, but there are cardinal
numbers, e.g Rg that correspond to no natural number. A cardinal number
can be regarded as an answer to a question about the number of members
in a set If we ask ‘How many natural numbers are there?’ or ‘How many
positive integers are there?’, the answer is the cardinal number N

By definition, a set with cardinality Ng, i.e., one that is equivalent to
the set of natural numbers, is called denumerable or denumerably infinite or
countably infinite. A set that is either finite or denumerably infinite is called
countable. We have already seen that the set of positive even integers (F in
Figure 4-1) is denumerable Here are some other examples:

(4-3) Ezample:  The set of integers, including zero, Z =
{0,+1,-1,+2,-2,+3,-3,.. }, is denumerably infinite One pos-
sible one-to-one correspondence with N is

Z = {0, +1, -1, +2, -2, +3, -3, ..}
N = {0, 1, 2 3 4 5 6 ..}

The function F:Z — N is defined by

0 whenz =0
F(z)=< 22 —1 when & is positive
-2z when z is negative

That F is indeed a one-to-one correspondence can be seen by noting
that positive numbers in Z correspond to odd numbers in N, and negative
numbers in Z correspond to even numbers in N (with 0 corresponding to 0).
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(4-4) Ezample: The set of reciprocals of the natural numbers without

zero S = {1,3,%,%: 5,5, -} is denumerably infinite, as shown by

the following one-to-one correspondence with N:

(0]
O e
[k — ]
NCR Sm—T
QO —mrmem—aBr [
B o
Ole—— O
Q
~—~
8
~
I
8
{
—_

e

(4-5) Ezample: The set of odd positive integers F = {1,3,5,7,9,. ..} is
denumerably infinite. One possible one-to-one correspondence with

N is
F = {1, 3 5 7, 9, ..}
T e
N = {0, 1, 2, 3, 4 ...}

We have seen that the set of positive integers P, the set of even positive
integers E, and the set of odd integers F all have the same cardinality. Since
P = FUF one might have supposed that P would have more members than
either F or F, but this is not the case Thus, the union of two infinite sets
is not necessarily a set with greater cardinality.

Are there sets larger than the set of positive integers? One that might
intuitively seem so is the set of ordered pairs in the Cartesian product N xN.
When the pairs are listed in the order indicated by the arrow in Figure 4-
4, however, we find that the following one-to-one correspondence between
N x N and N can be established, although in this case it is somewhat more
difficult to prove that the correspondence is actually one-to-one.

One would also tend to think that there are more rational numbers than
natural numbers, since there are an infinite number of rational numbers
between any two natural numbers (recall that a rational number is one which
can be represented as the ratio of two integers & /y where y # 0). However,
a one-to-one correspondence can be established, proving that the sets are
actually of the same cardinality.

To set up a correspondence, we write down the positive rational numbers
in an array of the following form:



DENUMERABILITY OF SETS

61

Figure 4-4: An enumeration of the members

of N x N.

NxN

i

{(0,0),(0,1),(1,0),(0, 2),(1

Figure 4-5: A one-to-one
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correspondence

between N X N and N.

1/1,2/1,3/1,4/1,5/1,6/1,. ..
1/2,2/2,3/2,4/2,5/2,. .
1/3,2/3,3/3,4/3, ...
1/4,2/4,3/4,...

1/5,2/5,. ..

1/6, ...

We first set up a correspondence between the elements of this array and
the positive integers as follows: starting in the upper left-hand corner, count
down the successive diagonals from the top row to the leftmost column. The
first few terms of this correspondence are: 1/1to1,2/1t02,1/2t03,3/1to
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4,2/2t05,1/3t06,4/1t07,..., etc. Thisis similar to the enumeration we
gavein Figure 4-4. Next we pair the negative rationals with negative integers
and 0 with 0 to give a complete corzespondence between the integers and
the rationals We then make use of the established correpondence between
the natural numbers and the integers to obtain a correspondence between
the natural numbers and the rationals. (The rational numbers will each
have been written down more than once by this procedure; eg., 1/2 will
also appear as 2/4, 3/6, etc But having shown a one-to-one correspondence
between this larger set and the natural numbers, it is easy enough to go
through the list striking out each occurrence of a rational number which
has already appeared in another form, moving the succeeding terms higher
up in the list to fill in the gaps ) Putting the members of a set in a one-to-
one correspondence with the natural numbers by means of some well-defined
procedure such as this one is sometimes called effectively listing the members
of that set.

4.3 Nondenumerable sets

Not only is there a procedure for effectively listing the ordered pairs of
integers, one can also effectively list the ordered triples, quadruples, etc.,
i.e., the set of n-tuples for any given n. (Problem: Give a systematic method
for listing the ordered triples of integers as a linear sequence.) Thus, a set
with cardinal number greater than Xo will not be found by taking successive
Carteslan products of N. At one time it was suppposed that there were no
sets with cardinality greater than R, but Georg Cantor (1845-1918), the
mathematician who developed a large part of the theory of sets, proved that
for any set A, the power set of A always has greater cardinality than A.
Thus, the power set of N will have cardinality greater than N,

THEOREM 41 (Cantor): For any set A, |A|<|p(4)| |

Proof. There is a function from p(4) to A that maps every set containing
Jjust one element into that element in A, and maps all the other sets into
some fixed element of A This function is onto since every member of 4 has
at least one correspondent in p(A). Thus |A|<[p(A)| or |A|=|p(4)], i.e.,
p(A) is at least as large as A. We next show that there is no one-to-one and
onto function F from A to p(A), and thus that the sets cannot be equivalent.
Assume that there is such an F : A — p(A) Then every member of 4 is
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mapped onto some subset of A. In general, some members of A will be
mapped into a subset of which they are also members, and some will not.
In the example in Fig. 4-6, 0 and 2 are each mapped by F into a set which

Figure 4-6: Dlustration of an alleged
one-to-one correspondence between a set and
its power set.

has that element as a member, but 1 and 3 are not. Now form the set B by
taking every member of A that is mapped into a subset not containing that
member. That is, B = { € Az ¢ F(z)}. B is some subset of A and is
therefore one of the members of p(A) By hypothesis, F is onto, so there is
at least one member of A that is mapped into B. Call this member y. Now
we ask whether y is in B or not.

1. ify € B then it is not a member of the set it is mapped into, B. Thus
ify € B then y ¢ B. Contradiction!

2. if y & B then it is one of those elements not in the set it is mapped
into, so by definition it must be in B. So if y ¢ B, then y € B.
Contradiction again! ]

This two-fold contradiction, which is reminiscent of Russell’s Paradox
(see Chapter 1 2), shows that the assumption that F is one-to-one and onto
is false. Therefore it cannot be the case that |4|=|p(A4)], so we conclude that
|Aj<|p(A)] A corollary of this important theorem is that there is a cardinal
number greater than aleph-zero, which is commonly called 2%, by analogy
with the finite cardinals, where the power set of a set with » members has 27
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members. 2% does not denote an integer or any other real number, however,
since raising 2 to the power X is not a meaningful arithmetic operation.

Forming the power set of p(N) leads to a cardinal number 22° that

is larger than 2%¢; p(p(p(N))) has cardinality 222“0, and so on. Cantor’s
Theorem thus yields an infinite sequence of ever greater infinite cardinal
numbers: Ry < 280 < 22%° <

Another example of a nondenumerable set is the set of all real numbers
between 0 and 1 (including 0 and 1 themselves), which we denote {0,1].
The 1eal numbers consist of (1) the integers, (2) the other rational numbers
and (3) the irrational numbers such as V5, T, %\3/5, etc., which are not
expressible as the ratio of two integers. In number theory it is proved that
all real numbers, whether rational or irrational, can be written as an integer
(possibly 0) followed by an infinitely long decimal fraction to the right of the
decimal point. The fraction %, for example, can be written as 0.3333333 ...,
where the ellipsis indicates that the sequence of 3’s is infinite, Fractions such
as % can be represented as 0.5 or 0.50 or 0500, etc., or else as the infinite
repeating decimal 0.499999 ... Proof of this last statement would require
an excursus into geometric series, but it can be made at least more plausible
by considering the following: § = 0 11111..; 1 = 9(3) = 9(0.11111...) =
0.99999 .., The decimal fraction of an irrational number is also infinitely
long, but unlike a rational number it does not have repeating digit sequences.

Cantor’s proof of the nondenumerability of {0, 1] begins with the assump-
tion that every number in this set is uniquely represented by a sequence
composed of 0 and an infinitely long decimal fraction. To assure that this
representation is unique for each member of the set, we also take every
rational number that might be written with an infinite string of 0’s, e.g.,
0 5000. .., in the form having an infinite string of 9’s, e g., 0.4999.... We
now make the assumption that is to be proved false, namely, that the set [0, 1]
is denumerable. If so, then its members can be put into a linear sequence
with a first member, etc., and this sequence will contain every member of
[0,1] In Figure 4-7, this sequence z1, g, Z3,..., %y, .. is indicated as run-
ning vertically down the page with the decimal representation of each z; to
the right of the equals sign. The a’s are the individual digits in each decimal
fraction; a1s, for example, is the third digit in the decimal part of the first
number in the sequence.

We now show that there is a number y in the set [0,1] that is not in
the sequence z1, 3,23, . ,&n, .. This number has the following charac-
teristics: the integer part is 0; the first decimal digit, a,;, is different from
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zy = 0Oanapa13 - -@1n-
zz = O.amapass- dop-

zz = 0.azazzazs azn -
T, = O‘inanzarﬁ v lpn

Figure 4-7: Putative enumeration of [0,1]

ay1; its second decimal digit, a,p; is different from ayp; and in general the
nth decimal digit a,, is different from a,, Therefore, y cannot be equal to
z; because they differ in the first decimal place (and we have agreed that
each number has a unique representation in the array); likewise, ¥ cannot be
equal to £y because they differ in the second decimal place; and in general,
y cannot equal any number z, in the array because it differs from y in (at
least) the ntkh decimal place. Yet y is a number between 0 and 1 because
it is of the form y = 0.ay1ay2ay3 - - @yn -~ Thus, our assumption that the
elements of [0,1] can be put into a linear sequence cannot be maintained, and
the set is nondenumerable, This particular form of reductio ad absurdum, the
so-called diagonal argument (y is constructed to be distinct from the integer
0.a11822033 ' Gny, - On the diagonal of the square array), is encountered
frequently in proofs involving infinite sets.

This proves that the cardinality of the set [0, 1] is greater than Rg but
does not determine just what it is. Cantor was able to show (by a proof
we will not reproduce here) that [0, 1] is equivalent to the power set of the
integers, and thus its cardinal number is 2%0. Other sets with this cardinality
are the set of all real numbers, the set of all points on a line (of whatever
length), the set of all points on a plane, the set of all points in n-dimensional
space (for any finite n), and the set of all subsets of the integers.

A problem that remained unsolved for many years was whether there
ate any infinite cardinal numbers other than Rg, 28,22 etc. Is there,
for example, a cardinal number 8 such that Xy < 8 < 2% or, to put it
another way, is there a set intermediate in size between N and p(N)? The
conjecture that the answer to this question was negative is known as the
Continuum Hypothesis, It was not until 1963 that the matter was finally
resolved (an event sufficiently newsworthy that it was reported in the New
York Times (Nov. 14, 1963, p. 37)), when P.J. Cohen showed that the



66 CHAPTER 4

Continuum Hypothesis can be neither proved nor disproved on the basis
of the usual assumptions about set theory The Continuum Hypothesis is
therefore independent, and either it or its negation could be added to set
theory without being redundant or creating a contradiction.

The following examples further illustrate the diagonal method and some
other methods of showing that a set has cardinality greater than Rg.

(1) The set of all real numbers ¢, 0 < & < 1, written in binary notation.
The diagonal method can be applied to this set exactly as to the set of real
numbers between 0 and 1 in decimal notation. Since every digit is either a
0 or a 1, one simply sets ¢n, = 1 if an, = 0, and yYnn, = 0 if @y, = 1. The
only reason for giving special mention to the binary notation case is that
it is often easier to relate other sets to the real numbers in binary notation
than to the real numbers in decimal notation

(2) The set of all subsets of the set of natural numbers, ie, p(N). For
this example, we will use a method which is not overtly “diagonal”, although
it is closely related. (We already know from Theorem 4-1 that this set has
cardinality greater than Ry; we use the example to illustrate a method of
proof.)

Assume that (N) has the same cardinality as the natural numbers, i.e.
Ro Then it would be possible to list all the members of p(N), i.e. all the
subsets of N, in some linear order, as Sg, S1, S2,.. .. Suppose that we had a
complete list of this sort. We could then construct a new subset of N, to be
called 5*, as follows:

Let the natural number 0 be a member of S* if and only if 0 is not a
member of Sg

Let 1€ S*ifand only if 1 ¢ Sy.
Let 2¢ 5 ifand only if 2 ¢ 5
In general, let n ¢ S* if and only if n & S,,.

Then S* is a set of natural numbers, i e, a subset of N, which is different
from each subset in the list by at least one member. If n € S, for all n, then
So = 0, and § was not in the list Therefore the list could not have been
complete after all, and the cardinality of p(N) must be greater than Rg.

(3) The set of all languages on a finite alphabet. Given an alphabet
V = {ag,a1,82,. .. an}, define a sentence on V to be any finite string of



NONDENUMERABLE SETS 67

elements of V' (allowing repetitions). Define a language on V to be any set
of sentences on V.

As a preliminary step, we will show that the set of all sentences on V
has cardinality Rg, by showing how the sentences can be listed in a single
linear list We will list first all the 1-symbol sentences, and then all the
2-symbol sentences, etc. Within each group, the sentences can be listed in
alphabetical order, letting ag be the first symbol and a,, the last. Thus the
list will begin as follows:

ao

a

an
aglg

apay

apln
ai1ao

aiay

a1an

aso

anln

aglodo

o N

aglpdolo

Since all the sentences are clearly included in the list, they can be numbered
0,1,2, .., thus establishing a one-one correspondence between the set of
sentences and the natural numbers.

Having established that the set of all sentences on V has cardinality N,
we can now show that the set of all languages on V has a greater cardinality.
We will show three different methods of proof which can be used.
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(i) (Diagonal proof) Assume that the set of all languages on V has
cardinality R, so that the languages can be listed Lo, L1, Lg,. ... We have
already established a means of listing all the sentences on V as sg, 51, 52, .. .
Then we can set up an infinite square array of 0’s and 1’s as shown below,
where an entry :cic is 0 if s; is not in Ly and :cic is 1if s; isin Ly,
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Thus for instance the language consisting of all and only the odd-numbered
sentences would be represented by a row 010101 .. ; the language consisting
of all the 1-symbol sentences (a¢ through a,) would be represented by a row
whose first » + 1 entries were 1’s, with all the remaining entries 0’s.

Then we can construct a representation of a language L™ different from
any in the list as follows: Let 5 = 0 if 2§ = 1; 25 = 1 if 23 = 0. In the same
way make 7 different from «i, 5 different from z2, etc.; in general, z, = 0
if2m =1, and z;, = 1 if 2 = 0. Then by the given interpretation of 0’s
and 1’s, it follows that s,, is in L~ if and only if s,, is not in L,,, and thus
that L* differs by at least one sentence from every language in the list. Since
the procedure applies to any such putative st of all languages, it follows
that there cannot be such a list, and therefore that the set of all languages
on V has a cardinality greater than N,.

(i) The second proof is analogous to the proof used for the set p(N)
given as example (2) above Let S be the name of the set of all sentences
on V. Then since every language on V is a set of sentences on V', and every
set of sentences on V' is a language on V, the set of all languages on V is
exactly the set of all subsets of 5,1e. p(S). Then suppose that the set of all
languages on V had cardinality Rg. We could then list all the languages, i.e,
all the members of p(S5), in a single list, Lg, L1, L2, . . . But then we could
immediately construct a new language L~ as follows (using the enumeration
of the sentences of 5 previously established): let sq € L™ if and only if
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so & Lo, s1 € L™ if and only if s; & L, ete.; in general, s, € L™ if and only
if 5y & Lp,. Thus L™ is a subset of § which differs from every language in
the list by at least one member, and the list, therefore, could not have been
complete. Therefore, the set of all languages, (S), cannot have cardinality
NOH

(iii) The third proof is an example of a general method: to show that
a given set has cardinality greater than N, it is sufficient to show that it
can be put into a one-one correspondence with a set already known to have
cardinality greater than Ry, Since the set of real numbers between 0 and 1
in binary notation is already known to have cardinality greater than Rg, we
will set up a one-one correspondence between it and the set of all languages
onV.

Let each language be represented as an infinite sequence of 0’s and 1’s
in the manner described in the first method of proof above. (We do not,
however, assume that the languages can be listed in a linear order, since we
have already seen that such an assumption leads to a contradiction.) Then
each language can be paired with a unique real number between 0 and 1,
since the infinite decimal is also an infinite sequence of 0’s and 1’s designating
exactly one language and exactly one real number,

The establishment of the correspondence completes the proof

The three methods of proof outlined above are equally valid The first
two have the advantage of not requiring prior knowledge of any sets with
cardinality greater than Ng, but once such knowledge is at hand, the third
method is often more convenient. Furthermore, only the third method, set-
ting up a one-one correspondence, can establish exactly what the cardinality
of a set is, and then only when the cardinality of the corresponding set is
known. In the examples above, all the sets with cardinality greater than Rg
have the same cardinality as the set of real numbers, but we have not proved
the fact for any of the sets, and we cannot take it for granted because, as
we have seen, there are in fact infinitely many different cardinalities greater
than NQH

A set which is not countable is called uncountable or non-denumerable
or non-denumerably infinite.

4.4 Infinite vs. unbounded

There is sometimes confusion over the difference between the terms ‘infinite’
and ‘unbounded’, particularly with respect to statements like ‘The length
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of English sentences is unbounded’, or ‘English has sentences of unbounded
length.” Unbounded means ‘having no upper bound’, i e. having no limiting
value such that every value is at or under that limit. Both of the cited
sentences mean simply that there is no fixed length such that all English
sentences are of that length or less, and this is perfectly consistent with the
statement that every English sentence is finite in length Omne can argue
validly from the premise that the length of English sentences is unbounded
to the conclusion that the set of English sentences is infinite (see problem
4 in the following exercises), but one cannot validly argue from that to the
conclusion that the length of some English sentence is infinite.

Further examples

(1) The number of sides of regular polygons is unbounded, since for any
polygon with n sides, there is another with n + 1 sides; but the number of
sides is always finite. The set of such polygons is infinite.

(2) Consider the set of real numbers z such that 0 < =z < 1. Although
there is no largest real number in that set (1 itself is excluded from the set,
and for every real number less than 1, there is a larger real number that
is less than 1), the size of the real numbers in that set is bounded, since 1
serves as an upper bound. In this case, the size of the members of the set is
bounded, but the set itself is nevertheless infinite.

(3) Starting with the words in some given English dictionary, the length
of English sentences that do not use any word more than once is bounded.
(The number of distinct words in the given dictionary would provide an
upper bound; it is irrelevant to the question of boundedness whether an
English sentence of that length could actually be constructed.)

As can be seen from the examples, the terms ‘bounded’ and ‘unbounded’
apply to values of functions, or to measures of various sorts applied to mem-
bers of a set; these terms do not describe cardinalities of sets, as do ‘finite’
and ‘infinite’. It is never strictly meaningful to speak of an ‘unbounded
set’, although such a phrase may sometimes be interpretable in context as
elliptical for some longer phrase. Confusion can be most easily avoided by
eschewing the use of the term ‘unbounded’ altogether, and replacing state-
ments like the first two above by statements like ‘There is no upper bound
on the length of English sentences’. For the reader who encounters the term
‘unbounded’ in a statement, it may be advisable to ascertain whether the
statement can be unambiguously recast in such a form before proceeding.
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Exercises

1.

2,

Show that the relation of equivalence of sets is in fact an equivalence
relation.

Show that the set of integral powers of 10 {10, 100, 1000, 10,000,
100, 000, . ..} is denumerably infinite

. Show that the set of all negative integers is infinite

Suppose that the following assumptions are true of English:

(i) There is a finite alphabet for writing sentences, consisting of
26 letters, a set of punctuation marks and a space

(ii)  Every sentence is a finite string in the alphabet given in (i).

(iii)  There is no upper bound on the length of sentences of En-
glish. E.g given any sentence, a longer one can be made by
conjoining it with another one.

What then is the cardinality of the set of all sentences of English?

Motivate your answer

. A hotelkeeper has a hotel with a denumerably infinite number of rooms,

all single rooms, numbered 1,2,3,4,5. ... On Saturday night the hotel
was full, but Joe Doe came in asking for lodging. The obliging hotel-
keeper, using his intercom, asked each guest to move into the room
n + 1 when his present room was numbered n. So Joe Doe was given
room 1. But on Sunday everyone stayed for another night. Now a de-
numerably infinite football team came in asking for lodgings one room
per person How could the obliging hotelkeeper accommodate them?

Assume that the earth rests on the back of a giant turtle, and that the
turtle sits on the back of two giant turtles, and those two on three, etc.
‘all the way down’ (ie. there is no bottom layer of turtles).?

!This problem was inspired by a legendary anecdote reported in the preface of an
equally legendary, but actual Ph.D. dissertation, Constraints on Variables in Syntaz by
J. R. Ross, MIT 1967. Since only parts of the dissertation are published, we repeat the
anecdote here as told by Ross for historically accurate preservation:
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(a) Suppose each turtle is the sole deity of some monotheistic sect
(exactly one sect per turtle). What is the cardinality of the set
of all such sects?

(b) Suppose each subset of the set of all these earth-supporting turtles
forms the deity-group of some one sect (a-, mono- or polytheis-
tic, with the latter including both finite and infinite numbers of
deities). What is the cardinality of the set of all such sects?

After a lecture on cosmology and the structure of the solar system, William James was
accosted by a little old lady. “Your theory that the sun is the center of the solar system,
and that the earth is a ball which rotates around it has a very convincing ring to it, Mr.
James, but it’s wrong. I've got a better theory”, said the little old lady. “And what is
that, madam?” inquired James politely. “That we live on a crust of earth which is on
the back of a giant turtle”. Not wishing to demolish this absurd little theory by bringing
to bear the masses of scientific evidence he had at his command, James decided to gently
dissuade his opponent by making her see some of the inadequacies of her position. “If
your theory is correct, madam,” he asked, “what does this turtle stand on?” “You are a
very clever man, Mr. James, and that’s a very good question” replied the little old lady,
“but I have an answer to it. And it’s this: the first turtle stands on the back of a second,
far larger turtle, who stands directly under him”. “But what does this second turtle stand
on?” persisted James patiently, To this the little old lady crowed triumphantly. “It’s no
use, Mr. James - it’s turtles all the way down.”
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(Note that two different sects may of course worship some turtles
in common as long as they do not worship exactly the same set )

7. Cardinal numbers form their own numerical system in which we can
do cardinal arithmetic. This exercise gives the basic notions. Let 4
and B be disjoint sets, finite or infinite, and let ¢ = |A| and b = |B|.
We define cardinal addition, written @, and cardinal multiplication,
written ®, as follows:

a®b
a®b

When A and B are both finite, cardinal addition and multiplication
produce the same results as the corresponding arithmetic operations
on integers. When at least one is infinite, however, the operations are
no longer parallel in all respects. Find examples of sets A and B for
which the following hold:

(AU B)]
(A x B)]

It

(a) No B 1 = NO
(b) Ro®2 = R
(c) Rg®Re = Ro
(d) NO ® No = No

Do the operations @ and @ appear to be comunutative and associative?

8. It can be proved that ¥y is the smallest infinite cardinal number. Con-
sider the following putative counterexample to this claim. Choose a
cardinal number z such that 2% = 8. & cannot be finite, since 2 raised
to any finite power is finite; but # cannot be equal to Xy either, since
2% > Rg by Cantor’s Theorem. Therefore z is an infinite cardinal
number less then Rg. What is wrong with this argument?



