Chapter 9

Basic Concepts of Algebra

9.1 Definition of algebra

An algebra A is a set A together with one or more operations f;. We may
represent an algebra by writing

(9‘1) A= <A: fla f2: ”-'afn>

or by using particular symbols for the operations, such as
(9-2) A={(4, +, x)

The set A may finite or infinite, and there may be either a finite or an infinite
number of different operations. However, each operation must be finitary,
ie unary, binary, ternary .... Each n-ary operation must be a well-defined
operation, i.e. defined for all n-tuples of elements of A and yielding a unique
element of A as a value for each n-tuple (cf. the mapping condition for
functions in Section 2.3).

These requirements on the operations can be stated in the form of two
axioms which each operation in an algebra must satisfy. For simplicity, the
axioms are stated in terms of a binary operation o; their generalization to
arbitrary n-ary operations is straightforward.

Axiom 1. Closure: A is closed under the operation o, i.e. for any a,b € A
there is an element ¢ € A such thataob=rc.
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Axiom 2. Unigueness: Ifa=a' andb =15 thenaob=d o

Closure and uniqueness in appropriate sets are ordinarily considered the
minimal requirements for well-behaved operations. Admitting partial op-
erations in an algebra is common in universal algebra and category theory,
which are beyond the introductory scope of this book. (See Goldblatt (1979),
Gratzer (1971), MacLane and Birkhoff (1983) and for discussion in the con-
text of Montague grammar especially Janssen (1983).) We shall not be
concerned with operations that do not satisfy closure and uniqueness Vari-
ous kinds of algebras can be obtained by adding further axioms to these two
basic requirements. We will study a number of such algebras in this chapter.

We have already encountered many structures which are algebras in this
sense. The syntax of the logic of statements, for instance, can be represented
as an algebra based on the set of well-formed statements (S) and the con-
nectives as operations: A = (S, ~, &, Vv, —, « ). Similarly, the semantics
of the logic of statements can be considered as an algebra, based on the set
of truth values and the truth tables, interpreting the connectives as opera-
tions: B = ({0,1}, ~, &, V, —, + ), where the connectives are understood
as operations on truth values, not as syntactic symbols. We will see below
that there is an important connection between the syntactic algebra and the
semantic algebra of such formal languages, which serve as models for the
syntax and semantics of natural languages.

DEerinITION 9.1 An algebra B is a subalgebra of an algebra A =
(A, ff, f&, ..., f2) if B satisfies the following conditions:

B= <B3 lea f2B3 -:an>; where
(i) BC A

(ii) For every i, f? = fA[B; ie., fP yields the same values as f* when
restricted to elements of B.

(ili) B is closed under all operations fP

9.2 Properties of operations

In Section 1.8 a number of properties of operations on sets were introduced.
We repeat certain of these definitions here as properties of operations in
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algebras for easy reference and add a number of properties of operations
which are frequently encountered in algebraic operations

An operation o from A X A to B is associative if and only if for all a,b, ¢ in
A, (aob)oc =ao(boe). In an associative operation it is immaterial in what
order repeated applications of it are made. Set-theoretic union and inter-
section and function composition are associative, as are logical conjunction
and disjunction Examples of non-associative operations are set-theoretic
difference and division of real numbers.

An operation o from A x A to B is commutative if and only if for all a,b
in A, aob=boa Familiar commutative operations are logical conjunction
and disjunction; set intersection and union; and addition and multiplication
of real numbers Some non-commutative operations are subtraction, division
and function composition

An operation o from A x A to B is idempotent if and only if for all a
in A, aoa = a. Set-theoretic union and intersection are idempotent, as
are logical conjunction and disjunction. But most of the operations we have
encountered are not: addition, multiplication, subtraction, division, relative
complementation and function composition are not idempotent operations.

For two operations o7 and oy both from A X A to B, oy distributes over oy
if and only if for all a,b, ¢ in A, aoy (boge) = (aoyb)oa(aoic). We have seen
that set-theoretic union distributes over intersection and vice versa. But,
although arithmetic multiplication distributes over addition (a x (b + ¢) =
(a x b) + (a x ¢)), addition does not distribute over multiplication, since in
general a4 (bx ¢) £ (a+b) x (a+¢).

9.3 Special elements

The next three notions are special properties which certain members of a set
may have with respect to some operation defined on the set.

Given an operation o from A X A to B, an element ¢; is a left identity
element of o if and only if for all a in A, ¢ 0 a = a. Similarly, e, in 4 is a
right identity element of o if and only if for all a in 4, ace, = a. As we
saw in Section 2 4, for a function F': A — B, if the operation o denotes
function composition, then idg o F = F and F oidg = F. Thus for the
operation of composition of functions the identity functions idg and id4 are
respectively a left and right identity element. Subtraction defined on the set
of integers and zero has a right identity element, namely zero itself, since
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for all », n ~ 0 = n. But there is no left identity element; i.e., there is no
element m in the set such that foralln, m—n=mn

For commutative operations, every left identity element is also a right
identity element, and vice versa. To see this, consider a left identity e; . By
definition (Va € A)(e;oa = a). Because the operation is commutative, ¢;0a =
aoe = a,forall a € A, and so ¢ is also a right identity element. Similarly,
every right identity is also a left identity for commutative operations. An
element that is both a right and left identity element is called a two-sided
tdentity or simply an identity element. While commutativity of an operation
is a sufficient condition for every right or left identity to be two-sided, it is
not a necessary condition; a two-sided identity may exist for some operations
that are not commutative. An example of this is found in the operations of
composition of functions defined on some set of functions F = {F,G, H,.. .},
each being a function in A If id4 is one of these function, it is a two-sided
identity, since for each ¢ € F, idg oz = ¢ o id4 = ¢, but the operation of
composition of functions is not in general commutative. For addition the
two-sided identity is 0, but for arithmetic multiplication it is 1, since for
aln,n+0=04+n=nandnx1l=1xn=n Given some collection
of sets, the identity element for intersection is U/, the universal set, and for
union it is the empty set (verify!). Relative complementation has §§ as a right
identity but in general it has no left identity. It is provable that if for a given
operation a two-sided identity exists, then this element is unique

Given an operation o from 4 X A to B with a two-sided identity element
e, a given element @ in A is said to have a right inverse a, if and only
if aca, = e. A given element a in A is said to have a left inverse a; if
and only if g oca = e If a7} is both a left and a right inverse of a, ie.
a~loa=aca! = e, then a™! is called a two-sided inverse of a. When the
term ‘inverse’ is used without further qualification, we mean that it is two-
sided. Note that inverses are always paired in the following way: b is a right
inverse of a if and only if a is a left inverse of b, since both statements follow
from aob = e. One should observe also that the question of the existence of
an inverse can be raised with respect to each element in the set on which the
operation is defined. In contrast, an identity element, if it exists, is defined
for the operation as a whole. To illustrate, let addition be defined in the set
Z of all positive and negative integers and zero. As we have seen, 0 is the
two-sided identity element for this operation. Consider now the number 3,
and let us ask if it has an inverse in Z. Is there an element z in Z that when
added to 3 yields 0?7 The number —3 is such an element, and, furthermore, it
is both a right and a left inverse, since 3+ (—3)} = (=3} 43 = 0. From this it
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also follows that 3 is a two-sided inverse of —3. For addition, every member
of Z has an inverse, since to each integer z, except 0, there corresponds a
negative integer —z, such that z+(—z) = 0. The number 0 is its own inverse,
since 0 + 0 = 0.

Given an operation o from A4 x A to B, an element 0; is called a left
zero of o if and only if for all a in A4, 0; 0 a = 0; Similarly, 0, is called a
right zero of o if and only if for all ¢ in A, a 00, = 0.. An element that
is both a left and a right zero is called a two-sided zero, or simply a zero
This terminology derives from the fact that the number zero functions as
a zero element in arithmetic multiplication. There is no zero element for
subtraction or division. The empty set is a zero element for set intersection
and the universal set U is the zero element for set union.

9.4 Maps and morphisms

Relations between algebras may be described by functions mapping one al-
gebra in another; F : A — B. Such a map is injective if some function
F: A — Bis one-to-one, i.e. F(a) = F(b) impliesa =b F: A — B is
surjective (or onto) if {F(a) |a € A} = B. And F: A — B is bijective if F/
is both injective and surjective (or one-to-one and onto). A morphism is a
mapping F : A — B conceived of dynamically as a transformation process
of AintoB I A = (A, fi,...,f.) and B = (B,¢91,...,9») then A and B
are isomorphic if and only if there is a one-to-one correspondence between
their operations (we will assume for simplicity that the correspondence is
f; < 9;) and a one-to-one and onto function ¢ mapping A onto B such that
forallz,y,2, ..,in Aandalli<=n

gi(w(z); 0(¥),p(2),. ) = p(filz,y,2,. ).

A homomorphism is a correspondence between algebras with all the prop-
erties of an isomorphism except that the mapping from A to B may be
many-to-one; the set B may be smaller than the set A,

An automorphism of an algebra A is an isomorphism of A with itself.
The identity mapping (¢(z) = ) always provides an automorphism for any
algebra (the “trivial” automorphism); the question generally asked of a given
algebra is whether it has any other (“non-trivial”) automorphisms.

For instance, let A = (§,~,&,V,—,« ),and B = ({0,1},~,&,V,—, <),
as defined above in 9.1.
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Any assignment of truth-values to the statements in § is a homomor-
phism F : A — B. ie distinct statements p, g may be mapped to the same
truth-value, but

Fp&kq) = F(p)& F(q)
F(pvg) = F(p)V F(q)
F(p—gq) = F(p)— F(q)
F(pe—gq) = F(p)« F(q)
F(~p) = ~ F(p)

Construction of truth tables for complex statements can now be under-
stood as based on the fact that, given an assignment to the atomic state-
ments, the composition preserves the homomorphism from the syntactic al-
gebra to the semantic one. This can be considered to be the algebraic coun-
terpart of the Principle of Compositionality, often also espoused in one form
or another for the syntax and semantics of natural languages. The principle
requires the meaning of a complex expression to be a function of the mean-
ing of its constituent parts and the way in which they are put together (See
also Ch 13). Homomorphisms can, of course, relate semantic algebras, e g.
by embedding a given interpretation into an extension of that interpreta-
tion. Extensive applications are made of these embeddings, for instance, in
semantic theories based on dynamic interpretations and in Kripke semantics
(see Ch 12).

A simple example of an algebra A’ which is isomorphic to A is a syntax of
the statment logic which uses instead of p, ¢, r etc for statements, a different
alphabet, say the Greek letters ¢, ¢, x etc , and possibly alternative symbols
for the connectives If alphabetic variance is the only difference between two
logical systems they are isomorphic from an algebraic point of view.

Throughout the remainder of this part of the book we will encounter more
interesting mathematical examples of homomorphisms and isomorphisms.

Category theory, a relatively recent and flourishing development of alge-
bra, studies properties of algebras that can be expressed in terms of mor-
phisms. It provides a very abstract and universal perspective on the foun-
dations of set theory, algebra and logic, in which cross-fertilization yields
many new insights and results., The interested reader is referred to Gold-
blatt (1979) for an introduction.
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Exercises

1. Consider the operation of intersection defined on some arbitrary col-

lection of sets.

(a) Is there a two-sided identity element?

(b) Which sets have an inverse element?

Given an arbitrary collection of sets, what elements, if any, have in-
verses with respect to the operation of a) union and b) symmetric
difference?

If for a given operation in an algebra a two-sided identity exists, it is
unique Prove this for the operation of set-theoretic union.



