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Figure 16-1: A typical constitutent
structure tree

16.3 Trees

When the rules of a grammar are restricted to rewriting only a single non-
terminal symbol, it is possible to contrue grammars as generating constituent
structure trees rather than simply strings. An example of such a tree is shown
in Fig. 16-1.

Such diagrams represent three sorts of information about the syntactic struc-
ture of a sentence:

1. The hierarchical grouping of the parts of the sentence into constituents
2. The grammatical type of each constituent

3. The left-to-right order of the constituents

For example, Fig. 16-1 indicates that the largest constitutent, which is la-
beled by S (for Sentence), is made up of a constituent which is a N(oun)
P(hrase) and one which is a V(erb) P(hrase) and that the noun phrase is
composed of two constitutents: a Det(erminer) and a N(oun), ete. Further,
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in the sentence constituent the noun phrase precedes the verb phrase, the
determiner precedes the noun in the noun phrase constituents, and so on.
The tree diagram itself is said to be composed of nodes, or points, some of
which are connected by lines called branches Each node has associated with
it a label chosen from a specified finite set of grammatical categories (S, NP,
VP, etc.) and formatives (my, sister, etc ). As they are customarily drawn,
a tree diagram has a vertical orientation on the page with the nodes labeled
by the formatives at the bottom Because a branch always connects a higher
node to a lower one, it is an inherently directional connection This direc-
tionality is ordinarily not indicated by an arrow, as in the usual diagrams of
relations, but only by the vertical orientation of the tree taken together with
the convention that a branch extends from a higher node fo a lower node.

16.3.1 Dominance

We say that a node z dominates a node y if there i1s a connected sequence
of branches in the tree extending from z to y This is the case when all the
branches in the sequence have the same orientation away from z and toward
y. For example, in Fig 16-1 the node labeled VP dominates the node labeled
Art, since the sequence of branches connecting them is uniformly descending
from the higher node VP to the lower node Art. The node labeled VP does
not dominate the node labeled Poss, since the path by which they are joined
first ascends from VP to S and then descends through NP and Det

Given a tree diagram, we represent the fact that z dominates y by the
ordered pair (z,y). The set of all such ordered pairs for a given tree is said
to constitute the dominance relation for that tree. Dominance is clearly
a transitive relation. If z is connected to y by a sequence of descending
branches and v is similarly connected to z, then z dominates z because they
are also connected by a sequence of descending branches, specifically, by the
sequence passing through y. As a technical convenience, it is usually assumed
that every node dominates itself, i.e., that the dominance relation is reflexive.
Further, if z dominates y, then y can dominate z only if z = y; or in other
words, dominance is antisymmetric. Thus, the relation of dominance is a
weak partial ordering of the nodes of a tree.

If £ and y are distinct, z dominates y, and there is no distinct node
between z and y, then z immediately dominates y. In Fig. 16-1, the node
labeled VP immediately dominates the node labeled V but not the node
labeled found. A node is said to be the daughter of the node immediately
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dominating it, and distinct nodes immediately dominated by the same node
are called sisters. In Fig. 16-1, the node labeled VP has two daughters, viz.,
the node labeled V and the rightmost node labeled NP. The latter two nodes
are sisters. A node which is minimal in the dominance relation, i.e., which
is not dominated by any other node, is called a root In Fig. 16-1 there
is one root, the node labeled S. Maximal elements are called leaves, and in
Fig 16-1 these are the nodes labeled by the formatives, my, sister, etc. Note
that a tree diagram is ordinarily drawn upside down since the root is at the
top and the leaves are at the bottom.

a d
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Figure 16-2: A multiply rooted “tree”

Mathematicians sometimes use the term tree for a configuration with more
than one root, e.g., that shown in Fig. 16-2. For linguists, however, a tree
is invariably singly rooted, the configuration in Fig. 16-2 being considered
a “forest” of trees. We shall adhere to linguistic usage and accordingly we
have the following condition:

The Single Root Condition: In every well-formed constituent structure
tree there is exactly one node that dominates every node.

The root node is, therefore, a least element (and necessarily also a minimal
element) in the dominance relation. We note, incidentally, that the Single
Root Condition is met in the trivial case of a tree that has only one node,
which is simultaneously root and leaf. The condition would not be met by
an “empty” tree with no nodes at all, since it asserts that a node with the
specified property exists in the tree.

16.3.2 Precedence

Two nodes are ordered in the left-to-right direction just in case they are not
ordered by donimance. In Fig. 16-1 the node labeled V precedes (i.e., is to
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the left of) its sister node labeled NP and all the nodes dominated by this
NP node; it neither precedes nor follows the nodes labeled S, VP, V, and
found, i.e., the nodes that either dominate or are dominated by the V node.
It is not logically necessary that the relations of dominance and left-to-right
precedence be mutually exclusive, but this accords with the way in which
tree diagrams are usually interpreted.

Given a tree, the set of all ordered pairs (z,y) such that z precedes y
is said to define the precedence relation for that tree. To ensure that the
precedence and dominance relations have no ordered pairs in common, we
add the Exclusivity Condition:

The Exclusivity Condition: In any well-formed constituent structure
tree, for any nodes ¢ and y, z and y stand in the precedence relation P, i.e.,
either (z,y) € P or (y,z) € P, if and only if ¢ and y do not stand in the
dominance relation I, ie., neither (z,y) € D nor (y,z) € D.

Like dominance, precedence is a transitive relation, but precedence is irreflex-
ive rather than reflexive. The latter follows from the Exclusivity Condition,
since for every node z,(z,z) € D and therefore (z,z) ¢ P. If z precedes y,
then y cannot precede z, and thus the relation is asymmetric. Precedence,
therefore, defines a strict partial order on the nodes of the tree.

One other condition on the dominance and precedence relations is needed
to exclude certain configurations from the class of well-formed trees. An
essential characteristic of a tree that distinguishes it from a partially ordered
set in general is that no node can have more than one branch entering it; i.e.,
every node has at most one node immediately dominating it. The structure
shown in Fig. 16-3(a) has a node d with two immediate predecessors, b and
c, and therefore it is not a tree. Another defining property of trees is that
branches are not allowed to cross. Figure 16-3(b) illustrates the sort of
structure that is forbidden. Both types of ill-formedness can be ruled out by
adding the Nontangling Condition:

The Nontangling Condition: In any well-formed constituent structure
tree, for any nodes z and vy, if z precedes ¥, then all nodes dominated by =
precede all nodes dominated by y.

The configuration in Fig. 16-3(a) fails to meet this condition because
b precedes ¢, b dominates d, and ¢ dominates d, and therefore d ought to
precede d. This is impossible, however, since precedence is irreflexive. In
Fig 16-3(b), b precedes c,b dominates d, and ¢ dominates e. Thus, by the
Nontangling Condition, d should precede e, but in fact the reverse is true.
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Figure 16-3: Structures excluded as trees by
the Nontangling Condition

16.3.3 Labeling

To complete the characterization of trees we must consider the labeling of the
nodes. It is apparent from Fig. 16-1 that distinct nodes can have identical
labels attached to them, eg., the two nodes labeled NP, Since each node
has exactly one label, the pairing of nodes and labels can be represented
by a labeling function L, whose domain is the set of nodes in the tree and
whose range is a set (in syntactic trees, a set of grammatical categories and
formatives). The mapping is, in general, an into function. In summary, we
have the following definition:

DEFINITION 16.6 A (constituent structure) tree is a mathematical configu-
ration (N,Q,D, P, L), where

N is a finite set, the set of nodes

@ is a finite set, the set of labels

D is a weak partial order in N x N, the dominance relation
P is a strict partial order in N x N, the precedence relation
L is a function from N into @, the labeling function

and such that the following conditions hold:

(1) (3z € N)(Vy € N)(z,y) € D (Single Root Condition)

(2) (Vz,y € N)(({z,y) € PV {y,2) € P) & ((z,y) € D& (y,z) € D))
(Exclusivity Condition)
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(3) (Vw,z,y,z € N)(({w,z) € P&{w,y) € D& (z,2) € D) — (y,2) € P)
(Nontangling Condition)
| |

Given this definition, one can prove theorems of the following sort:

THEOREM 16.1 Given a tree T = (N,Q, D, P, L), every pair of sister nodes
is ordered by P. n

Proof: Take z and y as sisters immediately dominated by some node z.
By the definitions of ‘sister’ and ‘immediate domination,” z,y, and z must
all be distinct. As an assumption to be proved false, let ¢ dominate y.
Therefore, £ must dominate z, since z immediately dominates ¥ But z
also dominates z, and ¢ and z are distinct, so this violates the condition
that dominance is antisymmetric. Therefore, ¢ cannot dominate y. By a
symmetrical argument, we can show that y does not dominate z. Thus,
(z,y) € D and (y,z) ¢ D, and by the Exclusivity Condition it follows that
(z,y) € PV {y,z) € P;li.e, z and y are ordered by P, u

THEOREM 16.2 Given a tree T = (N,Q,D,P, L), the leaves are totally
ordered by P. u

Proof. Let M be the set of leaves, and let £ be the restriction of the rela-
tion P to the set M;ie, R = {(z,y) € M X M | (z,y) € P}. R is a strict
partial order, since if there were any ordered pairs violating the conditions
of irreflexivity, asymmetry, and transitivity in R, then because R C P, these
pairs would also appear in P, and P would not be a strict partial order.
By definition, a leaf dominates no node except itself, and therefore for every
pair of distinct leaves z and y,(z,y) ¢ D and (y,z) ¢ D. Thus, by the
Exclusivity Condition (z,y) € PV (y,z) € P. Since z and y are leaves,
(z,y) € RV {y,z) € R, by the definition of R, and thus R is connex. There-
fore, R is a strict total order. |

Every statement about the formal properties of a constituent structure
tree can be formulated in terms of the dominance and precedence relations
and the labeling function. For example, one useful predicate on trees is that
of belonging to. A node will be said to belong to the next highest S node
that dominates it. Formally, the definition is as follows:
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DEFINITION 16 7 Given a tree T = (N,Q, D, P, L), node z belongs to node
y iff
1) z#y
) (y;2) €D
3) (4.8)€ L

4) ~(Fw e N)(w,S)eL&w#y&w#e&(y,w) € D& (w,z) € D).
[ |

(
(2
(
(

Parts 2 and 3 of this definition specify that the node to which z belongs
is labeled S and dominates . Part 4 prohibits any S node from standing
between z and y in the dominance relation, and part 1 excludes the case
of an S node belonging to itself To illustrate, let us consider the tree in
Fig 16-4.

The node Prn belongs to the circled S node since this is the next highest
S node dominating it. Prn does not belong to the highest S (i.e., the root)
of the tree because the circled S node is between the root and Prn in the
dominance relation

With this definition we can easily define some other predicates. Two
nodes are called clause mates iff neither dominates the other and both belong
to the same node. In Fig 16-4 the nodes labeled JohAn and him are clause
mates since neither dominates the other and both belong to the circled S
node, Fred and him are not clause mates since they do not belong to the
same node, and Prn and him are not clause mates since Prn dominates him.

If we let B(z,y) denote ‘z belongs to y,” we can state the definition of
clause mates as follows:

DEFINITION 16.8 Given atree T = (N,Q, D, P, L), nodes z and y are clause
mates iff (z,y) € D& (y,2) ¢ D& (3z € N)({z,2) € B& (y,z) € B. |

A node z is said to command a node y iff neither dominates the other and
z belongs to a node z that dominates y (Langacker, 1969). In Fig. 16-4 the
node labeled Fred commands the node labeled him since neither dominates
the other and Fred belongs to the root node S, which also dominates him
The node htm does not command Fred, however, since the node to which him
belongs—the circled S node-—does not dominate Fred. Note, further, that
John commands him and vice versa. Formally, the definition is as follows
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Figure 16-4: Tree illustrating the definitions
of ‘belonging to’ and ‘command’

DEFINITION 16.9 Given a tree T = (N, Q, D, P,L), node  commands node
yiff (z,y) € D& (y,2) € D& (3z € N)({z,z) € B&(z,y) € D). |

Problem: Prove that two nodes are clause mates iff each commands the
other,



