B.2 Special Properties of Relations

Some kinds of relations turn out to be so common that they have
been given special names. For instance, < and C both relate their
respective domains (say, N in the case of < and ¢(4) in the case
of C) in similar ways. To get at exactly how these relations are
similar, and how they differ, we categorize them according to
some special properties that relations can have. It turns out that
(combinations of) some of these special properties are especially
important: orders and equivalence relations.
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Definition B.3 (Reflexivity). A relation R C A? is reflexive iff,
for every x € 4, Rxx.

Definition B.4 (Transitivity). A relation R C A? is transitive
iff, whenever Rxy and Ryz, then also Rxz.

Definition B.5 (Symmetry). A relation R C A? is symmetric iff,
whenever Rxy, then also Ryx.

Definition B.6 (Anti-symmetry). A relation R C 42 is anti-
symmetric iff, whenever both Rxy and Ryx, then x = y (or, in
other words: if x # y then either =Rxy or —Ryx).

In a symmetric relation, Rxy and Ryx always hold together,
or neither holds. In an anti-symmetric relation, the only way for
Rxy and Ryx to hold together is if x = y. Note that this does not
require that Rxy and Ryx holds when x = y, only that it isn’t ruled
out. So an anti-symmetric relation can be reflexive, but it is not
the case that every anti-symmetric relation is reflexive. Also note
that being anti-symmetric and merely not being symmetric are
different conditions. In fact, a relation can be both symmetric
and anti-symmetric at the same time (e.g., the identity relation
is).

Definition B.7 (Connectivity). A relation R C A? is connected
if for all x,y € A, if x # y, then either Rxy or Ryx.

Definition B.8 (Irreflexivity). A relation R C A2 is called ir
reflexive if, for all x € 4, not Rxx.
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Definition B.g (Asymmetry). A relation R C A? is called asym-
metric if for no pair x,y € 4 we have both Rxy and Ryx.

Note that if 4 # 0, then no irreflexive relation on 4 is reflex-
ive and every asymmetric relation on 4 is also anti-symmetric.
However, there are R C A2 that are not reflexive and also not
irreflexive, and there are anti-symmetric relations that are not
asymmetric.



B.3 Equivalence Relations

The identity relation on a set is reflexive, symmetric, and transi-
tive. Relations R that have all three of these properties are very
common.

Definition B.10 (Equivalence relation). A relation R C 4°
that is reflexive, symmetric, and transitive is called an equivalence
relation. Elements x and y of A4 are said to be R-equivalent if Rxy.

Equivalence relations give rise to the notion of an equivalence
class. An equivalence relation “chunks up” the domain into differ-
ent partitions. Within each partition, all the objects are related
to one another; and no objects from different partitions relate
to one another. Sometimes, it’s helpful just to talk about these
partitions directly. To that end, we introduce a definition:

Definition B.11. Let R C 4? be an equivalence relation. For
each x € A, the equivalence class of x in A is the set [x]gp = {y €
A : Rxy}. The quotient of A under R is A/r= {[x]r : x € 4}, i.e,,
the set of these equivalence classes.

The next result vindicates the definition of an equivalence
class, in proving that the equivalence classes are indeed the par-
titions of A:
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Proposition B.12. If R C A? is an equivalence relation, then Rxy

iff [x]z = [yl

Proof. For the left-to-right direction, suppose Rxy, and let z €
[x]r. By definition, then, Rxz. Since R is an equivalence relation,
Ryz. (Spelling this out: as Rxy and R is symmetric we have
Ryx, and as Rxz and R is transitive we have Ryz.) So z € [y]r.
Generalising, [x]z C [y]r. But exactly similarly, [y]z C [x]r. So
[x]z = [y]&, by extensionality.

For the right-to-left direction, suppose [x]r = [y]r. Since R is
reflexive, Ryy, so y € [y]g. Thus also y € [x]r by the assumption
that [x]r = [y]r. So Rxy. O

Example B.13. A nice example of equivalence relations comes
from modular arithmetic. For any a, b, and #n € N, say thata =, &
iff dividing a by n gives the same remainder as dividing & by z.
(Somewhat more symbolically: a =, b iff, for some k € Z, a - b =
kn.) Now, =, is an equivalence relation, for any n. And there
are exactly n distinct equivalence classes generated by =,; that
is, N/z, has n elements. These are: the set of numbers divisible
by n without remainder, i.e., [0]=,; the set of numbers divisible
by n with remainder 1, i.e., [1]=,; ...; and the set of numbers
divisible by n with remainder n — 1, i.e., [n — 1]

=p



B.4 Orders

Many of our comparisons involve describing some objects as be-
ing “less than”, “equal to”, or “greater than” other objects, in a
certain respect. These involve order relations. But there are differ-
ent kinds of order relations. For instance, some require that any
two objects be comparable, others don’t. Some include identity
(like <) and some exclude it (like <). It will help us to have a
taxonomy here.
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Definition B.14 (Preorder). A relation which is both reflexive
and transitive is called a preorder.

Definition B.15 (Partial order). A preorder which is also anti-
symmetric is called a partial order.

Definition B.16 (Linear order). A partial order which is also
connected is called a total order or linear order.

Example B.17. Every linear order is also a partial order, and
every partial order is also a preorder, but the converses don’t
hold. The universal relation on 4 is a preorder, since it is reflexive
and transitive. But, if 4 has more than one element, the universal
relation is not anti-symmetric, and so not a partial order.

Example B.18. Consider the no longer than relation < on B*: x <
y iff len(x) < len(y). This is a preorder (reflexive and transitive),
and even connected, but not a partial order, since it is not anti-
symmetric. For instance, 01 < 10 and 10 < 01, but 01 # 10.

Example B.19. Animportant partial order is the relation C on a
set of sets. This is not in general a linear order, since if a # 4 and
we consider p({a,b}) = {0,{a},{b},{a,b}}, we see that {a} & {b}
and {a} # {b} and {6} ¢ {a}.

Example B.2o. The relation of divisibility without remainder
gives us a partial order which isn’t a linear order. For integers ,
m, we write n | m to mean n (evenly) divides m, i.e., iff there is
some integer £ so that m = kn. On N, this is a partial order, but
not a linear order: for instance, 2 1 3 and also 3 1 2. Considered
as a relation on Z, divisibility is only a preorder since it is not
anti-symmetric: 1 | -1 and -1 | 1 but 1 # -1.



APPENDIX B. RELATIONS 187

Definition B.21 (Strict order). A strict order is a relation which
is irreflexive, asymmetric, and transitive.

Definition B.22 (Strict linear order). A strict order which is
also connected is called a strict linear order.

Example B.23. < is the linear order corresponding to the strict
linear order <. C is the partial order corresponding to the strict
order C.

Definition B.24 (Total order). A strict order which is also con-
nected is called a total order. This is also sometimes called a strict
linear order.

Any strict order R on A4 can be turned into a partial order by
adding the diagonal Idy, i.e., adding all the pairs (x,x). (This
is called the reflexive closure of R.) Conversely, starting from a
partial order, one can get a strict order by removing Id4. These
next two results make this precise.

Proposition B.25. If R is a strict order on A, then R* = R UIdy is
a partial order. Moreover, if R is total, then R* is a linear order.

Proof. Suppose R is a strict order, i.e., R C A and R is irreflexive,
asymmetric, and transitive. Let R* = R UId4. We have to show
that R is reflexive, antisymmetric, and transitive.

R* is clearly reflexive, since (x,x) € Id4 € R* for all x € 4.

To show R™ is antisymmetric, suppose for reductio that R*xy
and R*yx but x # y. Since (x,y) € R UIdy, but (x,y) ¢ Idx, we
must have (x,y) € R, i.e., Rxy. Similarly, Ryx. But this contra-
dicts the assumption that R is asymmetric.

To establish transitivity, suppose that R*xy and R*yz. If both
(x,9) € R and (y,z) € R, then (x,z) € R since R is transitive.
Otherwise, either (x,y) € Idy, i.e., x = y, or (y,z) € Idy, i.e.,
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y = z. In the first case, we have that R*yz by assumption, x = y,
hence R*xz. Similarly in the second case. In either case, R*xz,
thus, R" is also transitive.

Concerning the “moreover” clause, suppose R is a total order,
i.e., that R is connected. So for all x # y, either Rxy or Ryx, i.e.,
either (x,y) € R or (y,x) € R. Since R C R*, this remains true of
R*, so R" is connected as well. O

Proposition B.26. If R is a partial order on X, then R~ = R\ Idx
is a strict order. Moreover, if R is linear, then R~ is total.
Proof. This is left as an exercise. O

Example B.27. < is the linear order corresponding to the total
order <. C is the partial order corresponding to the strict order <.

The following simple result which establishes that total orders
satisfy an extensionality-like property:

Proposition B.28. If < totally orders A, then:
(Va,b € A)(Vx € A)(x <a>x<b) > a=b)

Proof. Suppose (Vx € A)(x < a< x <b). If a < b, then a < aq,
contradicting the fact that < is irreflexive; so a ¢ 5. Exactly
similarly, b £ a. So a = b, as < is connected. o



