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is the less than relation, i.e., Lnm i� n < m. The subset of pairs
below the diagonal, i.e.,

G = {h1,0i, h2,0i, h2,1i, h3,0i, h3,1i, h3,2i, . . . },

is the greater than relation, i.e., Gnm i� n > m. The union of L
with I , which we might call K = L [ I , is the less than or equal to
relation: Knm i� n  m. Similarly, H = G [ I is the greater than
or equal to relation. These relations L, G , K , and H are special
kinds of relations called orders. L and G have the property that
no number bears L or G to itself (i.e., for all n, neither Lnn nor
Gnn). Relations with this property are called irre�exive, and, if
they also happen to be orders, they are called strict orders.

Although orders and identity are important and natural re-
lations, it should be emphasized that according to our defini-
tion any subset of A2 is a relation on A, regardless of how un-
natural or contrived it seems. In particular, ; is a relation on
any set (the empty relation, which no pair of elements bears),
and A2 itself is a relation on A as well (one which every pair
bears), called the universal relation. But also something like
E = {hn,mi : n > 5 or m ⇥ n � 34} counts as a relation.

B.� Special Properties of Relations

Some kinds of relations turn out to be so common that they have
been given special names. For instance,  and ✓ both relate their
respective domains (say, N in the case of  and ®(A) in the case
of ✓) in similar ways. To get at exactly how these relations are
similar, and how they di�er, we categorize them according to
some special properties that relations can have. It turns out that
(combinations of) some of these special properties are especially
important: orders and equivalence relations.
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De�nition B.� (Re�exivity). A relation R ✓ A2 is re�exive i�,
for every x 2 A, Rxx .

De�nition B.� (Transitivity). A relation R ✓ A2 is transitive
i�, whenever Rxy and Ryz , then also Rxz .

De�nition B.� (Symmetry). A relation R ✓ A2 is symmetric i�,
whenever Rxy , then also Ryx .

De�nition B.� (Anti-symmetry). A relation R ✓ A2 is anti-
symmetric i�, whenever both Rxy and Ryx , then x = y (or, in
other words: if x < y then either ¬Rxy or ¬Ryx).

In a symmetric relation, Rxy and Ryx always hold together,
or neither holds. In an anti-symmetric relation, the only way for
Rxy and Ryx to hold together is if x = y . Note that this does not
require that Rxy and Ryx holds when x = y , only that it isn’t ruled
out. So an anti-symmetric relation can be reflexive, but it is not
the case that every anti-symmetric relation is reflexive. Also note
that being anti-symmetric and merely not being symmetric are
di�erent conditions. In fact, a relation can be both symmetric
and anti-symmetric at the same time (e.g., the identity relation
is).

De�nition B.� (Connectivity). A relation R ✓ A2 is connected
if for all x ,y 2 A, if x < y , then either Rxy or Ryx .

De�nition B.� (Irre�exivity). A relation R ✓ A2 is called ir-
re�exive if, for all x 2 A, not Rxx .
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De�nition B.� (Asymmetry). A relationR ✓ A2 is called asym-
metric if for no pair x ,y 2 A we have both Rxy and Ryx .

Note that if A < ;, then no irreflexive relation on A is reflex-
ive and every asymmetric relation on A is also anti-symmetric.
However, there are R ✓ A2 that are not reflexive and also not
irreflexive, and there are anti-symmetric relations that are not
asymmetric.

B.� Equivalence Relations

The identity relation on a set is reflexive, symmetric, and transi-
tive. Relations R that have all three of these properties are very
common.

De�nition B.�� (Equivalence relation). A relation R ✓ A2

that is reflexive, symmetric, and transitive is called an equivalence
relation. Elements x and y of A are said to be R-equivalent if Rxy .

Equivalence relations give rise to the notion of an equivalence
class. An equivalence relation “chunks up” the domain into di�er-
ent partitions. Within each partition, all the objects are related
to one another; and no objects from di�erent partitions relate
to one another. Sometimes, it’s helpful just to talk about these
partitions directly. To that end, we introduce a definition:

De�nition B.��. Let R ✓ A2 be an equivalence relation. For
each x 2 A, the equivalence class of x in A is the set [x]R = {y 2
A : Rxy}. The quotient of A under R is A/R= {[x]R : x 2 A}, i.e.,
the set of these equivalence classes.

The next result vindicates the definition of an equivalence
class, in proving that the equivalence classes are indeed the par-
titions of A:
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Proposition B.��. If R ✓ A2 is an equivalence relation, then Rxy
i� [x]R = [y]R .

Proof. For the left-to-right direction, suppose Rxy , and let z 2
[x]R . By definition, then, Rxz . SinceR is an equivalence relation,
Ryz . (Spelling this out: as Rxy and R is symmetric we have
Ryx , and as Rxz and R is transitive we have Ryz .) So z 2 [y]R .
Generalising, [x]R ✓ [y]R . But exactly similarly, [y]R ✓ [x]R . So
[x]R = [y]R , by extensionality.

For the right-to-left direction, suppose [x]R = [y]R . Since R is
reflexive, Ryy , so y 2 [y]R . Thus also y 2 [x]R by the assumption
that [x]R = [y]R . So Rxy . ⇤

Example B.��. A nice example of equivalence relations comes
from modular arithmetic. For any a, b , and n 2 N, say that a ⌘n b
i� dividing a by n gives the same remainder as dividing b by n.
(Somewhat more symbolically: a ⌘n b i�, for some k 2 Z, a � b =
kn.) Now, ⌘n is an equivalence relation, for any n. And there
are exactly n distinct equivalence classes generated by ⌘n ; that
is, N/⌘n has n elements. These are: the set of numbers divisible
by n without remainder, i.e., [0]⌘n ; the set of numbers divisible
by n with remainder 1, i.e., [1]⌘n ; . . . ; and the set of numbers
divisible by n with remainder n � 1, i.e., [n � 1]⌘n .

B.� Orders

Many of our comparisons involve describing some objects as be-
ing “less than”, “equal to”, or “greater than” other objects, in a
certain respect. These involve order relations. But there are di�er-
ent kinds of order relations. For instance, some require that any
two objects be comparable, others don’t. Some include identity
(like ) and some exclude it (like <). It will help us to have a
taxonomy here.
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De�nition B.�� (Preorder). A relation which is both reflexive
and transitive is called a preorder.

De�nition B.�� (Partial order). A preorder which is also anti-
symmetric is called a partial order.

De�nition B.�� (Linear order). A partial order which is also
connected is called a total order or linear order.

Example B.��. Every linear order is also a partial order, and
every partial order is also a preorder, but the converses don’t
hold. The universal relation onA is a preorder, since it is reflexive
and transitive. But, if A has more than one element, the universal
relation is not anti-symmetric, and so not a partial order.

Example B.��. Consider the no longer than relation 4 on B⇤: x 4
y i� len(x)  len(y). This is a preorder (reflexive and transitive),
and even connected, but not a partial order, since it is not anti-
symmetric. For instance, 01 4 10 and 10 4 01, but 01 < 10.

Example B.��. An important partial order is the relation ✓ on a
set of sets. This is not in general a linear order, since if a < b and
we consider ®({a,b}) = {;, {a}, {b}, {a,b}}, we see that {a} * {b}
and {a} < {b} and {b} * {a}.

Example B.��. The relation of divisibility without remainder
gives us a partial order which isn’t a linear order. For integers n,
m, we write n | m to mean n (evenly) divides m, i.e., i� there is
some integer k so that m = kn. On N, this is a partial order, but
not a linear order: for instance, 2 - 3 and also 3 - 2. Considered
as a relation on Z, divisibility is only a preorder since it is not
anti-symmetric: 1 | �1 and �1 | 1 but 1 < �1.
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De�nition B.�� (Strict order). A strict order is a relation which
is irreflexive, asymmetric, and transitive.

De�nition B.�� (Strict linear order). A strict order which is
also connected is called a strict linear order.

Example B.��.  is the linear order corresponding to the strict
linear order <. ✓ is the partial order corresponding to the strict
order (.

De�nition B.�� (Total order). A strict order which is also con-
nected is called a total order. This is also sometimes called a strict
linear order.

Any strict order R on A can be turned into a partial order by
adding the diagonal IdA, i.e., adding all the pairs hx ,xi. (This
is called the re�exive closure of R.) Conversely, starting from a
partial order, one can get a strict order by removing IdA. These
next two results make this precise.

Proposition B.��. If R is a strict order on A, then R+ = R [ IdA is
a partial order. Moreover, if R is total, then R+ is a linear order.

Proof. SupposeR is a strict order, i.e., R ✓ A2 andR is irreflexive,
asymmetric, and transitive. Let R+ = R [ IdA. We have to show
that R+ is reflexive, antisymmetric, and transitive.

R+ is clearly reflexive, since hx ,xi 2 IdA ✓ R+ for all x 2 A.
To show R+ is antisymmetric, suppose for reductio that R+xy

and R+yx but x < y . Since hx ,yi 2 R [ IdX , but hx ,yi 8 IdX , we
must have hx ,yi 2 R, i.e., Rxy . Similarly, Ryx . But this contra-
dicts the assumption that R is asymmetric.

To establish transitivity, suppose that R+xy and R+yz . If both
hx ,yi 2 R and hy ,z i 2 R, then hx ,z i 2 R since R is transitive.
Otherwise, either hx ,yi 2 IdX , i.e., x = y , or hy ,z i 2 IdX , i.e.,
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y = z . In the first case, we have that R+yz by assumption, x = y ,
hence R+xz . Similarly in the second case. In either case, R+xz ,
thus, R+ is also transitive.

Concerning the “moreover” clause, supposeR is a total order,
i.e., that R is connected. So for all x < y , either Rxy or Ryx , i.e.,
either hx ,yi 2 R or hy ,xi 2 R. Since R ✓ R+, this remains true of
R+, so R+ is connected as well. ⇤

Proposition B.��. If R is a partial order on X , then R� = R \ IdX
is a strict order. Moreover, if R is linear, then R� is total.

Proof. This is left as an exercise. ⇤

Example B.��.  is the linear order corresponding to the total
order <. ✓ is the partial order corresponding to the strict order (.

The following simple result which establishes that total orders
satisfy an extensionality-like property:

Proposition B.��. If < totally orders A, then:

(8a,b 2 A) ((8x 2 A) (x < a$ x < b) ! a = b)

Proof. Suppose (8x 2 A) (x < a $ x < b). If a < b , then a < a,
contradicting the fact that < is irreflexive; so a ⌅ b . Exactly
similarly, b ⌅ a. So a = b , as < is connected. ⇤

B.� Graphs

A graph is a diagram in which points—called “nodes” or “ver-
tices” (plural of “vertex”)—are connected by edges. Graphs are
a ubiquitous tool in discrete mathematics and in computer sci-
ence. They are incredibly useful for representing, and visualizing,
relationships and structures, from concrete things like networks
of various kinds to abstract structures such as the possible out-
comes of decisions. There are many di�erent kinds of graphs in


