
2 

RELATIONS 

1. Relations 

Relation. A relation from a set S to a set T is a subset of the Cartesian product 
of S and T. We can put it in symbols like this: Risa relation from S to Tiff (R 

(S x T)). A relation from a set S to a set T is a binary relation. Binary 
relations are the most common relations (at least in ordinary language). Since S 
x T is a set of ordered pairs, any relation from S to T is a set of ordered pairs. 

For example, let Coins be the set of coins {Penny, Nickel, Dime, Quarter}. Let 
Values be the set of values { 1, ... 100}. The Cartesian product Coins x Values 
is the set of all (coin, value) pairs. One of the subsets of Coins x Values is the 
set {(Penny, 1), (Nickel, 5), (Dime, 10), (Quarter, 25)}. This subset of Coins x 
Values is a binary relation that associates each coin with its value. It's the is-
the-value-of relation. Hence 

is-the-value-of~ Coins x Values. 

Domain. If R is a relation from S to T, then the domain of R is S. Note that the 
term domain is sometimes used to mean the set of all x in S such that there is 
some (x, y) in R. We won't use it in this sense. 

Codomain. If R is a relation from S to T, then the codomain of R is T. The 
range of R is the set of ally in T such that there is some (x, y) in R. The range 
and codomain are not always the same. Consider the relation is-the-husband-of. 
The relation associates men with women. The codomain of the relation is the 
set of women. The range is the set of married women. Since not every woman 
is married, the range is not the codomain. 

Of course, the domain and codomain of a relation may be the same. A relation 
on a set Sis a subset of S x S. For example, if Human is the set of all humans, 
then all kinship relations among humans are subsets of the set Human x Human. 
As another example, the relation is-a-teacher-of is the set of all (teacher x, 
student y) pairs such that xis a teacher of y. Of course, we are assuming that x 
and y are both humans. 

There are many notations for relations. If (x, y) is in a relation R, we can write 
xRy or R(x, y) or x~ y. All these notations are equivalent. 
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2. Some Features of Relations 

Arity. We are not limited to binary relations. We can also define ternary 
relations. A ternary relation is a subset of the Cartesian product S x T x U. A 
quaternary relation is a subset of the Cartesian product S x T x U x W. And so 
it goes. Generally, an n-ary relation is a subset of S1 x S2 x ... x Sn. An n-ary 
relation is also referred to as an n-place relation. The arity of a relation is the 
number of its places. So the arity of an n-ary relation is n. Note that the arity of 
a relation is sometimes referred to as its degree. 

Although we are not limited to binary relations, most of the relations we use in 
philosophical work are binary. Relations of higher arity are scarce. So, unless 
we say otherwise, the term relation just means binary relation. 

Inverse. A relation has an inverse (sometimes called a converse). The inverse 
of R is obtained by turning R around. For instance, the inverse of the relation is-
older-than is the relation is-younger-than. The inverse of is-taller-than is is-
shorter-than. The inverse of a relation R is the set of all (y, x) such that (x, y) is 
in R. We indicate the inverse of R by the symbol R- 1

• We define the inverse of 
a relation R in symbols as follows: 

R 1 = { (y,x) I (x,y) ER}. 

Reflexivity. A relation R on a set S is reflexive iff for every x in S, (x, x) is in R. 
For example, the relation is-the-same-person-as is reflexive. Clark Kent is the 
same person as Clark Kent. All identity relations are reflexive. 

Symmetry. A relation R on S is symmetric iff for every x and y in S, (x, y) is in 
R iff (y, x) is in R. For example, the relation is-married-to is symmetric. For 
any x and y, if xis married toy, then y is married to x; and if y is married to x, 
then x is married to y. A symmetric relation is its own inverse. If R is 
symmetric, then R = R 1

. 

Anti-Symmetry. A relation Ron Sis anti-symmetric iff for every x and yin S, 
if (x, y) is in Rand (y, x) is in R, then xis identical toy. The relation is-a-part-of 
is anti-symmetric. If Alpha is a part of Beta and Beta is a part of Alpha, then 
Alpha is identical with Beta. Note that anti-symmetry and symmetry are not 
opposites. There are relations that are neither symmetric nor anti-symmetric. 
Consider the relation is-at-least-as-old-as. Since there are many distinct people 
with the same age, there are cases in which x and y are distinct; x is at least as 
old as y; and y is at least as old as x. There are cases in which (x, y) and (y, x) 
are in the relation but x is not identical to y. Thus the relation is not anti-
symmetric. But for any x and y, the fact that xis at least as old as y does not 
imply that y is at least as old as x. Hence the relation is not symmetric. 

Transitivity. A relation Ron Sis transitive iff for every x, y, and z in S, if (x, y) 
is in R and (y, z) is in R, then (x, z) is in R. The relation is-taller-than is 
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trans1t1ve. If Abe is taller than Ben, and Ben is taller than Carl, then Abe is 
taller than Carl. 

3. Equivalence Relations and Classes 

Partitions. A set can be divided like a pie. It can be divided into subsets that 
do not share any members in common. For example, the set {Socrates, Plato, 
Kant, Hegel} can be divided into { {Socrates, Plato}, {Kant, Hegel}}. A 
division of a set into some subsets that don't share any members in common is a 
partition of that set. Note that { {Socrates, Plato, Kant}, {Kant, Hegel}} is not a 
partition. The two subsets overlap - Kant is in both. More precisely, a partition 
of a set S is a division of S into a set of non-empty distinct subsets such that 
every member of S is a member of exactly one subset. If P is a partition of S, 
then the union of P is S. Thus U{{Socrates, Plato}, {Kant, Hegel}} = 
{Socrates, Plato, Kant, Hegel}. 

Equivalence Relations. An equivalence relation is a relation that is reflexive, 
symmetric, and transitive. Philosophers have long been very interested in 
equivalence relations. Two particularly interesting equivalence relations are 
identity and indiscernibility. 

If F denotes an attribute of a thing, such as its color, shape, or weight, then any 
relation of the form is-the-same-F-as is an equivalence relation. Let's consider 
the relation is-the-same-color-as. Obviously, a thing is the same color as itself. 
So is-the-same-color-as is reflexive. For any x and y, if xis the same color as y, 
then y is the same color as x. So is-the-same-color-as is symmetric. For any x, 
y, and z, if x is the same color as y, and y is the same color as z, then x is the 
same color as z. So is-the-same-color-as is transitive. 

Equivalence Classes. An equivalence relation partitions a set of things into 
equivalence classes. For example, the relation is-the-same-color-as can be used 
to divide a set of colored things C into sets whose members are all the same 
color. Suppose the set of colored things C is 

The objects R1 and R2 are entirely red. Each Y; is entirely yellow. Each G; is 
entirely green. Each B; is entirely blue. The set of all red things in C is {R1, 

R2}. The things in {R1, R2} are all color equivalent. Hence {R1, R2} is one of 
the color equivalence classes in C. But red is not the only color. Since there are 
four colors of objects in C, the equivalence relation is-the-same-color-as 
partitions C into four equivalence classes - one for each color. The partition 
looks like this: 
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As a rule, an equivalence class is a set of things that are all equivalent in some 
way. They are all the same according to some equivalence relation. Given an 
equivalence relation R, we say the equivalence class of x under R is 

[xJR = { y I y bears equivalence relation R to x } . 

If the relation R is clear from the context, we can just write [xJ. For example, 
for each thing x in C, let the color class of x be 

[xJ = { y I y EC & y is the same color as x }. 

We have four colors and thus four color classes. For instance, 

the red things= [RiJ = [R2J = {R1, R2}. 

We can do the same for the yellow things, the green things, and the blue things. 
All the things in the color class of x obviously have the same color. So 

the partition of C by is-the-same-color-as= { [xJ Ix EC}. 

Since no one thing is entirely two colors, no object can be in more than one 
equivalence class. The equivalence classes are all mutually disjoint. As a rule, 
for any two equivalence classes A and B, A n B = {}. Since every thing has 
some color, each thing in C is in one of the equivalence classes. So the union of 
all the equivalence classes is C. In symbols, U{ [xJ I x E C} = C. Generally 
speaking, the union of all the equivalence classes in any partition of any set A is 
just A itself. 

Equivalence classes are very useful for abstraction. For instance, Frege used 
equivalence classes of lines to define the not>')n of an abstract direction (Frege, 
1884: 136-39). The idea is this: in ordinary Euclidean geometry, the direction of 
line A is the same as the direction of line B iff A is parallel to B. The relation 
is-parallel-to is an equivalence relation. An equivalence class of a line under the 
is-parallel-to relation is 

[xJ = { y I y is a line and y is parallel to x }. 

Frege's insight was that we can identify the direction of x with [x]. If A is 
parallel to B, then [ A J = [BJ and the direction of A is the same as the direction of 
B. Conversely, if the direction of A is the same as the direction of B, then [AJ = 
[BJ; hence A is in [BJ and Bis in [AJ; so A is parallel to B. It follows that the 
direction of A is the direction of B if, and only if, A is parallel to B. 
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4. Closures of Relations 

We've mentioned three important properties of relations: reflexivity, symmetry, 
and transitivity. We often want to transform a given relation into a relation that 
has one or more of these properties. To transform a relation R into a relation 
with a given property P, we perform the P closure of R. For example, to 
transform a relation R into one that is reflexive, we perform the reflexive closure 
of R. Roughly speaking, a certain way of closing a relation is a certain way of 
expanding or extending the relation. 

Since equivalence relations are useful, we often want to transform a given 
relation into an equivalence relation. Equivalence relations are reflexive, 
symmetric, and transitive. To change a relation into an equivalence relation, we 
have to make it reflexive, symmetric, and transitive. We have to take its 
reflexive, symmetric, and transitive closures. We'll define these closures and 
then give a large example involving personal identity. 

Reflexive Closure. We sometimes want to transform a non-reflexive relation 
into a reflexive relation. We might want to transform the relation is-taller-than 
into the relation is-taller-than-or-as-tall-as. Since a reflexive relation R on a set 
X contains all pairs of the form (x, x) for any x in X, we can make a relation R 
reflexive by adding those pairs. When we make R reflexive, we get a new 
relation called the reflexive closure of R. More precisely, 

the reflexive closure of R =RU { (x, x) Ix EX}. 

For example, suppose we have the set of people {Carl, Bob, Allan}, and that 
Carl is taller than Bob and Bob is taller than Allan. We thus have the non-
reflexive relation 

is-taller-than= { (Carl, Bob), (Bob, Allan) }. 

We can change this into the new reflexive relation is-taller-than-or-as-tall-as by 
adding pairs of the form (x, x) for any x in our set of people. (After all, each 
person is as tall as himself.) We thereby get the reflexive closure 

is-taller-than-or-as-tall-as= { (Carl, Bob), (Bob, Allan), 
(Carl, Carl), (Bob, Bob), (Allan, Allan)}. 

Symmetric Closure. We sometimes want to transform a non-symmetric 
relation into a symmetric relation. We can change the relation is-the-husband-of 
into is-married-to by making it symmetric. We make a relation R symmetric by 
adding (x, y) to R iff (y, x) is already in R. Of course, when we make R 
symmetric, we get a new relation - the symmetric closure of R. It is defined 
symbolically like this: 

the symmetric closure of R = R U { (y, x) I (x, y) ER }. 
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Since { (y, x) I (x, y) E R } is the inverse of R, which we denoted by R" 1, it 
follows that 

the symmetric closure of R = R U R· 1
• 

For example, suppose we have the set of people {Allan, Betty, Carl, Diane}. 
Within this set, Allan is the husband of Betty, and Carl is the husband of Diane. 
We thus have the non-symmetric relation 

is-the-husband-of= { (Allan, Betty), (Carl, Diane)}. 

We make this into the new symmetric relation is-married-to by taking the pairs 
in is-the-husband-of and adding pairs of the form (wife y, husband x) for each 
pair of the form (husband x, wife y) in is-the-husband-of. We thus get the 
symmetric closure 

is-married-to= { (Allan, Betty), (Carl, Diane), 
(Betty, Allan), (Diane, Carl)}. 

Transitive Closure. We sometimes want to make an intransitive relation into a 
transitive relation. We do this by taking the transitive closure of the relation. 
The transitive closure is more complex than either the reflexive or symmetric 
closures. It involves many steps. We'll use the relation is-an-ancestor-of to 
illustrate the construction of transitive closures. 

Since being an ancestor starts with being a parent, we start with parenthood. 
Indeed, the ancestor relation is the transitive closure of the parenthood relation. 
For the sake of convenience, we'll let P be the parenthood relation: 

P = { (x, y) Ix is a parent of y } . 

Ancestors include grand parents as well as parents. The grand parent relation is 
a repetition or iteration of the parent relation: a parent of a parent of y is a grand 
parent of y. More precisely, 

x is a grand parent of y iff 
(there is some z)((x is a parent of z) & (z is a parent of y)). 

We can put the repetition or iteration of a relation in symbols by using the 
notion of the composition of a relation with itself. It's defined for any relation R 
like this: 

R O R = { (x, y) I (there is some z)((x, z) ER & (z, y) ER}. 

The grand parent relation is obviously the composition of the parent relation 
with itself. In symbols, is-a-grand-parent-of = P O P. We can extend this 
reasoning to great grand parents like this: 
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x is a great grand parent of y iff 
(there is some z)((x is a parent of z) & (z is a grand parent of y)). 

The definition of a great grand parent is the composition of the parent relation 
with itself two times: is-a-great-grand-parent= P O P O P. 

When we repeatedly compose a relation with itself, we get the powers of the 
relation: 

R 1 =R; 

R2 =R 0 R=R10 R; 

R3 =R 0 RoR=R2 0R; 

In the case of ancestor relations we have 

is-a-parent-of = p1 

is-a-grand-parent-of = p 2 

is-a-great-grand-parent-of = p3 

is-a-great-great-grand-parent-of = P4
• 

And so it goes. We can generalize like this: 

is-an-ancestor-n-generations-before = P". 

We've got your ancestors defined by generation. But how do we define your 
ancestors? We define them by taking the union of all the generations. Your 
ancestors are your parents unioned with your grand parents unioned with your 
great grand parents and so on. Formally 

is-an-ancestor-of= P 1 U P2 U P3 
••• U P" ... and so on endlessly. 

We said the ancestor relation is the transitive closure of the parenthood relation. 
And we can generalize. Given a relation R, we denote its transitive closure by 
R *. And we define the transitive closure like this: 

R* = R 1 U R2 U R3 
••• UR" ... and so on endlessly. 

You might ohjccl Iha! !he notion of endless unions is vague. And you'd be 
right. We can makl· ii pn~cisc using numbers. Specifically, we use the natural 
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numbers. These are the familiar counting numbers or whole numbers, starting 
with 0. And when we say number, without any further qualification, we mean 
natural number. Thus 

the transitive closure ofR = R* = U{ R" In is any number}. 

An equivalence relation is reflexive, symmetric, and transitive. So we can 
transform a relation R into an equivalence relation by taking its reflexive, 
symmetric, and transitive closures. Since we have to take three closures, there 
are several ways in which we can transform R into an equivalence relation. The 
order in which we take the symmetric and transitive closures makes a difference. 

5. Recursive Definitions and Ancestrals 

The transitive closure of a relation is also known as the ancestral of the relation. 
For any relation R, its ancestral is R *. We can define the ancestral of a relation 
by using a method known as recursive definition. A recursive definition 
involves a friendly circularity. The relation is defined in terms of itself in a 
logically valid way. Here's how it works with human ancestors: 

x is an ancestor of y iff 
either x is a parent of y 
or there is some z such that xis a parent of z and z is an ancestor of y. 

Observe that is-an-ancestor-of is defined in terms of itself. This sort of loop 
allows it to be composed with itself endlessly. 

Consider the case of grand parents. If xis a grand parent of y, then there is some 
z such that 

x is a parent of z and z is a parent of y. 

The fact that z is a parent of y fits the first clause (the "either" part) of the 
ancestor definition. In other words, every parent is an ancestor. Consequently, 
we can replace the fact that z is a parent of y with the fact that z is an ancestor of 
y to obtain 

x is a parent of some z and z is an ancestor of y. 

But this fits the second clause (the "or" part) of the ancestor definition. Hence 

x is an ancestor of y. 

Consider the case of great grand parents. We have 

xis a parent of z1 and z1 is a parent of z2 and z2 is a parent of y; 
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xis a parent of z 1 and z1 is a parent of z2 and z2 is an ancestor of y; 

xis a parent of z1 and z1 is an ancestor of y; 

x is an ancestor of y. 

The circularity in a recursive definition allows you to nest this sort of reasoning 
endlessly. We can do it for great great grand parents, and so on. Here's the 
general way to give the recursive definition of the ancestral of a relation: 

X R* y iff 
either x Ry 
or there is some z such that x R z and z R * y. 

Ancestrals aren't the only kinds of recursive definitions. Recursive definition is 
a very useful and very general tool. We'll see many uses of recursion later (see 
Chapter 8). But we're not going to discuss recursion in general at this time. 

6. Personal Persistence 

6.1 The Diachronic Sameness Relation 

One of the most interesting examples of changing an original relation into an 
equivalence relation can be found in the branch of philosophy concerned with 
personal identity. Since persons change considerably from youth to old age, we 
might wonder whether or not an older person is identical to a younger person. 

A person might say that they are not the same as the person they used to be. For 
example, suppose Sue says, "I'm not the person I was IO years ago". To make 
this statement precise, we have to make the times specific. If Sue says this on 
15 May 2007, then she means Sue on 15 May 2007 is not the same person as 
Sue on 15 May 1997. Or a person might say that they are still the same person. 
Consider Anne. She might say, "Although I've changed a lot, I'm still the same 
person as I was when I was a little girl". She means that Anne at the present 
time is the same person as Anne at some past time. We could ask her to be more 
precise about the exact past time - what exactly does "when I was a little girl" 
mean? But that isn't relevant. All these statements have this form: 

x at some later time t1 is (or is not) the same person as y at some earlier time t2. 

The same form is evident in the following examples: 

Sue on 15 May 2007 is not the same person as Sue on 15 May 1997; 

Anne today is till' same person as Anne many years ago. 
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identity. For these philosophers (sometimes called perdurantists or 4-
dimensionalists), our analysis of the is-the-same-person-as relation in this 
section is fine. It's just not an equivalence relation; hence, it isn't identity. 
Loux (2002: ch. 6) gives a nice overview of the debate between the endurantists 
and perdurantists. We won't go into it here. Our purpose has only been to show 
how the debate involves formal issues. 

7. Closµre under an Operation 

Closure under an Operation. We've discussed several operations on sets: the 
union of two sets; the intersection of two sets; the difference of two sets. All 
these operations are binary operations since they take two sets as inputs (and 
produce a third as output). For example, the union operator takes two sets as 
inputs and produces a third as output. The union of x and y is a third set z. A .set 
S is closed under a binary operation @ iff for all x and y in S, x @ y is also in S. 

Any set that is closed under a set-theoretic operation has to be a set of sets. 
Consider the set of sets S = { {A, B}, {A}, {B} }. This set is closed under the 
union operator. Specifically, if we take the union of {A, B} with either {A}, 
{B}, or {A, B}, we get {A, B}, which is in S. If we take the union of {A} with 
{B}, we get {A, B}, which is in S. So this set is closed under union. But it is 
not closed under intersection. The intersection of {A} with {B} is the empty set 
{}. And the empty set is not a member of S. 

Given any set X, the power set of X is closed under union, intersection, and 
difference. For example, let X be {A, B}. Then pow Xis {{},{A}, {B}, {A, 
B}}. You should convince yourself that pow X is closed under union, 
intersection, and difference. How do you do this? Make a table whose rows and 
columns are labeled with the members of pmy X. Your table will have 4 rows 
and 4 columns. It will thus have 16 cells. Fill in each cell with the union of the 
sets in that row and column. Is the resulting set in pow X? Carry this out for 
intersection and difference as well. 

8. Closure under Physical Relations 

An operation is a relation, so we can extend the notion of closure under an 
operation to closure under a relation. For example, some philosophers say that a 
universe is a maximal spatio-temporal-causal system of events. This means that 
the set of events in the universe is closed under all spatial, temporal, and causal 
relations. 

Spatio-Temporal Closure. It is generally agreed that a universe is closed under 
spatial and temporal relations. For example, consider the temporal relation x is 
later than y. A set of events in a universe U is closed under this temporal 
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9. Order Relations 

Order. A relation R on a set X is an order relation iff R is reflexive, anti-
symmetric, and transitive. (Note that an order relation is sometimes called a 
partial order.) Since R is reflexive, for all x in X, (x, x) is in R. Since R is anti-
symmetric, for all x and y in X, if both (x, y) and (y, x) are in R, then x is 
identical with y. Since R is transitive, for all x, y, and z in X, if (x, y) is in Rand 
(y, z) is in R, then (x, z) is in R. 

An obvious example of an order relation on a set is the relation is-greater-than-
or-equal-to on the set of numbers. This relation is symbolized as~-

Quasi-Order. A relation R on X is a quasi-order iff R is reflexive and 
transitive. (Note that a quasi-order is sometimes called a pre-order.) Suppose 
we just measure age in days - any two people born on the same day of the same 
year (they have the same birth date) are equally old. Say xis at least as old as y 
iff xis the same age as y or xis older than y. The relation is-at-least-as-old-as is 
a quasi-order on the set of persons. It is reflexive. Clearly, any person is at least 
as old as himself or herself. It is transitive. If xis at least as old as y, and y is at 
least as old as z, then xis at least as old as z. But it is not anti-symmetric. If xis 
at least as old as y and y is at least as old as x, it does not follow that x is 
identical with y. It might be the case that x and y are distinct people with the 
same birth date. It's worth mentioning that not being anti-symmetric does not 
imply being symmetric. The relation is-at-least-as-old-as is neither anti-
symmetric nor symmetric. For if xis younger than y, then y is at least as old as x 
but x is not at least as old as y. 

The difference between order relations and quasi-order relations can be subtle. 
Consider the relation is-at-least-as-tall-as. Suppose this is a relation on the set of 
persons, and that there are some distinct persons who are equally tall. The 
relation is-at-least-as-tall-as is reflexive. Every person is at least as tall as 
himself or herself. And it is transitive. However, since there are some distinct 
persons who are equally tall, it is not anti-symmetric. So it is not an order 
relation. It is merely a quasi-order. 

But watch what happens if we restrict is-at-least-as-tall-as to a subset of people 
who all have distinct heights. In this subset, there are no two people who are 
equally tall. In this case, is-at-least-as-tall-as remains both reflexive and 
transitive. Now, since there are no two distinct people x and y who are equally 
tall, it is always true that if xis at least as tall as y, then y is not at least as tall as 
x. For if xis at least as tall as y, and there are no equally tall people in the set, 
then xis taller than y. Consequently, it is always false that ((xis at least as tall 
as y) & (y is at least as tall as x)). Recall that if the antecedent of a conditional is 
false, then the conditional is true by default. So the conditional statement (if ((x 
is at least as tall as y) & (y is at least as tall as x)) then x = y) is true by default. 
So is-at-least-as-tall-as is anti-symmetric on any set of people who all have 



Relations 45 

distinct heights. Therefore, is-at-least-as-tall-as is an order relation on any set of 
people who all have distinct heights. 

10. Degrees of Perfection 

A long tradition in Western thought treats reality as a great chain of being 
(Lovejoy, 1936). The chain is a series of levels of perfection. As you go higher 
in the levels, the things on those levels are increasingly perfect. Some 
philosophers used this reasoning to argue for a maximally perfect being at the 
top of the chain. The argument from degrees ot'perfection is also known as the 
Henological Argument. An early version of the Henological Argument WiJ.S 

presented by Augustine in the 4th century (1993: 40-64). Anselm presented his 
version of the Henological Argument in Chapter 4 of the Monologion. Aquinas 
presented it as the Fourth Way in his Five Ways (Aquinas, Summa Theologica, 
Part 1, Q. 2, Art. 3). Since Anselm's version is the shortest and sweetest, here it 
is: 

if one considers the natures of things, one cannot help realizing that 
they are not all of equal value, but differ by degrees. For the nature of 
a horse is better than that of a tree, and that of a human more excellent 
than that of a horse .... It is undeniable that some natures can be better 
than others. None the less reason argues that there is some nature that 
so overtops the others that it is inferior to none. For if there is an 
infinite distinction of degrees, so that there is no degree which does not 
have a superior degree above it, then reason is led to conclude that the 
number of natures is endless. But this is senseless ... there is some 
nature which is superior to others in such a way that it is inferior to 
none .... Now there is either only one of this kind of nature, or there is 
more than one and they are equal ... It is therefore quite impossible 
that there exist several natures than which nothing is more excellent . 
. . . There is one and only one nature which is superior to others and 
inferior to none. But such a thing is the greatest and best of all existing 
things .... There is some nature (or substance or essence) which is 
good, great, and is what it is, through itself. And whatsoever truly is 
good, great, and is a thing, exists through it. And it is the topmost 
good, the topmost great thing, the topmost being and reality, i.e., of all 
the things that exist, it is the supreme. (Anselm, 1076: 14-16) 

We are not at all interested in whether Anselm's Henological Argument is 
sound. We are interested in formalizing it in order to illustrate the use of set 
theory in philosophy. For Anselm's argument to work, we have to be able to 
compare the perfections of things. We assume that things are the individuals in 
our universe - that is, they are the non-sets in our universe. For Anselm, 
humans are more perfect than horses; horses are more perfect than trees. But 
while Anselm gives these examples, he isn't very clear about exactly what is 
more perfect than whal. We need some general principles. 


