Chapter 2

Relations and Functions

2.1 Ordered pairs and Cartesian products

Recall that there is no order imposed on the members of a set. We can, how-
ever, use ordinary sets to define an ordered pair, written (e, b) for example,
in which a is considered the first member and b is the second member of the
pair. The definition is as follows:

(2_1) ( a,b ) :def{{a}: {a: b}}

The first member of {a,b) is taken to be the element which occurs in
the singleton {a}, and the second member is the one which is a member of
the other set {a, b}, but not of {a}. Now we have the necessary properties
of an ordering since in general (a,b) # (b,a). This is so because we have
{{a},{a,b}} = {{b}, {a,b}} (that is, (a,b) = (b, a)), if and only if we have
a = b. Of course, this definition can be extended to ordered triples and
in general ordered n-tuples for any natural number n. Ordered triples are
defined as

(2-2) (@.bye)=gep({ab)e)

It might have been intuitively simpler to start with ordered sets as an ad-
ditional primitive, but mathematicians like to keep the number of primitive
notions to a minimumn.

If we have two sets A and B, we can form ordered pairs from them by
taking an element of A as the first member of the pair and an element of B
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as the second member, The Cartesian product of A and B, written A X B,
is the set consisting of all such pairs. The predicate notation defines it as

(2-3) AXB:def{(m,sz € A and y € B}

Note that according to the definition if either 4 or B is {j, then Ax B = {.
Here are some examples of Cartesian products:

(2-4) Let K = {a,b,c} and L = {1,2}, then

KxL = {{al)(a2)(51)(52)
LxK = {(1,a),(2,a),{1,b),{2,b),(1,¢),{2,¢)
LxL = {{1,1)(1,2)(2,1) 2,2)

It is important to remember that the members of a Cartesian product
are not ordered with respect to each other. Although each member is an
ordered pair, the Cartesian product is itself an unordered set of them.

Given a set M of ordered pairs it is sometimes of interest to determine
the smallest Cartesian product of which M is a subset. The smallest A and
B such that M C A x B can be found by taking A = {a | (a,b) € M for
some b} and B = {b| (a,b) € M for some a}. These two sets are called the
projections of M onto the first and the second coordinates, respectively. For
example, if M = {(1,1),(1,2),(3,2)}, the set {1,3} is the projection onto
the first coordinate, and {1, 2} the projection onto the second coordinate.
Thus {1,3} x{1,2} is the smallest Cartesian product of which M is a subset,

2.2 Relations

We have a natural understanding of relations as the sort of things that hold
or do not hold between objects. The relation ‘mother of’ holds between
any mother and her children but not between the children themselves, for
instance. Transitive verbs often denote relations; e.g., the verb ‘kiss’ can
be regarded as denoting an abstract relation between pairs of objects such
that the first kisses the second. The subset relation was defined above as
a relation between sets, Objects in a set may be related to objects in the
same or another set. We write Rab or equivalently aRb if the relation R
holds between objects a and b. We also write £ C A x B for a relation
between objects from two sets A and B, which we call a relation from A fo
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B. A relation holding of objects from a single set 4 is called a relation in
A. The projection of R onto the first coordinate is called the domain of R
and the projection of R onto the second coordinate is called the range of R.
A relation R from A to B thus can be viewed as a subset of the Cartesian
product A x B. (There are unfortunately no generally accepted terms for
the sets A and B of which the domain and the range are subsets ) It is
important to realize that this is a set-theorefic reduction of the relation R to
a set of ordered pairs, ie {{a,b)| aRb} Forexample, the relation ‘mother
of’ defined on the set A of all human beings would be a set of ordered pairs
in H x H such that in each pair the first member is mother of the second
member. We may visually represent a relation R between two sets A and B
by arrows in a diagram displaying the members of both sets.

Figure 2-1: Relation R: A — B.

In Figure 2-1, A = {a,b} and B = {¢,d,e} and the arrows represent a
set-theoretic relation R = {(a,d),(a,e),({b,c)}. Note that a relation may
relate one object in its domain to more than one object in its range. The
complement of a relation B C A x B, written R’, is set-theoretically defined
as

(2-5) R’ :def(A x B)—- R

Thus R’ contains all ordered pairs of the Cartesian product which are not
members of the relation R. Note that (R')' = R. The inverse of a relation
R C A x B, written R~!, has as its members all the ordered pairs in R, with
their first and second elements reversed. For example, let A = {1,2,3} and
let R C AxAbe {(3,2),(3,1),(2,1)}, whichis the ‘greater than’relation in
A. The complement relation R'is {{1,1),(1,2),(1,3),(2,2),(2,3),(3,3)},
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the ‘less than or equal to’ relation in A, The inverse of R, R™1,1is {(2,3), (1,
3),(1,2)}, the ‘less than’ relation in A. Note that (R~!)~! = R, and that
if RCAx B,then RF!C B x A,but R"C A x B.

We have focused in this discussion on binary relations, ie., sets of or-
dered pairs, but analogous remarks could be made about relations which are
composed of ordered triples, quadruples, etc , ie., ternary, guaternary, or
just n-place relations.

2.3 Functions

A function is generally represented in set-theoretic terms as a special kind
of relation. A relation R from A to B is a function if and only if it meets
both of the following conditions:

1. Each element in the domain is paired with just one element in the
range.

2. The domain of R is equal to A.

This amounts to saying that a subset of a Cartesian product A x B can
be called a function just in case every member of A occurs exactly once as
a first coordinate in the ordered pairs of the set.

As an example, consider the sets A = {a,b,¢} and B = {1,2,3,4}. The
following relations from A to B are functions:

(2-6) P = {{a,1),(b,2),(c,3)}
Q (a,3),(b,4),{c,1)}
R = {{(a,3),(b,2),(c,2)}

The following relations from A to B are not functions:

il
—~

(2-71) § = {(a,1),(5,2)}
T = {(d,2>,(, >,((L,3),( >}
V = {(a,2>;( >:(b74)}

S fails to meet condition 2 because the set of first members, namely
{a,b}, is not equal to A. T does not satisfy condition 1, since a is paired
with both 2 and 3. In relation V both conditions are violated.
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Much of the terminology used in talking about functions is the same as
that for relations. We say that a function that is a subset of A x B is a
function from A to B, while one in A X A is said to be a function in A. The
notation ‘F: A — B’ is used for ‘F is a function from A to B’ Elements in
the domain of a function are sometimes called arguments and their corre-
spondents in the range, values. Of function P in (2-6), for example, one may
say that it takes on the value 3 at argument ¢ The usual way to denote
this fact is P(c) = 3, with the name of the function preceding the argument,
which is enclosed in parentheses, and the corresponding value to the right
of the equal sign.

‘Transformation,’ ‘map,’ ‘mapping,’ and ‘correspondence’ are commonly
used synonyms for ‘function,’ and often ‘F(a) = 2’ is read as ‘F maps a into
2’ Such a statement gives a function the appearance of an active process
that changes arguments into values, This view of functions is reinforced by
the fact that in most of the functions commonly encountered in mathematics
the pairing of arguments and values can be specified by a formula contain-
ing operations such as addition, multiplication, division, etc. For example,
F(z) = 2z + 1 is a function which, when defined on the set of integers,
pairs 1 with 3, 2 with 5, 3 with 7, and so on. This can be thought of as
a rule which says, “To find the value of F' at z, multiply = by 2 and add
17" Later in this book it may prove to be necessary to think of functions as
dynamic processes transforming ob jects as their input into other objects as
their output, but for the present, we adhere to the more static set-theoretic
perspective, Thus, the function F(z) = 2z + 1 will be regarded as a set of
ordered pairs which could be defined in predicate notation as

(2-8) F = {(z,y) |y =2z + 1} (where z and y are integers)

Authors who regard functions as processes sometimes refer to the set of
ordered pairs obtained by applying the process at each element of the domain
as the graph of the function. The connection between this use of “graph”
and a representation consisting of a line drawn in a coordinate system is not
accidental.

We should alsc note that relations which satisfy condition 1 above but
perhaps fail condition 2 are sometimes regarded as functions, but if so, they
are customarily designated as ‘partial functions.’ For example, the function
which maps an ordered pair of real numbers (g, b) into the quotient of a
divided by b (e g., it maps (6,2) into 3 and (5,2) into 2.5) is not defined
when b = 0. But it is single-valued - each pair for which it is defined is
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associated with a unique value — and thus it meets condition 1. Strictly
speaking, by our definition it is not a function, but it could be called a
partial function. A partial function is thus a total function on some subset
of the domain. Henceforth, we will use the term ‘function,’ if required, to
indicate a single-valued mapping whose domain may be less than the set A
containing the domain.

It is sometimes useful to state specifically whether or not the range of a
function from A to B is equal to the set B. Functions from A to B in general
are said to be into B If the range of the function equals B, however, then the
function is onte B, (Thus onto functions are also into, but not necessarily
conversely ) In Figure 2-2 three functions are indicated by the same sort
of diagrams we introduced previously for relations generally It should be
apparent that functions F' and G are onto but H is not. All are of course
into.

Figure 2-2: Ilustration of onto and into
functions,

A function F': A — B is called a one-to-one function just in case no mem-
ber of B is assigned to more than one member of A. Function F in Figure
2-2 is one-to-one, but G is not (since both b and ¢ are mapped into 2), nor
is H (since H(b) = H(c) = 3). The function F defined in (2-8) is one-to-one
since for each odd integer y there is a unique integer z such that y = 2z + 1.
Note that F is not onto the set of integers since no even integer is the value
of F for any argument z. Functions which are not necessarily one-to-one
may be termed many to one. Thus all functions are many-to-one strictly
speaking, and some but not all of them are one-to-one. It is usual to apply
the term "many-to-one”, however, only to those functions which are not in
fact one-to-one,

A function which is both one-to-one and onto (F in Figure 2-2 is an
example) is called a one-to-one correspondence Such functions aze of special
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interest because their inverses are also functions (Note that the definitions
of the inverse and the complement of a relation apply to functions as well )
The inverse of G in Figure 2-2 is not a function since 2 is mapped into both
b and ¢, and in H ! the element 2 has no correspondent.

Problem: Is the inverse of function F in (2-8) also a function? Is F a
one-to-one correspondence?

2.4 Composition

Given two functions F: A — B and G: B — C, we may form a new function
from A to C, called the composite, or ecomposition of F and G, written Go F.
In predicate notation function composition is defined as

(2-9) GOF:def{(w:z) | for some y,(2z,y) € F and (y,2) € G}

Figure 2-3 shows two functions F' and G and their composition.

GoF . K — M

G:L— M

Figure 2-3: Composition of two functions F
and G.



34 CHAPTER 2

Note that F'is into while G is onto and that neither is one-to-one. This
shows that compositions may be formed from functions that do not have
these special properties. It could happen, however, that the range of the
first function is disjoint from the domain of the second, in which case, there
is no y such that (z,y) € F and (y,2) € G, and so the set of ordered pairs
defined by G o F is empty In Figure 2-3, F is the first function and G is
the second in the composition. Order is crucial here, since in general G o F
is not equal to F o G The notation G o F' may seem to read backwards,
but the value of a function F at an argument a is F(a), and the value of G
at the argument F(a) is written G(F(a)). By the definition of composition,
G(F(a)) and (G o F)(a) produce the same value,

A function F: A — A such that F = {{z,z) | z € A} is called the
identity function, written id4. This function maps each element of A to
itself. Composition of a function F' with the appropriate identity function
gives a function that is equal to the function F itself This is illustrated in
Figure 2-4.

1dg F
Foidy=F

Figure 2-4: Composition with an identity
function.

Given a function F: A — B that is a one-to-one correspondence (thus the
inverse is also a function), we have the following general equations:

(2-10) F-loF = idy
FoF-! = 4dg
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These are illustrated in Figure 2-5.

Figure 2-5: Composition of one-to-one
correspondence with its inverse.

The definition of composition need not be restricted to functions but can
be applied to relations in general Given relations R C Ax B and § C BxC
the composite of R and S, written S o R, is the relation {{z,z) | for some
y,{(z,y) € Rand (y,z) € S} An example is shown in Figure 2-6.

A B A C
= =] ]
b h
RCAxB SoRCAxC

Figure 2-6: Composition of two relations R
and 5.
For any relation R C A x B we also have the following:

(2-11) idgoR = R
Roidy = R

(Note that the identity function in A, idy, is of course a relation and could
equally well be called the identity relation in 4 )
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The equations corresponding to (2-10) do not hold for relations (nor for
functions which are not one-to-one correspondences) However, we have for
any one-to-one relation R: A — B:

(2-12) R-1oR C idy
RoR-! C idg

We should note here that our previous remarks about ternary, quater-
nary, etc. relations can also be carried over to functions. A function may
have as its domain a set of ordered n-tuples for any n, but each such n-tuple
will be mapped into a unique value in the range. For example, there is a
function mapping each pair of natural numbers into their sum,

Exercises

1. Let A = {b,c} and B = {2,3}

(a) Specify the following sets by listing their members.
(i) AxB {(iv) (AUB)xB
(ii) Bx4 (v) (AnB)x B
(iii) AxA4 (vi) (A~B)x(B-4)
(b) Classify each statement as true or false.
(i) (AxB)U(BxA)=0
(ii) (A x A) C (A x B)
(i) (e,e) C (A x A)
(iv) {(5,3),(3,6)} C (4 x B) U (B x 4)
(v) PCAxA
(vi) {(b,2),(e,3)} is a relation from A to B
(vii) {(b,b)} is a relation in A
(c) Consider the following relation from A to (A U B):
R = {(b,8),(5,2),(c,2),(¢,3)}
(i) Specify the domain and range of R
(i1) Specify the complementary relation R’ and the inverse R™!

(iil) Is (R')"! (the inverse of the complement) equal to (R™1)’
(the complement of the inverse)?
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2. Let A = {a,b,c}and B = {1,2} How many distinct relations are there
from A to B? How many of these are functions from A to B? How
many of the functions are onto? one-to-one? Do any of the functions
have inverses that are functions? Answer the same questions for all
relations from B to A.

3. Let
Ry={(1,1),(2,1),(3,4),(2,2),(3,3),(4,4),(41)}
Ry = {(3,4),(1,2),(1,4),(2,3),(2,4),(1,3)}
(both relations in A, where 4 = {1,2,3,4}).
(a) Form the composites Ry o Ry and R, o Ry. Are they equal?
(b) Show that RT' o Ry # id4 and that Ry o Ry € idy.
4. For the functions F' and G in Figure 2-3:
(a) show that (Go F)™' = F~1o G,

(b) Show that the corresponding equation holds for relations R and
S in Figure 2-6.






Chapter 3

Properties of Relations

3.1 Reflexivity, symmetry, transitivity, and con-
nectedness

Certain properties of binary relations are so frequently encountered that
it is useful to have names for them. The properties we shall consider are
reflezivity, symmelry, transitivity, and connectedness. All these apply only
to relations in a set, i.e., in A X A for example, not to relations from A to
B, where B# A. ¢

Reflexivity

Given a set A and a relation R in A, R is reflexive if and only if all the
ordered pairs of the form (z,z ) are in R for every z in A,

As an example, take the set A = {1,2,3} and the relation R; = {{1,1),
(2,2),(3,3),(3,1)} in A. R; is reflexive because it contains the ordered
pairs (1,1),(2,2), and (3,3) The relation Ry = {(1,1),(2,2)} is non-
reflexive since it lacks the ordered pair (3,3) and thus fails to meet the
definitional requirement that it contains the ordered pair (z,z) for every
z in A Another way to state the definition of reflexivity is to say that a
relation R in A is reflexive if and only if id4, the identity relation in A, is
a subset of R. The relation ‘has the same birthday as’ in the set of human
beings is reflexive.

A relation which fails to be reflexive is called nonreflexive, but if it con-
tains no ordered pair (z,z ) with identical first and second members, it is
said to be irreflezive. Rz = {{1,2),(3,2)} is an example of an irreflexive
relation in A. Irreflexivity is a stronger condition than nonreflexivity since

39
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every irreflexive relation is nonreflexive but not conversely. The relation ‘is
taller than’ in the set of human beings is irreflexive (therefore also nonre-
flexive), while the relation ‘is a financial supporter of’ is nonreflexive (but
not irreflexive, since some people are financially self-supporting) Note that
a relation R in A is nonreflexive if and only if idy € R; it is irreflexive if and
only if RNidy =0
Symmetry

Given a set A and a binary relation R in A, R is symmetric if and only if
for every ordered pair (z,y) in R, the pair (y,z)isalso in R. It is important
to note that this definition does not require every ordered pair of 4 X A to
be in R Rather for a relation R to be symmetric it must always be the case
that ¢f an ordered pair is in R, then the pair with the members 1eversed is
also in R.

Here are some examples of symmetric relations in {1,2,3}:

(3"'1) {(172):(2:1>r<3:2>:(273>}
1,3),(3,1
(2,2)}
{(2,2)} is a symmetric relation because for every ordered pair init, ie,
(2,2), it is true that the ordered pair with the first and second members
reversed, i.e, (2,2), is in the relation. Another example of a symmetric
relation is ‘is a cousin of’ on the set of human beings. If for some (z,y)
in R, the pair {(y,z) is not in R then R is nonsymmetric. The relation ‘is
a sister of’ on the set of human beings is nonsymmetric (since the second
member may be male. It is, however, a symmetric relation defined on the
set of human females).

The following relations in {1,2,3} are nonsymmetric:

(3-2) {(2,8),(1,2)}
1(3,3),(1,3)}
1(1,2),(2,1),(2,2),(1,1),(2,3)}
If it is never the case that for any (z,y) in R, the pair (y,z) is in
R, then the relation is called asymmetric The relation ‘is older than’ is
asymmetric on the set of human beings. Note that an asymmetric relation
must be irreflexive (because nothing in the asymmetry definition requires z

and y to be distinct). The following are examples of asymmetric relations in
{1,2,3}:
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(3-3) {(2,3),(1,2)}
{(1?3>J(2’3)’(172)}
1(3,2)}

A relation is anti-symmetric if whenever both (z,y) and (y,z ) arein R,
then z = y. This definition says only that if both (z,y) and (y,z) ate in
R, then z and y are identical; it does not require (z,2z) € Rforallz ¢ A In
other words, the relation need not be reflexive in order to be anti-symmetric,

The following relations in {1, 2,3} are anti-symmetric,

(3-4) {(2,3),(1,1)}
{{1,1),(2,2)}
{(1,2),(2,3)}

Transitivity

A relation R is transitive if and only if for all ordered pairs (z,y) and
{(y,2) in R, the pair (z,z) is also in R.

Because there is no necessity for z, y, and z all to be distinct, the fol-
lowing relation meets the definition of transitivity,

(3-5) {(2,2)}

where z =y = z = 2.

The relation given in (3-6) is not transitive,

(3"6) {(2=3>:<3’2):<2?2)}

because {3,2) and (2,3) are members, but (3,3 ) is not.

Here are some more examples of transitive relations:

(3-7) {(1,2),(2,3
{(1,2
(1,2 2),(2,1),(3,1),(1,1),(2,2),(3,3)}

The relation ‘is an ancestor of’ is transitive in the set of human beings.
If a relation fails to meet the definition of transitivity, it is nontransitive. If
for no pairs (z,y) and (y, z) in R, the ordered pair (x,z) is in R, then the
relation is iniransitive. For example, the relation ‘is the mother of’ in the
set of human beings is intransitive,

1,3
1,1
1,3

?
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Relation (3-6) is nontransitive, as are the following two:

(3"8) {(112>’<233 )}
{(1,2),(2,3),(1,3),(3,1)}

The first of these relations is also intransitive, as are the following relations:

(3_9) {(3:1>:(1:2>:<213>}
{(3,2),(1,3)}

Connectedness

A relation R in A is connected (or connez) if and only if for every two
distinct elements z and y in A, (z,y) € Ror {y,z) € R (or both).

Note that the definition of connectedness refers, as does the definition
of reflexivity, to all the members of the set A. Further, the pairs (z,y)
and (y,z ) mentioned in the definition are explicitly specified as containing
nonidentical first and second members. Pairs of the form (z,z) are not
prohibited in a connected relation, but they are irrelevant in determining
connectedness,

The following relations in {1, 2, 3} are connected:

(3_10) {(1:2>=(3:1>3(3?2)}
{(1,1),(2,8),(1,2),(3,1),(2,2)}

The following relations in {1,2, 3}, which fail the definition, are noncon-
nected.

(3-11) {(1,2),(2,3)}
{(1,3),(3,1),(2,2),(3,2)}

It may be useful at this point to give some examples of relations speci-
fied by predicates and to consider their properties of reflexivity, symmetry,
transitivity, and connectedness

(3-12) Ezample: R; is the relation ‘is father of’ in the set H of all human
beings. Ry is irreflexive {(no one is his own father); asymmetric (if
z is y’s father, then it is never true that y is #’s father); intransitive
(if z is y’s father and y is z’s father, then z is z’s grandfather but
not z’s father); and nonconnected (there are distinct individuals z
and y in H such that neither ‘z is the father of ¥’ nor ‘y is the
father of 2’ is true).
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Ezample: R is the relation ‘greater than’ defined in the set Z =
{1,2,3,4,...} of all the positive integers Z contains an infinite
number of members and so does R, but we are able to determine
the relevant properties of R fiom our knowledge of the properties
of numbers in general R is irreflexive (no number is greater than
itself); asymmetric (if € > y, then y ¥ ®; transitive (if ¢ > y
and y > z, then ¢ > z), and connected (for every distinct pair of
integers z and y, either z > yory > z.

Ezample: R, is the relation defined by ‘z is the same age as y,” in
the set H of all living human beings. R, is reflexive (everyone is
the same age as himself or herself); symmetric (if ¢ is the same age
as y, then y is the same age as z); transitive (if  and y are the
same age and so are y and z, then z is the same age as z); and
nonconnected (there are distinct individuals in # who are not of
the same age).

3.2 Diagrams of relations

It may be helpful in assimilating the notions of reflexivity, symmetry and
transitivity to represent them in relational diagrams The members of the
relevant set are represented by labeled points (the particular spatial arrange-
ment of them is irrelevant). If z is related to y, ie (z,y) € R, an arrow
connects the corresponding points. For example,

% Q)

10‘3/2

Figure 3-1: Relational diagram,

Figure 3-1 represents the relation

R={(1,2),(2,1),(2,2),(1,1),(2,3),(3,3)}

It is apparent from the diagram that the relation is reflexive, since every
point bears a loop. The relation is nonsymmetric since 3 is not related to 2
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whereas 2 is related to 3. It cannot be called asymmetric or antisymmetric,
however, since 1 is related to 2 and 2 is related to 1. It is nontransitive since
1 is related to 2 and 2 is related to 3, but there is no direct arrow from 1 to
3. The relation cannot be intransitive because of the presence of pairs such
as {1,1)

If a relation is connected, every pair of distinct points in its diagram will
be directly joined by an arrow., We see that R is no connected since there is
not direct connection between 1 and 3 in Figure 3-1.

3.3 Properties of inverses and complements

Given that a relation R has certain properties of reflexivity, symmetry, tran-
sitivity or connectedness, one can often make general statements about the
question whether these properties are preserved when the inverse R~! or
complement R’ of that relation is formed.

For example, take a reflexive relation R in A. By the definition of reflexive
relations, for every ¢ € A, (x,z) € R. Since R™! has all the ordered pairs
of R, but with the first and second members reversed, then every pair (z,z )
is also in R™! So the inverse of R is reflexive also. The complement R/
contains all ordered pairs in A X A that are not in R. Since R contains
every pair of the form (z,z) for any # € A, R’ contains none of them. The
complement relation is therefore irrefiexive.

As another example, take a symmetric relation K in A. Does its com-
plement have this property? Let’s assume that the complement R’ is not
symmetric, and see what we can derive from that assumption If R’ is not
symmetric, then there is some (,y) € R' such that (y,z) € R', by the def-
inition of a nonsymmetric relation. Since (y,z) &€ R, (y,z ) must be in the
complement of R/, which is R itself. Because R is symmetric, {z,y) must
also be in R. But one and the same ordered pair (z,y) cannot be both in R
and in its complement R', so the assumption that the complement R’ is not
symmetric leads to an absurd conclusion, That means that the assumption
cannot be true and the complement R' must be symmetric after all. If Ris a
symmetric relation in A, then the complement R’ is symmetric and vice versa
(the latter follows from essentially the same reasoning with R’ substituted
for R). This mode of reasoning is an instance of what is called a reductio
ad absurdum proof in logic. It is characterized by making an assumption
which leads to a necessarily false conclusion; you may then conclude that
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the negation of that assumption is true. In Chapter 6 we will introduce rules
of inference which will allow such arguments to be made completely precise.

For sake of easy reference the table in Figure 3-2 presents a summary of
properties of relations and those of their inverses and complements. These
can all be proved on the basis of the definitions of the concepts and the laws
of set theory Since we have not yet introduced a formal notion of proof, we
will not offer proofs here, but it is a good exercise to convince yourself of
the facts by trying out a few examples, reasoning informally along the lines
illustrated above.

R (not 0) R-1 R'

reflexive reflexive irreflexive
irreflexive irreflexive reflexive
symmetric symmetric (R~} = R)  symmetric
asymmetric asymmetric non-symimetric
antisymmetric antisymmetric depends on R
transitive transitive depends on R
intransitive intransitive depends on R
connected connected depends on R

Figure 3-2: Preservation of properties of a
relation in its inverse and its complement,

3.4 Equivalence relations and partitions

An especially important class of relations are the equivalence relations. They
are relations which are reflexive, symmetric and transitive. Equality is the
most familiar example of an equivalence relation. Other examples are ‘has
the same hair color as’, and ‘is the same age as’. The use of equivalence
relations on a domain serves primarily to structure a domain into subsets
whose members are regarded as equivalent with respect to that relation.

For every equivalence relation there is a natural way to divide the set on
which it is defined into mutually exclusive (disjoint) subsets which are called
equivalence classes. We write [z] for the set of all y such that (z,y) € R.
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Thus, when R is an equivalence relation, [2] is the equivalence class which
contains ¢ The relation ‘is the same age as’ divides the set of people into age
groups, 1 e, sets of people of the same age Every pair of distinct equivalence
classes is disjoint, because each person, having only one age, belongs to ex-
actly one equivalence class. This is so even when somebody is 120 years old,
and is the only person of that age, consequently occupying an equivalence
class all by himself. By dividing a set into mutually exclusive and collectively
exhaustive nonempty subsets we effect what is called a partitioning of that
set.

Given a non-empty set A, a partitton of A is a collection of non-empty
subsets of A such that (1) for any two distinct subsets X and ¥, X NY =0
and (2) the union of all the subsets in the collection equals A The notion of
a partition is not defined for an empty set. The subsets that are members
of a partition are called cells of that partition.

For example, let A = {a,b,c,d,e} Then, P = {{a,c},{b, e}, {d}} is
a partition of A because every pair of cells is disjoint: {a,c} 0 {b,e} = 0,
{b,e}n {d} =0, and {a,c} N {d} = 0; and the union of all the cells equals
A U{{ac}, {b,e}, {d}} = A

The following three sets are also partitions of A:

(3-15) P, = {{a,c,d}, {b,e}}
Py = {{a}, {8}, {c}, {d}, {e}}
P3 = {{a,b,c,d,e}}

P is the trivial partition of A into only one set. Note however that the
definition of a partition is satisfied.

The following two sets are not partitions of A:

(3-16) C = {{a,b,c}, {b,d}, {e}}
D= {{a},{b,e},{c}}

C fails the definition because {a,b,c}N {b,d} # 0 and D because | J{{a},
{b,e}, {c}} # 4

There is a close correspondence between partitions and equivalence rela-
tions. Given a partition of set A, the relation R = {{z,y) | # and y are in
the same cell of the partition} is an equivalence relation. Conversely, given a
reflexive, symmetric, and transitive relation R in A, there exists a partition
of A in which ¢ and y are in the same cell if and only if z and y are 1elated by
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R. The equivalence classes specified by R are just the cells of the partition.
An equivalence relation in A is sometimes said to tnduce a partition of A.

As an example, consider the set A = {1,2,3,4,5} and the equivalence
relation

(3-17) R ={(1,1),{1,8),{(3,1),{
(4,4),(5,2),(5,4),(

which the reader can verify to be reflexive, symmetric, and transitive. In
this relation 1 and 3 are related among themselves in all possible ways, as
are 2, 4, and 5, but no members of the first group are related to any member
of the second group. Therefore, R defines the equivalence classes {1,3} and
{2,4,5}, and the corresponding partition induced on A4 is

3
2

S
——
vl\-"
b
S
—

(3-18) Pr = {{1,8},{2,4,5}}

Given a partition such as

(8-19) @ = {{1,2}, {8,5},{4}}

the relation Rg consisting of all ordered pairs (z,y) such that ¢ and y are
in the same cell of the partition is as follows:

(3_“20) RQ = {(1’1)5(172>’<2)1>?(252>1<3’3>’(375)’<5’3)1<5’5)7(434

Ro is seen to be reflexive, symmetric, and transitive, and it is thus an
equivalence relation,

Another example is the equivalence relation ‘is on the same continent
as’ on the set A = {France, Chile, Nigeria, Ecuador, Luxembourg, Zambia,
Ghana, San Marino, Uruguay, Kenya, Hungary}. It partitions A4 into three
equivalence classes: (1) 4, = {France, Luxembourg, San Marino, Hungary},
(2) A2 = {Chile, Ecuador, Uruguay} and (3) As = {Nigeria, Zambia, Ghana,
Kenya}.



