Chapter 19

Turing Machines,
Recursively Enumerable
Languages and Type O
Grammars

19.1 Turing machines

We have seen that a pushdown automaton can carry out computations which
are beyond the capability of a finite automaton, which is perhaps the simplest
sort of machine able to accept an infinite set of strings. At the other end of
the scale of computational power is the Turing machine (after the English
mathematician, A. M. Turing, who devised them), which can carry out any
set of operations which could reasonably be called a computation.

Like the previous classes of automata, a Turing machine can be visualized
as having a control box, which at any point is in one of a finite number of
states, an input tape marked off into squares with one symbol of the input
string being inscribed on each square, and a reading head which scans one
square of the input tape at a time. The Turing machine, however, can write
on its input tape as well as read from it, and it can move its reading head
either to the left or to the right. As before, a computation is assumed to
begin in a distinguished initial state with the reading head over the leftmost
symbol of the input string. We also assume that the tape extends infinitely
to the left and right and that all tape squares not occupied by symbols of
the input string are filled by a special “blank” symbol #.

507

508 CHAPTER 19

The moves of a Turing machine (henceforth, TM) are directed by a finite
set of quadruples of the form (g;, a;, g, X), where ¢; and ¢i are states, a;
is a symbol of the alphabet, and X is either an alphabet symbol or one of
the special symbols L or R. Such a guadruple is interpreted in the following
way: if the TM is in state ¢; scanning aj, then it enters state ¢ (possibly
identical to ¢;) and if X is a symbol of the alphabet, it replaces a; by that
symbol. If X is L or R, then a; is left unchanged and the reading head is
moved one square to the left or right, respectively.

In the formulation we shall adopt, TM’s are assumed to be deterministic;
ie., for each state and each alphabet symbol there is at most one move
allowed. We do not insist that there be a move for every state-symbol pair
(this is similar to the formulation of deterministic pda’s), and so if the TM
reaches a point in its computation at which no instruction is applicable, it
halts.

We note that a TM may in general read and write the blank symbol #
and thus may extend its computation into portions of the tape beyond that
originally occupied by the input string. Since it is not necessarily blocked by
the #’s surrounding the input, one possibility open to a TM, but not to fa’s
or pda’s, is that it might compute forever. This is an important property of
TM’s, as we shall see.

For example:

(19-1) The set of states K is {gq,¢q1}; the alphabet ¥ is {a,b,#}; the
initial state is gg; the set of instructions § is written with an arrow
between left and right halves for clarity:

(90,8) — (41,9)

(90,) (QDG)
(90,#) — (41, #)
(ql,a) (90, R)
(q1,0) — (40, R)

This machine scans an input string from left to right, changing a’s to
b’s and b’s to a’s, until it encounters the first #. It then rewrites the #
as #, changes state to ¢; and halts (since there is no instruction beginning
(q1,#)). Since a # is sure to be found eventually, this TM has the property
of halting on all inputs. Note, however, that if it had also contained the
instruction (g, #) — (¢1,R), then it would compute forever once it had
reached the string of #’s to the right of the input. The same result could
also be achieved by the instruction (g1, #) — (g1, #), except that instead

TURING MACHINES 509

of scanning endlessly to the right, the TM would stay on one tape square
forever reading and writing #.

(19-2) Example of computation:

#la|blal# - |#|b|bla|#
do - 41 -

#lb|bla|#]| #iblala|#
do - 71 -

Hiblaja|# - |#|bla|bl#
do - 1 -

#|bla|b|# - |#|bla|bl#
7 - ;] halt

We have not designated the states of a TM as final or non-final It would
be perfectly feasible to do so and to define acceptance of an input string in
terms of halting in a final state. It will be slightly more convenient, however,
to say that a string is accepted if, when it is given to the machine in the
standard starting configuration, it causes the TM to halt after some finite
number of moves; otherwise, it is rejected (i.e., the TM never halts). In
(19-3) we give a machine which accepts all strings in {a, #}" which contain
at least one @ and which rejects, i.e., computes forever, when given anything
else in {a,b}”. (Note that we are here concerned only with strings in {a,b}"
not {a,b,#} . TM’s are assumed always to be able to read and write the
symbol, but we will ordinarily confine ourselves to strings over alphabets
which do not contain #. A TM which accepts some language in {a, b}” may
give bizarre results when given a string not in this alphabet, but that doesn’t
matter. We are only concerned with its behavior when given inputs from

510 CHAPTER 19

the relevant set)

(19-3) M =(K,%,5,6); K ={90,01}; Z = {a,b,#}; s = qo;

A

This machine scans left to right and stays in state gy so long as it sees b’s.
Once it encounters an a, it changes to state ¢; and continues rightward in
this state until the first # and then halts It if meets the first # in state ¢q,

it scans right forever

19.1.1 Formal definitions

DeFINITION 19.1 A Turing machine M is a quadruple {K,%,s,6), where K
is a finite set of states, ¥ is a finite set (the alphabet) containing #, s € K is
the initial state, and § is a (partial) function from K x ¥ to K x (X U{L, R}).

. |

A situation of a TM will be a quadruple of the form (z, ¢, a,y), where ¢ is
the current state, a is the symbol being scanned, and ¢ and y are the strings
to the left and right, respectively, of the reading head up to the beginnings of
the infinite strings of #’s. This last provision is necessary to insure that a
situation is uniquely specified. The TM in (19-2) is in situation (e, go, a,ba)
at the beginning of the computation and in (bab, g1, #,¢) when it halts.

DEFINITION 192 A situation of a TM M = (K,3%,s,6) is any member
(z,9,a,y) of £ X K x ¥ x £ such that z does not begin with # and y does
not end with #. |

We omit the formal definition of the produces-in-one-step relation, Fpz,
on pairs of situation since it is rather complex when specified in full detail.
Note that one must allow for cases such as the following: the TM is in
situation (abb, g, #,¢), as shown in Fig 19-1, and executes the instruction
(¢,#) — (¢', L). The resulting situation is (ab, ¢, b,), as in Fig. 19-2, where
the # originally being scanned has joined the infinite string of #’s to the
right and has thus dropped out of the formal specification of the situation.

TURING MACHINES 511

In a similar vein, if the instruction had been (¢, #) — (¢', R), the resulting
sitnation would be (abb#, ¢', #,e) with a # taken from the string of #s to
the right and placed under the reading head.

Figure 19-1.

Figure 19-2.

Given the produces-in-one-step relation, we define the produces relation,
F;{,I as its reflexive transitive closure.

DEFINITION 19.3 Givena TM M = (K,X,s,6) and £,, a subset of ¥ which
does not contain #, we say that M accepts a string & = a;as .. an € 27 If
(e,$,a1,0n .. a,n)lfl(y,g,b, y'), where y and y’ are strings in £*, b € %, and
there is no instruction in & beginning (gq,b) (ie, M has halted). (In case
¢ = e, the initial situation is (e, s, #,¢e).) m

DerINITION 194 A TM M accepts a language L € L] iff M accepts all
strings in L and rejects (i.e., fails to halt on) all strings not in L. N

Note that we have defined acceptance so that it holds only of strings and
languages defined over alphabets not containing #. This is primarily a
technical convenience.

512 CHAPTER 19

DEFINITION 195 We say that a language is Turing acceptable [ff there is
some TM which accepts it. N

In virtue of Example (19-3) above, we can say that the language L = {z ¢
{a,b}" | z contains at least one a} is Turing acceptable In fact, all the
regular languages and the deterministic and non-deterministic pda languages
are Turing acceptable (It should not be too difficult to imagine how one
would go about constructing a TM to mimic the behavior of a fa or a pda)
Are there any languages, then, which are not Turing acceptable? There are,
but it is not easy to exhibit one. We will return to this important question
below

We have seen that a given TM might not halt on certain inputs—indeed,
we make use of this property in characterizing rejection of an input string.
But this presents us with a problem Suppose we have set a TM to computing
on some input and it has not yet halted. Can we tell in general whether it is
going to halt eventually or whether it is going to compute forever? This is
the renowned Halting Problem for Turing machines, and we will show in a
later section that there is, in general, no way to tell-—at least if we mean by
“away to tell” some explicit procedure which can be computed mechanically
by, say, a Turing machine. Another way to formulate the Halting Problem
is this: Could we take any TM which accepts a language L and convert it
into a machine which halts on all inputs (over the 1elevant alphabet) and
signals its acceptance or rejection of the input by, say, the state it is in (or
some special symbol printed on the tape, etc)? Let us, in fact, make the
following definition:

DerINITION 19.6 A TM M = (K, %,s,6) with some designated set F C K
of final states, decides a language L C X7, (where £; € ¥ and does not
contain #) iff for all ¢ € £, M halts in a final state if ¢ € L and M halts
in a non-final state if & ¢ L. =

DerINITION 19.7 We say that a language is Turing decidable iff there is
some TM which decides it, in the sense just defined. |

It is not difficult to convert the TM of Example (19-3) above into one which
decides, rather than accepts, the language L = {& € {a,b}" | contains at
least one a}-—simply remove the instruction (go, #) — (go, R) and designate
g1 as the only final state. The question is whether such a conversion can
always be carried out. If so, then every Turing acceptable language is Turing

TURING MACHINES 513

decidable. and, provided that the conversion can be carried out “mechani-
cally”, ie., algorithmically, the Halting Problem is solvable Since this turns
out not to be so, we will have to conclude that there are Turing acceptable
languages which are not Turing decidable. Again, most of the languages
one ordinarily encounters as examples in formal language theory are Turing
decidable, so one must look further afield to find one which is not

Note that the implication in the opposite direction is easy to establish:
every Turing decidable language is Turing acceptable. Given a TM which
decides a language L, it is a simple matter to convert it into a TM which
computes forever just in case the original machine would have halted in a
non-final state (Just add instructions which rewrite symbols as themselves
while staying in the same state),

Turing machines are probably most often viewed not as language accep-
tors but as devices which compute functions. The initial input string is the
argument for the function, and the expression on the tape when the machine
halts (if it halts) is taken to be the value of the function at that argument.
For example, the TM of (19-1) computes the function f : {a, b} — {a,b}"
such that when f(u) = v, v is like u with a’s and b’s interchanged. If the
TM does not halt for a certain input, the function is not defined at that ar-
gument. Thus, TM’s in general compute partial functions, but a TM which
halts for all inputs in some set A computes a total function from A to its
range. A TM which decides a language L C X7, in the sense just defined,
computes the characteristic function of L. A TM which accepts L computes
a different function—one which is defined for all strings in L and undefined
for all other strings in 7.

By coding natural numbers as strings—say, in binary or in a unary en-
coding in which n a’s represent the natural number n—we can let TM’s serve
a computers of functions from natural numbers to natural numbers. We can
then ask whether functions such as f(z) = 22 or f(z) = z! are computable
by Turing machine (they are, in fact, as are most of the functions ordinarily
encountered). We can generalize this approach to functions of £ arguments
by letting the initial string given to the TM be, say, & blocks of a’s of appro-
priate size separated by #’s. The TM which computes the addition function
on natural numbers, for example, would start with ... ##a #Ha™## .. . on
its tape and end with . .. #FHaTmHH#

Functions which are computable by Turing machine are called partial
recursive functions (partial, because the TM may not halt for all arguments
and thus may leave some values of the function undefined). The Turing

514 CHAPTER 19

computable functions which happen to be total functions ought to be called
“total recursive functions,” but aren’t. They’re called simply recursive func-
tions A recursive function, thus, is a function which can be computed by a
Turing machine which halts on all inputs in the domain of the function

A TM may also be regarded as a device for generating, rather than
accepting or deciding, a set of strings. Let a TM be given as input some
encoding of a natural number (say, n a’s representing n) and let it compute
until it halts, if it does. The contents of its tape between the infinite strings
of #’s is some string over the alphabet of the TM (which may contain more
than a’s, of course), and this string is said to be generated by the TM. The
set of all such strings generated, given all the natural numbers as inputs,
is said to be the set recursively enumerated by the TM. A set is said to
be recursively enumerable (abbreviated r.e) if there is some TM which
recursively enumerates it in the way just described

It turns out that a set of strings is r.e. just in case it is Turing acceptable.
That is, if A is recursively enumerated by some TM T, there is a TM T
which accepts A, and conversely. (We will omit the proof of this result.)

Note also that a set which is recursively enumerated constitutes the range
of a partial recursive function from the natural numbers to the set of all
strings over the alphabet of A. In fact it is inessential here that the domain
be the natural numbers—any denumerably infinite set would do. Thus, we
can say that a set is recursively enumerable if it is the range of some partial
recursive function. The following three statements, therefore, are equivalent:

(19-4) (i) A is accepted by some TM
(ii) A is the range of some partial recursive function.
(iii) A is recursively enumerated by some TM.

19.2 Equivalent formulations of Turing machines

There are many ways in which Turing machines can be defined which turn
out to be equivalent in computational power. The input tape can be stip-
ulated to be infinite in one direction only, or the machine can be endowed
with any finite number of tapes which extend infinitely in one or both di-
rections, or the machine may have one multiple-track tape with multiple
reading heads. It may even be regarded as operating on an n-dimensional
grid extending infinitely in all dimensions, so long as n is a finite number.

UNRESTRICTED GRAMMARS AND TURING MACHINES 515

Even making a TM non-deterministic does not change its capabilities
in any essential way Suppose a non-deterministic TM had % distinct moves
allowed from any given situation. Then from the initial situation there could
be at most % possible situations after one step, at most %2 after two steps,

.., at most k™ after n steps of the computation. A deterministic TM could
keep track of all of these (at some expenditure of tape and time) If there is
a halted computation by the non-deterministic machine, it oceurs in some
finite number of steps r. The deterministic machine will therefore discover
this fact after having examined at most &" possible situations—again, a finite
number—and can then halt. A language accepted by some non-deterministic
TM can therefore be accepted by a deterministic TM.

What seems to be essential to the formulation of a Turing machine,
therefore, is that it has a finite number of states, a finite alphabet, a finite
number of instructions, and an unbounded amount of computational space
available to it.

19.3 Unrestricted grammars and Turing machines

An unrestricted (or Type 0) grammar G = (Vr, Vy, S, R) is one in which the
only limitation on the form of the rules is that the left side contain at least
one non-terminal symbol. Thus, letting upper case letters be non-terminals
and lower case letters be terminals as usual, aAbb — ba, aAbB — e, and
A — bCaB would all be allowed rules in such a grammar. Rules such as
ab — ba, b — BA, or e — gA would be excluded Note that because more
than one symbol may be replaced in Type 0 rules, it is in general not possible
to associate a phrase structure tree with a derivation in such a grammar.
Type 0 grammars can generate languages which are not context free
Here, for example, is an unrestricted grammar generating {z € {a,b,¢c}” | z
contains equal numbers of a’s, b’s, and ¢’s } which, as we have seen, is not a

cfl.

(19-5) G = {{a,b,¢c},{S, A, B,C}, S, R), where
S —=SABC AC - CA A—-a
S —e CA— AC B —b
AB — BA BC —-CB C—e
BA - ARB CB — BC

R =

This grammar works by producing strings of the form (ABC)" then per-
muting non-terminals freely by means of the rules AB — BA, etc. Finally,

516 CHAPTER 19

non-terminals are rewritten as the corresponding terminals. Here is a deriva-
tion of cabbeca

(19-6) S = SABC = SABCABC = ABCABC = ACBABC =
CABABC = CABBAC = CABBCA = ... = cabbca

And here is a Type 0 grammar generating the non-context free language

{ez |z € {a,b}"}:

(19-7) G = {{e,b},{S,S', A, B,#},S,R), where
(S #8'# Aa— aA #a— a#
S' - aAS' Ab— bA #b s bt
R=<{ S'"—bBS'" Ba—aB A# — #a ;
S e Bb — bB B# — #b
\ ##“’ e

Here is a derivation of abaaba:

(19-8) S = #S'# = #adAS'# = #aAbBS'# = FHaAbBaAS' =
#aAbBaA# = #HabABaA# = #abAaBA# = #abaABA# =
a#baABA# = a#baAB#a = .. = aba#Faba = abaaba

This grammar works by generating sequences of aA’s and bB’s between #’s
as endmarkers and then letting the non-terminals migrate to the right, where
they can hop over the # and become terminals. The terminals in the left
half similarly hop over the left end marker, and when the two #’s meet in
the middle they are erased

The languages generated by the Type 0 grammars are exactly the lan-
guages accepted by Turing machines, ie., the re. sets. We will not give
detailed proofs of this equivalence here but will simply suggest how the
proofs are constructed.

Given a Type 0 grammar G generating L(G) a TM M accepting L(G)
can be constructed as follows. M is non-deterministic and has two tapes.
Its input is given on the first tape where it is stored intact throughout the
computation. The instructions of M essentially mimic the rules of G The
initial symbol S is placed on the second tape, and M proceeds to rewrite
as G would After the application of each rule, M compares the contents of
the second tape with the input on tape 1. If they match, M halts, and thus
accepts its input. If they do not match, M continues applying rules of G to

CHURCH’s HYPOTHESIS 517

the string on tape 2, and if no rule is applicable, M cycles endlessly in some
fashion. Clearly, if there is a derivation of the input string by G, there will
be some computation by M which discovers this fact and thus M will halt
and accept If there is no such derivation, M computes forever, as required.

The simulation in the reverse direction—making a Type 0 grammar
mimic a Turing machine-—depends essentially on the fact that a situation
of a TM can be regarded simply as a finite string of symbols and that
to get from one situation to the next, some substring of these symbols is
rewritten as some other string. For example, a TM instruction of the form
(¢,a) — (¢',b) would correspond to the grammar rule ga — ¢'b Thus, situ-
ation (aab, g, a, bb) becomes (aab, ¢, b, bb) in one move by the machine, and,
correspondingly, the string aabgabb is rewritten as aabq’bbb by the grammar.
Left-moving and right- moving TM instructions require somewhat more com-
plicated grammar rules to cover all possibilities The details are tedious and
not too instructive. Now, given a TM M which accepts language L(M), we
first convert it to a machine M’ which behaves like M up to the point at
which M would halt M/, however, replaces all non-blank symbols on its
tape by #’s, then writes S, and halts in some designated state ¢; Thus, M’
accepts L(M) also but does so in such a way that it always halts in situation
(e,q1,S,e).

We now construct G so that it simulates the moves of M’ in reverse. The
initial symbol of G is S/, and it first rewrites 5’ as ¢;§ Then, mimicking
the moves of M’ in reverse it can arrive at the string ggz, where ¢g is the
initial state of ' and = was the input accepted. Now all G has to do is to
erase (o, thereby generating z. The only complication heze is that we don’t
want to erase gg unless it is part of an initial situation of M’; i.e., gg might
be entered at other points in the computation by M’, and we don’t want to
erase it in these cases This difficulty can be taken care of by adding new
states to M’ to insure that once it has left its initial state gg it never enters
it again in the course of any computation. With this repair, the grammar G
generates exactly the strings accepted by M’ (and M). Thus, we can add a
fourth equivalent statement to those given in (19-4) above:

(iv) A is generated by some unrestricted grammar

19.4 Church’s Hypothesis

An algomithm is a fixed, deterministic procedure which can be applied me-
chanically to yield a result within a finite amount of time. For example,

518 CHAPTER 19

there is an algorithm for finding the square root of any positive number to
any desited number of decimal places Algorithms are normally designed to
apply to a class of problems, not to a single problem The algorithm for find-
ing square roots can be applied in the same way to any positive number—we
do not have to hunt for a new procedure for every case

Some classes of problems do not have algorithmic solutions. There is no
algorithm, for example, for supplying proofs for theorems of geometry. To
find a proof for a given theorem often requires some ingenuity, skill, and
even luck, whereas algorithms, by definition, demand only simple clerical
abilities,

The definition of algorithm given above is not mathematically precise,
relying as it does on such intuitive notions as “mechanical ¥ In the 1930’s, a
number of attempts were made to find a precise, formal characterization of
the notion of algorithm as applied to mathematical problems The Turing
machine was the result of one such attempt It is clear that a Turing machine
satisfies our intuitive notion of what an algorithm should be; a TM which
computes a function, for example, determines the value at any agrument
in a fixed, deterministic, mechanical way and in a finite amount of time.
The question then arises whether all things which we would intuitively call
algorithms can be formulated as Turing machines. The conjecture that this
is indeed the case has been given the name Church’s Thesis or Church’s
Hypothesis (after the logician Alonzo Church). It is not a theorem, since it
relates a mathematical construct—the Turing machine—to an intuitive, im-
precise notion—an algorithm. It is nonetheless widely believed to be correct.
The evidence in its favor arises basically from the fact that all independent
attempts to characterize the notion of algorithm by mathematicians such as
Kleene, Post, Markov, Church, and others turned out to be eguivalent to
the Turing machine. Rogers (1967) calls this the Basic Result in Recursive
Function Theory:

The classes of partial functions (and hence total functions) ob-
tained by the characterization of Turing, Kleene, Church, Post,
Markov, and certain others, are identical, i e , are just one class.

Further support for Church’s Hypothesis comes from the fact that mod-
ifications and enrichments to the definition of a Turing machine which keep
intact our view of it as a mechanical computing device with a finite number
of states and instructions but with a potentially unlimited amount of space
for computation, always produce an equivalent device.

RECURSIVE VERSUS RECURSIVELY ENUMERABLE SETS 519

These results suggest that the characterizations are not purely arbitrary
but do in fact define a natural concept, 1e, sets which are recognizable,
or functions which are computable, by algorithm If we accept Church’s
Hypothesis, then, we may add a fifth equivalent statement to the list in
(19-4) above,

(v) There is an algorithm for recognizing strings in A.

19.5 Recursive versus recursively enumerable sets

A Turing machine which accepts a set A halts eventually whenever given a
member of A as input but fails to halt when given a non-member of 4. If we
accept Church’s Hypothesis, this means that an algorithm may work in such
a way that it yields an answer in a finite amount of time for all members
of a particular class but may yield no result for things not in the class. It
may happen, however, that there exist algorithms for recognizing not only
all members of A but also one for recognizing all members of 2 — A4, ie., the
complement of A, When this is so, A is called a recursive set. To state the
definition formally in terms of Turing machines, a set A is recursive iff both
A and A’ are 1ecursively enumerable (= Turing acceptable). It now follows
that the recursive sets are just the Turing decidable languages defined above.
Recall that a language is Turing decidable if there is some TM which halts
on all inputs over the relevant alphabet and signals whether or not the input
was in the language. As we have seen, it is a simple matter to convert a TM
which decides L into one which accepts L (or into one which accepts L') by
causing it to compute forever on negative outcomes. Conversely, if we were
given two TM’s, one accepting L and one accepting L', we could construct a
TM for deciding L by having it simply alternate the instructions of the two
machines on two copies of the input One of these will eventually halt, since
by assumption both L and L' are Turing acceptable, and then our composite
machine can signal whether the input was in L or L’ Thus it decides L.

Analogous remarks could be made about computation of functions rather
than recognition of sets. The functions which are algorithmically computable
are, by Church’s Hypothesis, just the parital recursive functions If the
function is properly partial and not total, the algorithm will yield no value
at arguments for which the function is not defined If the function is total,
however, the algorithm yields a value at each argument As we have seen, a
TM which decides a language in effect computes the characteristic function of

520 CHAPTER 19

that language. The 1ecursive sets, then, are just those which have recursive
characteristic functions. The recursively enumerable sets have characteristic
functions which are partial recursive functions. We may summarize our
statements about recursive sets as follows:

(19-9) The following statements are equivalent:
(1) A is a recursive set
(ii)) A is Turing decidable
(iii) Both A and A’ are recursively enumerable

(iv) A has a characteristic function which is (total) recursive.

We do not yet officially know, of course, whether there are actually any r.e.
sets which are not recursive. We turn our attention to this matter in the
next section.

19.6 The universal Turing machine

Since a Turing machine is defined as a finite set of quadruples together with
a designated initial state (the set of states and the alphabet are implicit in
the quadruples), it is possible to enumerate all possible Turing machines To
be somewhat more explicit, we might code the states and alphabet symbols
as sequences of 1’s and separate them by 0’s. A complete coding for a Turing
machine might, then, look something like this:

We might also agree on a fixed order of listing the gquadruples so that each
TM has a unique representation in this coding scheme, We could now enu-
merate TM’s by listing them with machines with the smallest number of
guadruples first in increasing order according to their encodings interpreted
as a binary number. Thus we have a one-to-one correspondence between
TM’s and the natural numbers. (Incidentally, this fact shows us that there
must be languages which are not Turing acceptable simply by considering
the cardinalities of the sets involved, Given a finite alphabet A, there are N
strings in A*. There are 2% subsets of A, i.e., languages over the alphabet
A. By Cantor’s Theorem, 2% > Rq and since there are only R¢ Turing ma-
chines, there is an uncountable infinity of languages over any given alphabet
which are not Turing acceptable.)

THE UNIVERSAL TURING MACHINE 521

011...11101...11011 . 111011.. 11011110111. .11011...1 etc,

coding for sym-
initial bol or

state lstate] , symb01‘l [sia.!e—[LorR
L I |

L coding for first quadruple J coding fer second
gunadruple, etc.

Figure 19-3.

Let us also assume that input strings are encoded into 1’s and 0’s in some
fixed fashion. We may also assume without loss of generality that whatever
output a TM leaves on its tape can also be encoded into 1’s and 0’s. Let
us denote by E(M) an encoding of a Turing machine M and by E(z) the
encoding of an input string z. It now turns out that there is a TM U, the
universal Turing machine, which can take as input E(M)E(z) and mimic
the behavior of M on z. That is, if M halts on z, U halts given E(M)E(z)
and leaves on its tape an encoding of whatever output M would have left
when it halted; if M does not halt on z, then U does not halt on F(M)E(z)

We will not attempt to give the construction of U here, but it can be
thought of as a three-tape machine which keeps on its tapes (1) the encoded
instructions of A, (2) an encoded version of the non-blank portion of the
tape M would have at each point in its computation, and (3) an encoded
representation of the current state. U consults tape 3 for the current state,
examines tape 2 to see which symbol is under the reading head (of M) and
then consults tape 1 to find the instruction beginning with that state and
symbol. If none is found, M would have halted, and U halts. If one is found,
U makes the appropriate changes to tape 2, changes the state on tape 3 and
repeats the cycle.

To dispel any possible air of mystery surrounding the universal Turing
machine, let us point out that simulating the moves of any given TM on
any given input tape falls under the class of procedures which can be carried
out in purely mechanical fashion. (Think what would be involved if you
were asked to carry out this task yourself) It is therefore executable by a

522 CHAPTER 19

Turing machine. The universal character of the machine arises from the fact
that all Turing machines and input tapes are given an encoding over a fixed
alphabet (here, 1’s and 0’s, although any convenient alphabet would do).
Thus U needs to be programmed only to find instructions and carry them
out on tapes all coded in the same way.

Another way of formulating what we have just said is that the language
{E(M)E(z) | M accepts z} is Turing acceptable. This is a language over
the alphabet {1,0}, and it is accepted by the Turing machine U (actually, a
slight variant of U which first checks to see if the string which it has received
as input is in fact of the right form to be a TM encoding followed by a string
encoding; this again is an easily arranged mechanical procedure)

19.7 The Halting Problem for Turing machines

We are now ready to address the problem mentioned above, namely, the
problem of deciding for an arbitrarily given TM and an arbitrarily given
input string whether the TM will ever halt on that input. Given our method
of encoding TM’s and input strings, it is easy to state the halting problem
in terms of Turing acceptable and Turing decidable languages, We have just
seen that the language

(19-10) L = {E(M)E(z) | M accepts z}

is a Turing acceptable language. Thus, in order to determine whether M
halts given z, simply give the encoding of M and the encoding of z to
(modified) U. If M halts on z, U will also But now if M does not halt on
z, U doesn’t halt either. We want to know if there is some way to tell that
M will not halt on z when that is the case. In other words, is L Turing
decidable? Is there some TM which will halt and say yes if M halts on z,
and will halt and say no when M does not halt on z?

We will show that this cannot be the case. Assume L is Turing decidable
by some TM My. Since L is decidable for all E(M) and E(z), it will be
decidable in the special case in which z happens to be E(M) itself It may
seem strange to give a Turing machine its own encoding as an input tape,
but since this encoding is just a long string of 1’s and 0’s, there is nothing
in principle to prevent us from doing so. That is, the following language L;
i1s Turing decidable if L is:

THE HALTING PROBLEM FOR TURING MACHINES 523

(19-11) L; = {E(M) | M accepts E(M)}

It would in fact be decided by a TM M; which first encodes its input and
copies it directly to the right of the original and then behaves like M|,

But now, since L is decidable, it follows that its complement is decidable
and hence, Turing acceptable; i e, there is a TM, call it M~, which accepts
L.

(19-12) L] ={z € {0,1}" | z is not a TM encoding, or else z is the encoding
of a TM T and T does not accept E(T) (ie, z)}

We now ask whether the encoding of M~ itself is in L{; that is, is M~ a
machine which does not accept its own encoding as input?

First case: E(M™) € L]. Then E(M~) is one of the strings accepted by
M=, by the assumption that M~ accepts L}. So M~ accepts E(M ™). But
because E(M™) € Li, it is the encoding of a2 Turing machine which does not
accept its own encoding, ie., M™ does not accept E(M™). Contradiction

Second case: E(M~) ¢ L. Then E(M~) is not a string accepted by
M, by the assumption that M ™ accepts L. So M~ does not accept E(M™).
Therefore, M™ is a TM which does not accept its own encoding; therefore
E(M~) is a member of L{. Contradiction,

Since E(M™) must either be in L{ or not in L}, and either assumption
leads to a contradiction, we conclude that there is no such machine as M~
thus, L] is not Turing acceptable (our first example of a set of this sort).
But the Turing acceptability of L} was implied by its Turing decidability,
which in turn was implied by the Turing decidability of L; Therefore, we
conclude that I, cannot be Turing decidable after all Finally, I;’s Turing
decidability was implied by the assumed Turing decidability of L. Thus,
we conclude that L is not Turing decidable, and the Halting Problem for
Turing machines is not decidable by Turing machine; hence, given Church’s
Hypothesis, not decidable by algorithm

Note that in the process of proving the undecidability of the Halting
Problem, we have exhibited a set which is not Turing acceptable (namely,
L1) and sets which are Turing acceptable but not Turing decidable (namely,
L and L;). We can thus state the following:

THEOREM 19.1 There are sets which are not recursively enumerable. |

524 CHAPTER 19

THEOREM 19 2 There are sets which are recursively enumerable but not
recursive, |

As we have seen, these are not ordinary garden variety sets. The latter
are exemplified by the set of all encodings of TM’s which accept their own
encodings as input; the former by the set of all Turing machines (in encoded
form) which do not accept their own encodings as input However, having
established a foothold in this territory we can use these sets to discover
others of their class We may also use the undecidability of the TM Halting
Problem to prove that other problems are undecidable as well. For example,
we will show the following problem for Turing machines to be undecidable:

Problem: For an arbitrarily given TM M, does M halt given e, the empty
string, as input?

We first express the problem as a language:

(19-13) Ly = {E(M) | M accepts €}

and ask whether there is a TM M, which decides this language. We show
that there is not, and the proof technique is to show that if such a machine
existed then it could be modified to produce a machine which decides the
Halting Problem Since the latter cannot exist, neither can M,.

Suppose we have M5, which by hypothesis decides L, We show how to
use M, to construct a machine M, which decides L, where L is the language
of the Halting Problem:

(19-14) L= {E(M)E(z)!| M accepts z}

First of all, for any given TM M and any given input string z, one can
modify M so that if it is started on the empty tape it will first write z on
it and then proceed as M would have, given z. Call this modified machine
M,. M, first checks to see if its input is the empty tape (If not, it runs
forever in some fashion) If so, it writes z (a finite string, so this is done by
some finite set of instructions added to M) and then positions its reading
head for the start of a computation and executes the moves of M thereafter.

Now if we gssume that we have a machine M, which decides Ly, then
it will work, in particular, if it is given the encoding of any machine M,

EXERCISES 525

constructed in the way just described. (M, works for any TM encoding; it
will work if that encoding happens to be the encoding of M,.) But notice
that M, accepts e just in case M accepts z. That is, M, halts, given the
empty string as input, iff M halts given z. Therefore a machine which
decides whether M, halts given e could be used in effect to decide whether
M halts given . This has been shown to be impossible so there is no such
machine as M, and language L4 is therefore not Turing decidable.

A whole host of problems concerning Turing machines turn out to be
undecidable: whether an arbitrarily given TM ever enters a particular state,
whether it halts on any inputs at all, whether it halts on every input, whether
it ever writes a particular symbol on its tape, etc. These and other unde-
cidability results can, in turn, be used to establish undecidability results in
other areas. For example, the undecidability of the TM Halting Problem can
be used to establish the undecidability of another problem called the Post
Correspondence Problem. This can then be used in showing that certain
problems concerning context free grammars and languages are undecidable.
For example, it is undecidable, given two arbitrary c¢fg’s G; and G5 whether
L(G1) = L(G,), whether L(G,) N L(G,) = 0, whether L(G1) C L(G,),
whether L(Gy) is inherently ambiguous, etc.

One should note carefully that none of these undecidability results imply
that for a particular TM, a particular cfg, etc. there is no way to determine
whether it halts given the empty string, whether it is inherently ambiguous,
etc. We have seen examples of TM’s, e.g , in (19-1), which can be shown,
quite easily in fact, to halt given the empty string. What the undecidability
result says is that there is no single, generally applicable algorithm which
is guaranteed to work for every TM (or every arbitrarily given pair of cfg’s,
etc.)

It is also worth noting that in view of the correspondence shown above be-
tween TM’s and unrestricted grammars, the undecidability results for TM’s
can be carried over immediately to grammars. Thus, there is no algorithm
for determining for an arbitrarily given Type 0 grammar G whether G gener-
ates any strings, whether G generates the empty string, whether G generates
all strings in X™, etc.

Exercises

1. Construct a Turing machine that accepts any tape written on the vo-
cabulary {0,1} and converts every contiguous string of two or more 1’s

526 CHAPTER 19

to 0’s. Everything else is left unchanged. For example, the input tape
-+ #01011011101# - should end up as - - #01000000001+# -

2. Construct a Turing machine with three states {gg,¢1,¢2}, initial state
go, that begins with an input tape consisting entirely of blanks and
halts with exactly three contiguous 1’s on the tape.

3. Consider the following Turing machine: M = ({go,¢:},{a, b, #}, 0,8}

where
(g0,2) — (Q’mR)
(91:0) (fh:[f)
(qla) (QO,G)

(a) Write the first twelve situations of the machine M if it starts in
the situation (e, ¢o,a, ##a).

(b) Describe verbally what machine M will continue to do after this
much has been done,

(e¢) Will it ever halt?

(d) Will it use only a finite amount of tape?

(e) Are there any squares of the tape that it will scan only a finite
number of times?

(f) What will machine M do if started in another situation?

4. (a) Make up a simple Turing machine which never halts no matter
what the initial tape sequence is. Give both the quadruples and
a verbal description of its behavior. Let the machine be allowed
to start scanning at any square but always start in state gg.

(b) Similarly, make up a Turing machine which always halts eventu-
ally.

5. Tell whether the following functions are total or only partial A func-
tion is considered to be undefined if it would yield a value outside the
set on which it is specified

(a) Addition on the set of all even integers.
(b) Addition on the set of all prime numbers,
(c) Set union on the set {{0},{1},{2},{0,1}}

EXERCISES 527

6. Describe informally an algorithm for converting an integer in binary
notation to decimal notation.

7. Write a Type 0 grammar generating the language {a* | n > 0}.

8. Show that the following problem for Turing machines is undecidable:
For an arbitrarily given TM M, does M accept at least one string?
(Hint: Show that if a TM existed which decided the language {E(3f) |
M accepts at least one string}, it could be modified to produce a
machine deciding L, in (19-13).)

