Chapter 18

Pushdown Automata,
Context Free Grammars and
Languages

18.1 Pushdown automata

We turn next to a class of automata which are more powerful than the finite
automata in the sense that they accept a larger class of languages. These
are the pushdown automata (pda’s).

A pda is essentially a finite automaton with an auxiliary tape on which
it may read, write, and erase symbols. This tape is organized as a stack or
pushdown store similar in principle to the spring-loaded devices for holding
plates seen in cafeterias. Both work on the basis of “last in, first out;” that
is, the most recently added item is the first one to be removed. Items below
the topmost ones cannot be reached without first removing items above them
on the stack

Pda’s, like finite automata, 1ead their input tapes from left to right
and have a finite number of internal states. There is a designated initial
state, and a set of final, or accepting, states. The transitions of a pda,
however, allow the top symbol of the stack to be read and removed, added
to, or left unchanged We can represent these transitions schematically as
(g:,a,A) — (gj,7), where ¢; and g; are states, a is a symbol of the input
alphabet, A is a symbol of the stack alphabet (which need not be the same as
the input alphabet), and v is a string of stack symbols Such an instruction

487

488 CHAPTER 18

is interpreted as follows: when in state ¢;, reading @ on the input tape, and
reading A at the top of the stack, go to state ¢; and replace A by the siring
v. If v were, for example, the string BC, the A would be removed and
B(C added to the stack (in the order B first, C next) so that C' would now
become the top symbol on the stack In case % is e, the empty string, the
net effect is to remove (“pop”) A from the stack. The symbol next below
A, if any, would then become the top symbol If v were, for example, AB,
the effect would be to add (“push”) a B on top of the A. If ¥ were A, the
transition would leave the stack unchanged

We also allow e to appear in the position of A in the above schema. In
this case the transition does not depend on the contents of the stack since ¢
can always be read at the top of the stack whatever it may actually contain.
Note that the e here does not indicate that the stack must by empty If
A = e and v = B, for example, the transition would push B onto whatever
was already on the stack.

The stack is assumed to be empty at the beginning of a computation
with the pda in its initial state and the reading head positioned over the
left-most symbol of the input An input tape is accepted if the computation
leads to a situation in which all three of the following are simultaneously
true:

(i) the entire input has been read
(ii) the pda is in a final state
(iii) the stack is empty

One could define acceptance by empty stack or final state or, as we have done,
by both, and the resulting classes of automata turn out to be equivalent This
choice is convenient for our purposes. The following is an example of a pda
which accepts the language {a™b" | n > 0}:

(18-1) States: K ={g0,a}

Input alphabet: ¥ = {a,b}

Stack alphabet: T' = {A}

Initial state: Jo

Final states: F = {q0,q1}
(QO: G,,E) - (gU:\A)

Transitions: A =1<{(g0,0,4) — (q1,¢e)
(91,0, 4) — (q1,¢)

PUSHDOWN AUTOMATA 489

aabb aabb aabb aabbd aabb
T 1 o o
go +— | go —{ 4] qo i' @ —{ 4] @ — |
stack - LA - -
Figure 18-1

Fig 18-1 shows how this pda would accept input aabb.
Since the entire input is read and the pda halts in a final state with an empty
stack, this input 1s accepted.

The reader should also be able to verify the following statements about
the behavior of this pda:

(i) ba is rejected: the pda blocks in state go and fails to read the entire
input

(ii) aaabb is rejected: the pda halts in state ¢; with A on the stack

(iii) aabbb is rejected: the pda fails to read the last b since there isno A on
the stack

(iv) e is accepted: the computation begins and ends in gg with an empty
stack

This machine works by using its stack as a counter for keeping track of the
number of a’s in the initial part of the input string Once a b is found,
it switches to state ¢; and begins popping an A from the stack for each b
encountered. Only if the number of b’s equals the number of a’s will the
stack be empty at the end (and the entire input string read).

Problem: Why is it necessary to go to a new state when the first b is en-
countered, i.e., why not stay in state ¢5?

Here is an example of a pda which accepts the language {zz® | ¢ € {a,b}"}

(18—2) K = {me'l}: Y = {a’ab}: I' = {A)B}v
Initial state = ¢, F = {q0, ¢1}
(QO: a,e) - (QO:A) (QOab: B) - (Ql:e)
A= (qoab? 8) - (Q{),B) (QI: CL,A) - (QI:e)
(QO:G'»A) - (‘h:e) (QI:bsB) — (Q'lﬁe)}

490 CHAPTER 18

This machine works by putting an image of the left half of its input string on
the stack (in the form of capital letters), and then, after non-deterministically
“guessing” that the middle of the string has been reached, comparing each
input symbol in the right half against the top symbol of the stack If the
symbols correspond, the stack symbol is removed; if not, the machine blocks.
Since symbols come off the stack in the reverse of the order in which they
went on, the stack will be emptied just in case the right half of the input is
the reversal or “mirror image” of the left half

This pdais non-deterministic since there is more than one move available
to the antomaton in certain situations. If, for example, it has just read an o
in state go (and therefore put an A on the stack) and is now reading another
a, it could execute either the first or the third instruction above The former
corresponds to the “pushing” mode in which the image of the left half is
being placed onto the stack; the latter corresponds to a decision that the
middle of the string has just been encountered and that it is time to switch
from pushing to popping mode. As with the finite automata, we say that
a non-deterministic pda accepts if there exists at least one computational
path on which the input is accepted; an input is rejected if there is no such
accepting path. By this definition, the above machine accepts the language
{z2® |z € {a,b}"}.

The pda in (18-1), by contrast, is said to be deterministic, in that it has at
most one move available to it for any situation. Unlike the finite automata,
we do not insist that deterministic pda’s have one move available for every
situation; rather, that in no situation is more than one move allowed One
can determine from inspection of the instructions of a pda whether it is
deterministic or properly non-deterministic. A pda is deterministic iff there
are no two distinct instructions (g, e, A) — (g;,7) and (g, a, A") — (g, 6)
such that A = A’ or A = e or 4’ = e. Thus, as with the finite automata,
the deterministic machines are a proper subset of the non-deterministic.

The guestion then naturally arises as to whether deterministic and non-
deterrministic pda’s are equivalent. The answer is that they are not, although
it is not a simple matter to give a proof of this fact. We will simply note
that this result agrees with our intuition that no deterministic pda could be
devised to accept {zz® |z € {a,b}"}, there being no way in general for a
pda reading strictly left to right to tell with certainty when the center of the
input string has been reached In contrast, the language {zcz® | ¢ € {a,b}"}
in which the center of the string is marked by the ¢ is easily acceptable by
a deterministic pda.

PUSHDOWN AUTOMATA 491

It is often a matter of some practical interest to be able to tell whether
a non-deterministic pda language is also accepted by some deterministic
pda. This is so because many programming languages—languages used for
writing instructions for computers to execute-—belong to the class of non-
deterministic pda languages. When programs are compiled, i e., translated
into sequences of 1’s and 0’s for execution by the computer, the compilation
process is carried out by what is in effect a pda, and if this pda can be made
deterministic, then the process can be made more efficient by avoiding back-
tracking or the pursuit of alternative paths. Most programming languages
in current use are in fact deterministic pda languages (or nearly so), but it
is an unfortunate fact that there is no way to tell in general whether any
arbitrarily given non-deterministic pda language is also a deterministic pda
language.

We end this section by giving formal definitions of pda’s and the related
notions of situation, acceptance, and so on. Note that in the following we
have generalized the notion of a transition of a pda to allow the possibility
that a string of input symbols and a string of stack symbols can be read on
a single move This does not affect the power of the automata and has the
advantage of bringing the definitions into a form parallel to those for non-
deterministic finite automata. A non-deterministic finite automaton will
thus appear formally as a non-deterministic pda which never makes use of
its stack.

DEFINITION 181 A non-deterministic pushdown automaton is a sextuple
(K,X,T,A,s, F), where K is a finite set of states, ¥ Is a finite set (the input
alphabet), T is a finite set (the stack alphabet), s € K is the initial state,
F C K is the set of final states, and A, the set of transitions, is a finite
subset of K X " x I x K x I'". |

DEFINITION 18.2 A situation of a pda is a quadruple (z,q,y, z) where g €
K,z,ye ¥, and z € T, . |

The intended interpretation is that the pda is in state ¢ with z to the left
of the reading head, y to the right of the reading head with the left-most
symbol of y currently being scanned, and z 2s the contents of the stack.

DEeFINITION 18 3 Given a non-deterministic pda M, we say that situation
(z,4,y, z) produces (z',¢',y,2') in-one-move iff 2’ = za, ¥y = ay’, 2 = YW,
z' = bw, and (¢, a,v) — (¢',6) € A. [

492 CHAPTER 18

DEPINITION 18 4 Produces is the reflexive, transitive closure of the produces-
in-one-move relation
These are denoted, as usual, by l];:_r and ks, respectively. |

DEFINITION 185 Given a pda M, a string ¢ € X* is accepted iff (e,s,z,¢)
E—;} (z,q,e,¢e) for some ¢ € F. The language accepted by M is the set of all
strings accepted. |

DEPINITION 18.6 A pda is deterministic iff for no pair of distinct transitions,
(Q’i, :r:i,%-) — (qj,ﬁj) and (qk,:z:k,'rk) — (Qg,é}) 1s it the case that ¢; = g, and
z; is a substring of ¢, or vice-versa, and +; is a substring of 4, o1 vice-versa,

|

18.2 Context free grammars and languages

Non-deterministic pda’s accept exactly the languages generated by context
free (Type 2) grammars. Recall that in a context free grammar every rule
is of the foorm A — 19, where A is a non-terminal symbol and v is any
string, possibly empty, from the union of the terminal and non-terminal
alphabets. It follows from this definition that every right-linear grammar is
also a context free grammar, and therefore that the regular languages are
contained in the context free languages. This containment is proper since,
as we have seen, {a"b" |n > 0} is not a regular language, but it can be
generated by the simple context free grammar containing only the two rules
S — aSbhand § — e

The proof of the equivalence of context free languages and non-determn-
istic pda languages is too long and complex to give here. To give something
of the flavor of this proof, we will show an algorithm for constructing from
any given context free grammar an equivalent non-deterministic pda (but
we will not prove formally that the constructed pda is actually equivalent).
For the construction in the reverse direction—from non-deterministic pda to
equivalent context free grammar—we refer the reader to Hopcroft and Ull-
man (1979) or Lewis and Papadimitriou (1981), which also contain references
to the original sources.

Given a context free grammar G = (Vy, Vr, S, R}, we construct an equiv-
alent non-deterministic pda A as follows, The states of M are gg and g,
with gy being the start state and g1 being the only final state. The input
alphabet is Vr and the stack alphabet Vi U V. The transitions of M are
constructed out of the rules of G in the following way:

CONTEXT FREE GRAMMARS AND LANGUAGES 493

(i) M contains the instruction (go,e,e) — (g1, 5)

(ii) For each rule of the grammar A — 1%, M contains an instruction
(QIre:A) - (Ql7¢)'

(iil) For each symbol ¢ € Vp, M contains an instruction (g1, a¢,a) — (g1, ¢€).

As an example, let us take G to be as follows:
(18-3) Vy ={S}; Vr ={a,b}; R={S — aSh,S — ¢}

(This is the grammar we referred to above which generates {a™b™ [n > 0}.)

According to the construction procedure just given, M will contain the
following:

(18-4) K ={qo,q1}; £ ={a,6}; T ={5,a,b}; s =qo; F = {q1 };
((q0>eae)_'+(QI>S))
(q1,e,8) — (q1,a85b)
A= 4 qu,e,S) — (q1,¢€)
(

T

q1, @, a’) —* (Q1:e)
L QI:b)b)""’(QI:e) /

M accepts the input string aabb by the following computation: (e, go, aabb, ¢)
F (e, q1,aabb,S) F (e, q1,aabb,aSb) - (a,qy,abb,Sb) F (a,q;,abb,aShb) -
(aa,qs,bb, Sbb) I (aa, g1,bb,bb) - (aab, q1,b,b) - (aabb,q1,e,e)

M works by loading S onto its stack and then simulating a derivation
there by manipulations which correspond to the rewriting rules of G. When
a terminal symbol appears at the top of the stack, it is popped off if it
matches the symbol being read on the input; otherwise the computation
blocks. When a non-terminal appears at the top of the stack it is rewritten
in a way licensed by the rules of & Thus, M carries out what is in effect
a left-mmost derivation (one in which the left-most non-terminal symbol is
rewritten at each step) according to the grammar. If the derived terminal
string matches the input, the stack will be emptied, the entire input read,
and the string accepted.

Note that pda’s constructed in this way will in general be non-determin-
istic since there may be in the grammar more than one rule rewriting some
non-terminal A.

494 CHAPTER 18

18.3 Pumping Theorem for cfl’s

There is a Pumping Theorem for the c¢fl’s which is similar in form to the
Pumping Theorem for fal’s. It is useful primarily in showing that a particular
language is not context free.

The theorem makes use of the fact that a derivation by a cig can be
naturally associated with a parse tree (see Section 16 4), and the fact that
the maximum width of any such parse tree is constrained by its height. Let
us see what this means in more detail,

Given a cfg G, there is some maximum number of symbols on the right
hand side of any rule. Suppose, for example, that no rule has a right hand
side longer than 4 symbols. This means that in one rule application, the
width of the tree (the number of symbols in its yield) can have increased
by at most 3. If each of the 4 symbols just introduced should happen to
be expanded into 4 symbols, then by these steps the single node could have
grown into 16 symbols, but no more than 16 symbols. If we define the height
of a tree to be the length of the longest path in it extending continuously
downward from the root, then what we have said is that (for a given gram-
mar) the maximum width of a parse tree is bounded by its height. More
specifically, if n is the maximum length of a right side of the rules of G, then
the maximum width of a parse tree generated by G of height & is just n.
(It may in fact be considerably less than this, depending on the exact nature
of G, but we are interested here only in setting an upper bound) To phrase
this another way, if a parse tree for some grammar G has width greater than
n™, where n is the maximum length of the right side of rules of G, we can
be sure that the height of the tree is greater than m.

Let us now suppose that G has m non-terminal symbols in its alphabet.
If we find a parse tree generated by G of width greater than n™, then there
must be some continuously descending path in the tree of length greater than
m, and thus some non-terminal symbol must appear at least twice along this
path (there being only m symbols to choose from). Let us represent this
situation by the diagram in Fig. 18-2.

The repeated non-terminal is called A, S dominates a terminal string
w, and so each non-terminal in the tree must also dominate some terminal
string. Let z be the terminal string dominated by the lower A, and vzy the
terminal string dominated by the upper A. (z must be a substring of this
string since, by hypothesis, the lower A is dominated by the upper A.) Let u
and z be terminal strings dominated by S to the left and right, respectively,

PuMPING THEOREM FOR CFL’S 495

Figure 18-2

of vey. This general situation must obtain whenever there is a repeated
non-terminal along some path in a parse tree,

But note that the lower subtree rooted by A could have stood in the place
in the tree where the upper A-rooted tree stands The rules of (G are, after
all, context free, so if it is possible to rewrite A in one position ultimately
to yield z, the same 1s possible in any position in which A appears. Thus,
the tree in Fig, 18-3 must also be generated by G.

Figure 18-3.

Further, the lower A in Fig. 18-2 could have been rewritten as the upper

496 CHAPTER 18

one was, to produce the tree shown in Fig. 18-4.

Figure 18-4.

Since we know that the derivation can be terminated by rewriting the
lowest A, ultimately to give z, it follows that the string uvvzyyz must also
be generated by G. The process just illustrated could, of course, be carried
out any finite number of times; thus, uvizy’z is generated for all i > 0. We
are now ready to state the Pumping Theorem for context free languages.

THEOREM 18.1 If L is an infinite context free language, then there is some
constant K such that any string w in L longer than K can be factored into
substrings w = wvzyz such that v and y are not both empty and uv'zy'z € L
for all1 > 0.]

Note that if L is an infinite language then it is guaranteed to contain strings
longer than any given constant K. What is K? It is a number which
depends on the grammar for L and which is big enough to ensure that any
strings longer than K have derivation trees with a repeated non-terminal
along some path. There is always such a K for any cfg since G contains a
finite number of non-terminal symbols, and there is some maximum to the
degree of branching allowed on the right sides of rules.

CLOSURE PROPERTIES OF CONTEXT FREE LANGUAGES 497

What about the stipulation that v and y are not both empty? If they
were, we could get from A to A on a branch of a derivation tree without
generating any terminal symbols either to the left or right. This situation
could arise, since rules of the form A — B, B = C, C — A are allowed
in a cfg. However, not all the non-terminals in the grammar could appear
only in rules of this form or else the grammar could not generate an infinite
language. That is, there must be some non-terminal symbol A which can
be repeated along some path,ie., A ? vAy, such that not both v and y are
empty, and further, such a non-terminal must appear in the derivation of
any string longer than K.

Note that like the Pumping Theorem for fal’s, this theorem is a condi-
tional but not a biconditional. Given a language L, it is not particularly
informative to find strings u,v, @,¥, 2 such that wvizyz € L for all £ > 0.
Rather, we use the theorem in its contrapositive form: if there do not ex-
ist strings u, v, z,¥, z such that. .., then we can conclude that L is not an
infinite cfl. Let us see how this can be done in the case of the language
L = {a™t"c" | n > 0}.

Suppose L were context free Since it is infinite, the Pumping Theorem
must apply, and there would be some constant X such that any string in
L longer than K—Ilet us choose a®b% c¥, for example—would be factorable
into uvzyz such that v and y are not both empty and the v and y are
pumpable, We show that no such factorization can exist.

First, v cannot consist of both a’s and b’s, because when it is pumped,
it would produce strings containing b’s before a’s, which cannot be in L.
Similarly, v cannot consist of both b’s and ¢’s, and the same argument applies
to the other pumpable term, ¥y Therefore, the only possibilities remaining
are for v to consist of just a’s or just b’s or just ¢’s. Then no matter how
we choose ¥, the result of pumping v and y simultaneously gives strings
not in L. Suppose, for example, that v consists of a’s and y of ’s. Then
on pumping v and ¥ the a’s and b’s increase but not the c’s, and we get
strings not in L, The other cases are similar., We conclude that there is
no choice of u, v, z,y, z meeting the conditions of the Pumping Theorem for
this language; therefore, L is not context free.

18.4 Closure properties of context free languages

Given the class of context free languages (identical to the non-deterministic
pda languages), we want to investigate whether this class is closed under

498 CHAPTER 18

operations such as union, intersection, complementation, etc. We will see
that unlike the fal’s the cfl’s are not so conveniently and tidily closed under
all these operations

Union: Given twocfg’s Gy = (Vv,, Vry, 51, R1) and Ga = (Viv,, V1, S2, Ry),
we form grammar G in the following way If the non-terminals of G; and
G are not disjoint sets, we make them so (by appending primes to every
symbol of G, say). The start symbol of G we take to be S, and G contains,
in addition to R; and Rj, the rules S — S; and S — S; G is context free,
and it generates L(G1)UL(G2) since the start symbol may be either rewritten
as Si, whereupon GG behaves like GGy, or as S,, whereupon G behaves like
Ga. A string z € (Vp, U Vr,)” is generated by G just in case it is generated
by G; o1 by G; (or both) Since this method of construction is general (and,
as the reader will have noted, quite similar to that used in showing that the
fal’s are closed under union; see Section 17.2), we conclude that the cfi’s are
closed under union

Concatenation (or Set Product): The method of construction is similar
to that for union except that instead of the two rules mentioned there we
add to G the single rule § — 5;55. Thus, G will generate all strings of
the form zy such that ¢ € L(G,) and y € L(Gy). Further, G will generate
only such strings, and, again, since the method of construction is general,
we conclude that the cfl’s are closed under concatenation.

Kleene Star: Given G = {(Vi,Vr,S,R), we construct G~ as follows: The
start symbol of G™ is S, and G contains, in addition to all the rules in R,
the rules §' — e and §' — §'S. G* generates all strings in (L(G))" since by
application of the rules rewriting S’, G* produces strings S™ for all n > 0.
Each such S can be rewritten to produce a string in L(G), and e is produced
by the rule S’ — e. Further, all strings in (L(G))* can be generated in this
way. Thus, the cfl’s are closed under Kleene star,

Problem: Why was it necessary to introduce the new start symbol §'?7 Why
not just add the rules § — S5 and § — e?

Intersection: The cfl’s are not closed under intersection To see this, we
note that the languages {a‘b’c’ | 4,5 > 0} and {a*b'c! | k,I > 0} are both
context free. The former is generated by a grammar containing the rules:

(18-3) S — BC
B — aBb
B —e
C - cC
C —e

DECIDABILITY QUESTIONS FOR CONTEXT FREE LANGUAGES 499

and the grammar for the latter is similar The intersection of these two lan-
guages, however, is {a™b"c™ | n > 0}, which we proved above by the Pumping
Theorem not to be a context free language

Recall in this connection what it means to say that a set is not closed
under a certain operation. We have shown that the intersection of two cfl’s
is sometimes not a cfl It is not claimed that the result is never a cfl.
Indeed, this could not be so, since the regular languages are necessarily cfl’s,
and since the regular languages are closed under intersection, the result is
regular, hence, context free.

Complementation: The cfl’s are not closed under complementation. Given
two cfl’s L, and Ly over some alphabet ¥, if their complements L] and Ls
(ie, X" — Ly and ¥* — L, respectively) were context free, then so would be
their union, L{ U L§. The complement of this, in turn, (L] U L})’, would also
be context free, but this is equal by DeMorgan’s Laws to L; N Lg, which is
not necessarily context free. Hence, the complement of a ¢fl is not necessarily
a cfl

Intersection with a Regular Language: Although the intersection of
two arbitrary cfl’s L; and L, is not in general a cfl, it happens that if
one of the languages is restricted to being regular, then the intersection is
always a cfl. A demonstration of this fact is somewhat involved and depends
on constructing a non-deterministic pda accepting L, N Ly out of a pda
accepting L; and a finite automaton accepting Ls. (The non-closure of cfl’s
under intersection implies that it is not in general possible to coalesce two
non-deterministic pda’s in this way.)

The closure of the cfl’s under intersection with a regular language can
be a convenience in showing certain languages not to be context free. For
example, the language L = {z € {a,b,c}” | = contains equal numbers of a’s,
b’s, and c’s}, although not context free, resists application of the Pumping
Theorem However, if L 1s first intersected with the regular language a*b*c*,
the result is {a™b"c™ | n > 0}, which we have shown not to be context free.
Now if L were a cfl, its intersection with a regular language would also be a
cfl; hence, L is not context free,

18.5 Decidability questions for context free lan-
guages

Context-free languages differ from fal’s also in respect to which questions can
be answered by algorithm. For the fal’s we saw that there were algorithms

500 CHAPTER 18

for answering questions such as membership, emptiness, etc. We shall see
that some of these questions have algorithmic solutions for the ¢fl’s and some
do not.

Membership: Given an arbitrary cfg G and an arbitrary string z, is =
generated by G? One might propose an algorithm for answering this question
of the following sort: Start producing derivations by G in some systematic
fashion, discarding any whose last lines are longer than z. This will be some
finite number of derivations, If z has not been generated by this point, it is
not going to be

As matters stand, this algorithm might not be successful for two rea-
sons: first, the grammar may contain rules of the form A — e, which allows
derivations to become shorter. Thus, we cannot be sure that we can stop
examining derivations when their last lines reach the length of ¢ A deriva-
tion might produce longer strings which then shrink to produce # Second,
because rules such as A - B, B — C, C — A, etc. might be present in the
grammar, derivations might continue indefinitely without their final strings
getting any longer This subverts our claim that we need to examine only a
finite number of derivations to see if any generate &. The proposed algorithm
would work, however, if we could somehow contrive to remove all rules of
both types from a cfg while leaving the generative power of the grammar
unchanged. We will now show that this can in fact be done.

If there is arule A — e in the grammar, this rule can be dispensed with if
we add more rules to the grammar in the following way. Whenever A appears
on the right side of a rule we add another rule identical to it except that the
A on the right is deleted. For example, given rules A — e and B — cAbBa,
we would add the rule B — ¢bBa. Now what would have been accomplished
by application of the first two rules in sequence can be accomplished by the
last rule alone, The original rule is of course preserved since there may be
other rules expanding A. We continue in this way for every rule containing
an A on the right side, and repeat the process for every non-terminal which
can be rewritten as e. (Note that if such a non-terminal appeared more
than once on a right side, e.g, B — aAbAc, we would add rules B — abAc,
B — aAbc, and B — abc.) This process must eventually come to an end
since there are finitely many rules to begin with, there are a finite number of
non-terminals, and a finite number of rules are added at each step. When we
are done, we may remove all rules of the form A — e from the grammar since
they are superfluous. The one exception is the rule § — e, if it is present,
which must be retained in order to generate the empty string as a member of

DECIDABILITY QUESTIONS FOR CONTEXT FREE LANGUAGES 501

the language The presence of this rule will not interfere with the workings
of our algorithm, however, since if there is a derivation of some non-empty
string ¢ which involves one or more applications of the rule § — e, there
will also be, after carrying out the procedure just outlined, a derivation of
which does not involve any applications of this rule Thus, we can produce
an equivalent cfg in which derivations are essentially non-shrinking.

What about rules of the form A — B? These can be removed in the
following way Pick a rule of the form A — w, where w is something other
than a single non-terminal symbol. (If there are no such rules, the grammar
generates no terminal strings and the membership question is settled at
once) Now for each non-terminal C distinct from A, determine whether
C %’ A, ie, whether C can be rewritten in some finite number of steps to
give A This can be done by examining all sequences C, B, Ba,..., Bn, A
(where B;, B., are single non-terminals) of length no more than the number
of non-terminals in the grammar to see whether they are allowed by the
grammar. The restriction on length of derivations is possible because if
there is such a derivation with repeated symbols C = ... = B; = .. =
B; = B; = .. = Athen there is also a shorter one with the section between
repetitions removed: C = ... = B; = B; = . . = A. Thus, the number
of non-terminals fixes an upper bound on the length of such derivations,
and we can effectively determine whether C' 2 A, If so, then we add the
rule C — w to the grammar, and thus the derivation C 2 A 2> w can be
replaced by the derivation €' % w directly. We continue this process for all
rules of the form A — w (w ¢ V) and all non-terminals distinct from A,
When we have finished, all rules of the form A — B can be removed from
the grammar without affecting the terminal strings generated.

Once all these steps have been carried out, the proposed algorithm for
answering the membership question can be executed and is guaranteed to
lead to an answer in a finite amount of time. No clalm is made that this
is particularly efficient way to answer the membership question, but we are
not concerned with relative amounts of computational labor here—only with
showing that the question can be answered in some finite amount of time by
mechanical means.

Emptiness: Does an arbitrarily given cfg G generate any strings at all?
There is an algorithm for answering this, the emptiness question, and it
depends on the following observation. If G generates any terminal strings, it
generates some terminal string with a parse tree which has no non-terminals
repeated along any path. Refer again to Fig. 18-2 which we used in proving

502 CHAPTER 18

the Pumping Theorem. If a parse tree for some terminal string has a repeated
non-terminal A along some path, the subtree rooted by the upper A could
be replaced by the subtree rooted by the lower A, and the result is also a
parse tree for a terminal string generated by the grammar (cf Fig 18-3).
Clearly all repeated occurrences of non-terminals could be removed in this
way. Thus, in order to see whether G generates any terminal strings, all
we have to do is examine the finite number of parse trees which contain no
repeated elements along any path. The exact number we need to look at
will depend on the number of non-terminals in the grammar and the degree
of branching allowed by the rules of G, but it will be finite If no terminal
string has appeared as the yield of a tree by this point, none is ever going
to appear. This answers the emptiness question.

Undecidable questions: Many problems concerning context free languages
have no algorithmic solution. We cannot provide demonstrations of these
facts here since they require results from Turing machine theory, which we
have not yet examined. We will simply list some of the more important
undecidable questions:

a. Given an arbitrary context free grammar G, there is no algorithm for
determining;:

(i) whether L(G) = Vi, Le, whether G generates all strings over the
terminal alphabet

(i) whether the complement of L(G), i.e., Vi — L(G), is empty, infi-
nite, regular, or context free.

b. Given two arbitrary context free grammars G; and G, there is no algo-
rithm for determining:

(i) whether L(G,;
(ii) whether L(G;
(iii) whether L(G,
(iv) whether L(G;

) € L(G»)
) = L(G,)
)N L(G,) =
YN L(Gy) is 1nﬁn1te regular, or context free,
Recall that the lack of a single algorithm for deciding every one of an infinite
class of cases does not preclude the possibility that for certain context free
grammars these questions might be answerable. In fact, for all context free
grammars which happen to be regular, there are algorithmic solutions to all
of the above questions, as we saw in Section 17.3.1.

ARE NATURAL LANGUAGES CONTEXT FREE? 503

18.6 Are natural languages context free?

In Section 17.3 2 we showed that English could not be a regular language.
Could it or any other natural language be context free? This question has at-
tracted considerable attention in the years since Chomsky first outlined the
hierarchical categorization of formal languages (1963). The prevailing view
has been that natural languages are not context free. Attempts to demon-
strate this have usually centered on finding instances of so-called “cross-
serial” dependencies of arbitrarily large size in some particular language. In
a cross-serial dependency, items are linked in left-to-right order as shown in
Fig 18-5.

Z1Zyg - ;- Y1 Y2 - o Yn

Figure 18-5.

(Compare this to the nested dependencies illustrated in Fig 17-17.)

A language such as {zz | z € {a,b}"} exhibits cross-serial dependencies
(for strings of length 2n in the ** and (n + i)** symbols must match) and is
not context free,

Pullum and Gazdar (1982) review the various attempts to establish that
natural languages are not context free and find all of them either formally or
empirically flawed. In the latter category are instances in which claims that
certain forms are ungrammatical are unjustified and more probably involve
semantic or pragmatic anomaly. A common formal mistake was to assume
that because one has found a subset of a language which exhibits cross-serial
dependency the language as a whole is thereby shown not to be context free.
Note that the non-context free language {zz | z € {a,b}"} is a subset of the
context free (indeed, regular) language {a,b}".

Recently, however, evidence has appeared for the non-context freeness
of Swiss German which seems unassailable on either formal or empirical
grounds (Shieber, 1985). Swiss German, like its much studied cousin Dutch,
allows cross-serial order in dependent clauses. Sentences like the following
are grammatical:

504 CHAPTER 18

(18-6) Jan sait das mer em Hans es huus hélfed aastriiche
John said that we Hans-Dat the house—Acc helped paint
“John said that we helped Hans paint the house ”

(18-7) Jan s8it das mer d’chind em Hans es huus 16nd halfe aastriiche
John said that we the childrten — Acc Hans — Dat the house - Acc

let help paint
“John said that we let the children help Hans paint the house.”

The NP’s and the V’s of which the NP’s are objects occur in cross-serial or-
der: in (18-7) d’chind (“the children”) is the object of lénd (“let”), em Hans
is the object of halfe (“help”), and es huus (“the house”) is the object of aas-
triiche (“paint”). Furthermore, the verbs mark their objects for case: Hélfe
requires dative case, while lénd and eastriiche require accusative Sentences
in which the case marking does not follow this restriction are uniformly re-
jected by native speakers as ungrammatical. (Since case marking is unlikely
to be accounted for semantically or pragmatically, this avoids the empirical
trap mentioned above) It also appears that there are no limits other than
performance constraints on the length of such constructions in grammatical
sentences of Swiss German. Shieber then intersects Swiss German with the
regular language:

(18-8) R = Jan siit das mer (d’chind)*(em Hans)* es huus haend wele
(laa)* (halfe)* aastriiche

John said that we (the children)* (Hans)* the house have
wanted to (let)*(help)* paint

(Here the haend wele (“have wanted to”) is present in order to put all the
succeeding verbs in their infinitive forms. Schieber shows that this insertion
does not affect grammaticality judgments.)

The result of intersecting R and Swiss German is all sentences of the following
form:

(18-9) L = Jan séit das mer (d’chind)”(em Hans)™ es huus haend wele
(laa)™ (halfe)™ aastriiche

where the number of nouns in the accusative case matches the number of

EXERCISES 505

verbs requiring this case and similarly for the dative case, and all accusative
case nouns (except the constant “es huus”) precede all dative case nouns and
all accusative-case marking verbs precede all dative-case marking verbs, The
strings of this sublanguage of Swiss German are of the form wa™b™zc”d™y,
which can be shown to be non-context free by the Pumping Theorem. Since
the context free languages are closed under intersection with a regular lan-
guage, this demonstrates fairly convincingly that Swiss German is not con-
text free.

Note that the formal difficulty mentioned above has been avoided. The
sublanguage of Swiss German shown to be non-context free is not merely a
subset of the original but a subset obtained by intersection with a regular
language The latter operation preserves context freeness while the operation
of simply selecting a subset in general does not.

Attempts to arrive at the corresponding results for Dutch could not suc-
ceed because Dutch does not have verbs with differing case-marking proper-
ties which can occur in arbitrarily long cross-serial dependent clauses.

Exercises

1. Construct context free grammars generating each of the following lan-
guages.

(a) L; = a™™a™(n,m > 1)

(b) Ly = a™p™a™b™(n,m > 1)

(¢) Lz ={z |z € {a,b}” and z contains twice as many b’s as a’s }
(d) Ly = {2z® |z € {a,b}"}

(e) Ly ={z € {a,b}" | 2 = =}

2. Show that for every context free grammar there is an equivalent gram-
mar in which all productions are of the foom A — BC or A — a
(A,B,C in Vy, a in Vp). Such a grammar is said to be in Chomsky
Normal Form (Chomsky, 1959).

3. Show by means of the Pumping Theorem that the following languages
are not context free,

(2) {a*’|(n > 1)}
(b) {a"|n is prime (i.e., divisible only by 1 and by itself)}

506

CHAPTER 18

Given a language L we define the reversal of L, denoted L%, as {zf |
z € L}, where z® is the reversal of z. Show that the context free
languages are closed under reversal,

Construct a deterministic pda which accepts the language (ab)™(ed)™
for all » > 1. (The parentheses are not part of the language nor do
they indicate optionality; they are used in the expression above only
for grouping.)

Construct a deterministic pda which accepts every string of the form
zc, where g is a string of a’s and b’s of length 0 or more in which the
total number of a’s is exactly equal to the total number of 4.

Construct a non-deterministic pda which accepts every string which is
of the form a™ba™ or of the form a*™ba™ for all n > 1

Is the union of the languages of two determinsitc pda’s necessarily the
language of some deterministic pda? Justify your answer.

Show by means of the Pumping Theorem for context free languages
that a'b?¢™ex(9) is not context free, where max(¢,7) is the larger of 4
and j.

