Chapter 17

Finite Automata, Regular
Languages and Type 3
Grammars

17.1 Finilte automata

A finite automaton (fa), or finite state automaton (fsa), is an abstract com-
puting device that receives a string of symbols as input, reads this string one
symbol at a time from left to right, and after reading the last symbol halts
and signifies either acceptance or rejection of the input. At any point in its
computation a fa is in one of a finite number of statess The computations
of a fa are directed by a “program,” which is a finite set of instructions for
changing from state to state as the automaton reads input symbols. A com-
putation always begins in a designated state, the initial state. There is also
a specified set of final states; if the fa ends up in one of these after reading
the input, it is accepted; otherwise, it is rejected.

It may help to visualize a finite automaton as composed of (1) a control
box, which at any point in the computation can be in one of the allowed
internal states, and (2) a reading head, which scans a single symbol of the
input. In Fig 17-1 we have represented a fa in its initial state, gg, at the
beginning of its computation of the input string abaab.

Let us suppose further that the set of states for this fa is {¢o,¢:} and that
the set of final states is {¢;} (We could have made the initial state a final
state also, but we have not chosen to do so here.) We specify the program
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Figure 17-1.

for this fa as a set of triples of the form (g¢;, z,¢;), where ¢; and g¢; are states
and z is a symbol of the alphabet—here, {a,b}. Instructions are interpreted
in the following way: when the fa is in state g; reading a symbol z on the
input tape, it changes to state g; (possibly identical to ¢;) and advances the
reading head one symbol to the right. The instruction for the now current
state and symbol is then carried out, and the process is repeated until there
are no more symbols to be read. Here are the instructions for our example:

(17”1) (QDs aa‘lo)
(QD, b: 91)
(Qh a:‘]l)
(QIa ba QD)

Thus, from the initial situation shown in Fig. 17-1 the fa would first execute
the instruction (go, a, ¢o) and find itself in the following situation:

(17-2)

do

Now the instruction (go, b, 1) is applied to produce:

(17-3)

01

and so on. You should now be able to verify that after reading the final
symbol b, the fa is in state gg, and since this is not a final state, the input
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is rejected. It should also be easy to determine that the input ab would be
accepted, while aa is rejected.

Problem: Describe the set of all tapes accepted by this fa

What would happen if the fa of our example were given the empty string
as input? In such a case, the input tape has no symbols on it, and so no
instructions can be applied—there being nothing to read. Thus, the initial
situation is identical to the final situation, and since the initial state, gg, is
not a final state, this input is rejected. Note that to say that a machine
accepts the empty string as part of its language is far different from saying
that the language accepted is empty The latter means that it accepts neither
the empty string nor any other string An automaton with no final states
would, for example, accept no strings and thus would be said to accept the
empty language.

One might wonder how a finite automaton would behave if there were no
instruction applicable at a particular point or if there were more than one
instruction which could be applied. Such questions will arise with the so-
called non-deterministic automata, which we consider below For now, we
will be concerned only with deterministic fa’s, in which there is one and only
one instruction for each combination of state and scanned symbol. As the
name suggests, the behavior of such an automaton is completely determined,
given the input tape and the initial state.

17.1.1 State diagrams of finite automata

A convenient representation for a fa, called a state diagram, can be con-
structed in the following way. Each state is represented by a circle labelled
with the name of the state For each instruction (¢;, z, ¢;) an arrow is drawn
from the ¢; circle to the gy circle and labelled with symbol z. Final states are
enclosed by an additicnal circle, and the initial state is marked by a caret
The state diagram for our example fa is shown in Fig 17-2.

With such a diagram it is easy to trace the steps of a computation like that
for abaab in the example above The fa starts in state gg and returns to ¢
reading an a. The b takes it to state ¢;; the next two a’s leave it in ¢;; and
the final b returns it to gp. Since gy is non-final, the string is not accepted.

It is also somewhat easier to see from the state diagram than from the
list of instructions in (17-1) that this fa accepts exactly the strings over the
alphabet {a, b} containing an cdd number of b’s
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Figure 17-2.

17.1.2 Formal definition of deterministic finite automata

DEFINITION 171 A deterministic finite automaton (dfa) M is a quintuple
(K: 2: 5: do: F}: where

K is a finite set, the set of states
¥ is a finite set, the alphabet

go € K, the initial state

F C K, the set of final states

& is a function from K X X into K, the transition function (or next-state

function).
|

Note that the property of determinism is expressed in this definition by the
fact that § is a function; that is, for all ¢ € K and all ¢ € X, §(g,0) has a
unique value,

In order to express formally what it is for a dfa to accept an input string,
we Introduce the notion of a situation of a dfa. This is intended to be
essentially a “snapshot” of the dfa and its input tape at any point during
a computation. We represented situations above by diagrams such as Fig.
17-1, but we now want a more compact notation. The essential information
to be captured is (1) the current state of the automaton; (2) the input tape;
and (3) the position of the reading head. A convenient representation of this
information is in the form of a triple (z, ¢, ¥), where ¢ is the current state and
z and y are the portions of the input string to the left and right of the reading
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head, respectively In this notation, the symbol being scanned is the left-
most symbol, if any, of ¥ Thus, the diagram in (17-3) would be represented
as (ab, ¢1, aab), and the sequence of situations in the computation of abaab
would be as follows:

(17-4) (e, qo,abaab) + (a,qo,baadb) +~ (ab,q1,aab) + (aba,q1,ad) F
(abaa,q1,b) F (abaab, g0, €)

Here we have used the symbol F (the ‘turnstile’) to indicate that one situation
leads to another by a single move of the automaton. We will define this
formally below, Note that at the beginning of the computation the string
to the left of the reading head is empty, and likewise for the string to the
right at the end of the computation. In formal terms, a situation of a dfa is
defined as follows:

DEFINITION 17.2 Given a dfa M = (K, X%,6, ¢, F), a situation of M is a
triple (z,q,y), where ¢ € K and z,y € ¥~ [}

This definition allows situations for a given A which are not actually at-
tainable in the course of any computation by M. For example, (aa, ¢;, abb)
would be a situation of our example dfa, but it is not a situation which can
be reached from the initial situation (e, go, aaabb) by the given transition
function of the automaton. It is convenient, nonetheless, to define the notion
of situation in this overly broad way and to focus on attainable situations in
our definition of acceptance.

Let us define, for a given dfa M, a binary 1elation on situations which
we will call produces-in-one-move. Situation A produces situation B in one
move just in case by applying one instruction in § to A we produce situation
B. Any two adjacent situations in (17-4) would stand in this relation, for
example. Formally, we have:

DerInITION 173 Given a dfa M = (K, %, 6,90, F), a situation (z, ¢, y)
produces situation (z’, ¢’, y') in one move iff (1) there is a ¢ € ¥ such that
y = oy and 2’ = zo (i.e, the reading head moves right by one symbol), and
(2) §(g,0) = ¢ (ie, the appropiiate state change occurs on reading c) M

Problem: In general, is the produces-in-one-move relation reflexive? sym-
metric? transitive?
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As noted above, we indicate by the turnstile that two situations stand in
this relation; thus (z,¢,v) F (2, ¢, ¢')

Once again, this definition is permissive in that it allows pairs of situa-
tions to stand in the produces-in-one-move relation whether or not either is
attainable from some initial situation in the course of a computation For
example, in the dfa above, (aa,q;,abb) - (aaa,q;,bb), despite the fact that
neither situation could arise from (e, go, aaabbd).

As a final step before giving a formal definition of acceptance, we extend
the previously defined relation to a new binary relation: “produces in zero
or more steps.” We say that a situation A produces situation B in zero or
more steps (or simply A produces B) iff there is a sequence of situations
SoF S F ... F S, such that A = Sg and B = S (k > 0) (If k£ = 0,
there is only one situation in the sequence, and A = B; thus, every situation
produces itself in zero or more moves ) This relation is reflexive (as we have
just seen) and transitive; in fact, it is in formal terms the reflezive, transitive
closure of the produces-in-one-move relation. This is just the produces-in-
one-move relation (for a given dfa) with enough pairs added to it to make it a
reflexive and transitive relation. We will denote this relation by (‘turnstile
star’) Wemay also add a subscript M to this or to the turnstile if necessary
to emphasize the fact that the relation is defined with respect to a particular
automaton M; thus, Iy, or %} Referring again to 17-4, we see

(17-5) (a, g0, baab) ¥ (aba,q1,ab) and (ab,qq, aab) K (ab, g1, aab)

but neither of these would be true if ¥ were replaced by F. Acceptance of a
string by dfa is now easy to define formally:

DErINITION 174 Given adfa M = (K,X,8,q90, F) and a string ¢ € ¥*, M
accepts z iff there is a ¢ € F such that (e, g, ) IjT,[ (z,q,€), |

And finally:

DEFINITION 17.5 Given a dfa M = (K,X, 8,40, F), the language accepted
by M, denoted L(M), is the set of all strings accepted by M . ]
17.1.3 Non-deterministic finite automata

We now consider what happens if we relax the requirement that the next
move of a fa always be uniquely determined. Departures from determinism
can occur in two ways:
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(i} for a given state symbol pair, there may be more than one next state
(i1} for a given state symbol pair, there may no next state at all

There is an additional generalization from the deterministic case which, while
it is strictly speaking not a departure from determinism, is often included in
the definition of non-deterministic fa’s:

(iii} transitions of the form (¢;, w, ¢;) are allowed, where w € L*; i.e., the fa
can read a string of symbols in one move; and in particular,

(iv) transitions of the form (g;, e, ¢;) are allowed; i.e., the fa can change state
without moving the reading head.

An example of a non-deterministic fa which illustrates all four of these con-
ditions is shown in Fig 17-3.

Figure 17-3.

The behavior of a non-deterministic fa is defined as follows: an input
tape is accepted iff there is some path through the state diagram which
begins in the initial state, reads the entire input, and ends in a final state.
In the fa of Fig. 17-3, for example, abb is accepted by virtue of the path from
go (reading ab) to ¢; and then to ¢s (reading b}. The fact that there is also a
path reading abb which ends in ¢, is irrelevant; only the existence of at least
one accepting path is required. On the other hand, ba is not accepted since
there is no path through the state diagram which succeeds in reading the
entire string. Likewise, aba is not accepted. Note, however, that the string
a is accepted by the path leading from ¢¢ to ¢s (reading no input) and then
again to gs (reading an a).



462 CHAPTER 17

17.1.4 Formal definition of non-deterministic finite automatg

Formally, a non-deterministic fa is identical to a dfa except that the transi-
tion function becomes a relation

DEFINITION 17.6 A non-deterministic finite automaton (nfa) M is a quin-
tuple {K, X, A, qo, F), where K, %, qo, and F, are as for a dfa, and A, the
transition relation, is a finite subset of K x ¥ x K (ie., a relation from
K x X* into K ). |

The fact that A is a relation, but not necessarily a function, allows for
conditions (i) and (ii) above. The fact that it is arelation from K X X" rather
than from K x ¥ allows for condition (iii) and its special case (iv). Because
of the infiniteness of ¥*, a relation from K x ¥* to K is itself potentially
infinite; we stipulate that it must be a finite subset of K x ©¥* X K in order to
retain the notion of a finite machine; i.e., an automaton with a finite number
of states and a finite number of instructions in its program. Note that by
this definition dfa’s are a proper subclass of nfa’s,

The definitions of situation, produces-in-one-move, etc. are sirnilar to
those for dfa’s.

DEFINITION 17.7 A situation is any triplein 8" XK x¥* (z,q,y) F (2',¢',9")
is true iff there exists a string z € ¥* such that 2’ = zz, y = zy’, and
(g,2,¢") € A, ]

DEPINITION 17.8 Produces, ie., I—*, is the reflexive, transitive closure of the
relation, and, as before, an nfa M accepts astringz € X~ iff (e, qo, :z:)ll—:;(m, g,e)
for some g € F. ]

The language accepted is, of course, the set of all strings accepted.

17.1.5 Equivalence of deterministic and non-deterministic fi-
nite automata

One might expect that when fa’s are allowed the extra degrees of freedom
inherent in non-determinism, significantly more powerful devices would be’
the result. Surprisingly, this is not the case. nfa’s accept exactly the same
class of languages as dfa’s; or in other words, for every nfa there is an
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Figure 17-4.

equivalent dfa—equivalent in the sense that both accept exactly the same
set of strings. (The equivalence in the other direction is trivial, every dfa
being a fortiori a nfa.) An example of a dfa which is equivalent to the nfa
in Fig. 17-3 is shown in Fig 17-4.

A dfa will typically have more states that an nfa to which it is equivalent.
The dfa works by essentially keeping track, in its states, of the set of states
that the nfa could be in if it followed all possible paths simultaneously on
a given input. There is in fact an algorithm for converting any nfa into an
equivalent dfa, but it is too long to be included here. It can be found in
Chomsky and Miller (1958), Rabin and Scott (1959), Hopcroft and Ullman
(1979), and Lewis and Papadimitriou (1981).

In view of the equivalence of dfa’s and nfa’s, one might wonder why we
bother to consider nfa’s at all. For one thing, nfa’s are generally easier to
construct than dfa’s Thus, it might be simpler to show that a given language
is of the sort accepted by a fa by devising an nfa which accepts it. We will
in fact make use of this convenience in proving certain theorems about fa’s
below., For another thing, determinism and non- determinism are notions
which arise in connection with other classes of automata to be considered
later, and, as we will see, the two varieties are not always equivalent in these
cases.
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17.2 Regular languages

We will say that a language is a finite automaton language (fal) just in case
there is some fa which accepts it. We know, for example, that {z € {a,b}" |
z contains an odd number of b's} is such a language by virtue of the fact
that we exhibited an fa accepting this language in Fig 17-2 above. Consider,
however, the general problem of deciding whether a given language L is a fal
or not. Suppose we try to construct a fa accepting L, but all our attempts
result in failure. We would not be justified in concluding that L is not a fal,
of couse, since we might succeed in our attempts with renewed persistence or
perhaps a bit of luck. It would be useful if we had another way to characterize
this class of languages which does not depend on our ingenuity, or lack of it,
in constructing fa’s. To that end, we define a class of languages, called regular
languages, which turn out to be provably identical to the class of fal’s, Since
these languages are defined (recursively) by reference to operations on sets of
strings rather than to acceptance by automata, we have another interesting
and potentially useful approach to these languages. In the next section, we
prove a theorem which is used primarily to show that a given language is
not an fal We will need a preliminary definition:

DerINITION 179 Given two sets of strings, A and B, the concatenation (or
set product) of A and B, denoted A - B (or just AB), is the set of strings
{t"ylz € Aandy e B} N

For example,
(17-6) if A = {a,b} and B = {cc,d}, then AB = {acc, ad, bec,bd}

Note that the concatenation of two sets of strings is itself a set of strings, in
contrast to the Cartesian product of two sets (of anything), which is a set of
ordered pairs. We should also note that, according to the definition, if one
of the sets is empty, the concatenation is also empty.

Recall also that the notation A* is used to denote the set of all strings
formed over the alphabet A. This is a special case of an operation called
closure or Kleene star on a set of strings: given a set of strings 4, the Kleene
star or closure of 4, denoted A™, is the set formed by concatenating members
of A together any number of times (including zero) in any order and allowing
repetitions For example,
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(17-7) {a,bb}" = {e, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba,. ..}.

Note that our original notation treated the members of the alphabet as
strings of length 1. We are now 1eady to give the definition of the regular
languages.

DEFINITION 17 10 Given an alphabet X:

1. @ is a regular language.

2 For any string ¢ € ¥*, {z} is a regular language.
3. If A and B are regular languages, so ~1’s AUB.

4. If A and B are regular languages, so is AB.

5. If A is a regular language, so is A",

6. Nothing else is a regular language unless its being so follows from 1-5.
|

For example,

(17-8) Let ¥ = {a,b,c}. Then since aab and cc are members of £*, {aab}
and {cc} are regular languages. So is the union of these two sets,
viz., {aab, cc}, and so is the concatenation of the two, viz, {aabcc}.
Likewise, {aab}”, {cc}”, and {aab,cc}”, are all regular languages,
etc.

Another way to state the definition is to say that the regular languages
(over a given alphabet) are just those which can be obtained from the empty
language and the ‘unit’ languages (those containing just one string) by re-
peated application of the operations of union, concatenation, and Kleene
star. Thus, to show that a given language is in fact regular, we indicate
how it can be built up out of empty or unit languages by these cperations.
For example, the language {z € {a,b}” | = contains an odd number of b’s}
is a regular language since an equivalent representation of this language is
{a}" {6} {a}"-({b}{a}"-{b} {a}")*. In writing such expressions, it is usual to
render them less cumbersome by suppressing the braces around sets and the
dots in concatenation; extra parentheses can also be dispensed with in view
of the associativity of union and concatenation. The previcus expression in
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this pared-down notation would be: a“ba™(ba*ba™)* Such expressions are
called regular expressions We note also that the set of all strings in {a,b}"
which contain exactly two or three b’s is a regular language since it can be
represented (as a regular expression) as a*ba“ba™ U a”ba™ba"ba™, or equiv-
alently as a*ba“ba™(e U ba™). Note, finally, that {e} is a regular language
since it is equal to 0~

Having thus characterized the regular languages, we want to show that
they are in fact identical to the finite automaton languages

THEOREM 17.1 (Kleene) A set of strings is a finite automaton language if
and only if it is a regular language |

We will sketch the proof of one half of this theorem; i.e , that every fal is a
regular language. The proof of the converse is too complex to give here, but
can be found in works such as Hopcroft and Ullman (1979) and Lewis and
Papadimitriou (1981).

First, we show that the empty language and the unit languages (for a
given L) are fal’s. The empty language is accepted by the one-state fa in Fig.
17-5(a), and for each z in ¥*, a fa of the form shown in Fig. 17-5(b) accepts
the language {z} (Note that these fa’s are in general non-deterministic.)

a) b)

OO

Figure 17-5.

Next we show that the fal’s are closed under the operations of union, concate-
nation, and Kleene star. From this it will follow that the fal’s are included
in the regular languages.

We will indicate how, given any two fa’s accepting languages L; and Lo,
we can construct fa’s accepting, respectively, Ly U Lqg, L1 L, and L7

Suppose, for example, we are given the following fal’s:

Ly = ab*a; that is, all strings beginning and ending with an a with
any number of b’s between them.
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Lo = all strings in {a,b}” containing exactly two b’s.

These are fal’s since they are accepted by the fa’s in Figs. 17-6 and 17-7,
respectively.

b
M O)
Figure 17-6.
a a

Figure 17-7.

To form a fa accepting the union of L; and Ly we first relabel the states
of one of the fa's so that all have distinct names—Ilet us suppose that we
add primes to the states of M, Now we introduce a new start state, g{,
and establish e-transitions, i.e., changes of state reading the empty string,
from ¢f to the old start states, go and ¢}, Everything else, including the
final states, remains the same. The resulting automaton Mj is shown in Fig,
17-8.
M3 of course is non-deterministic. From its initial state it can go without
reading any input to go, from which point it acts like M, or it can go to ¢}
and then behave like M,. Given a string ¢ which is in L; U L, there will be
an accepting path in M3 corresponding to one (or both) of these possibilities.
If z is not in L, U L, it is not accepted on any path in Mz,

It should not be difficult to see that the method of construction is general
and can be applied to any two fa’s. This is the basis of the proof that the
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Figure 17-8.

fal’s are closed under union.

The demonstration that the fal’s are closed under concatenation is sim-
ilar, except that the automata are hooked together “in series” rather than
“in parallel.” To construct a fa accepting L; - La, we relabel the states of
M, if necessary, to make them distinct from those of M, and then run e
transitions from all final states of M; to the initial state of M4. Final states
of M; now become non-final, but final states of M5 remain. The result for
our examples M, and M, above, would be as shown in Figure 17-9.

Figure 17-9.
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M} accepts Ly Lg as follows Given z, it will be accepted just in case
z = wz, where w would be accepted by M; (in state ¢;) and z would be
accepted by My (going from state g to state g5 ) If  is not in Ly L,, there
will be no factorization of z into wz such that w would be accepted by M;
and z accepted by My and thus no accepting path through M} Again, the
method 1s general and does not depend on the particular characteristics of
automata M; and M, Note, however, that if M; had more than one final
state, we would have e-transitions from each of them to the initial state of
M, and all these states would become non-final in the resulting fa

Finally, we want to show that the fal’s are closed under the Kleene star
operation; that is, we want to take an automaton accepting L and convert
it into an automaton accepting L~ The strategy here is to establish e-
transitions from all the final states back to the initial state so that the new fa
can “recycle,” accepting an input string z,z, ... 2, just in case the original
fa would have accepted z; and z5 . and z,. There is a slight difficulty,
however, in connection with the acceptance of the empty string, which is of
course a member of L™ for any language L.

One would naturally want to insure that e is accepted by making the
initial state a final state if it isn’t already However, in certain cases this
can lead to trouble Consider, for example, the following fa accepting the
language a(b U baa)™b:

Figure 17-10.

If we were simply to add an e-transition from g5 to ¢g so that the fa could
“recycle” and make gp a final state, we would have:
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Figure 17-11.

M’ accepts e, as required, but it also accepts aba, which is not in (a(b U
baa)*b)* Rather, what we should do is add a new initial state to M, which
will also be a final state, and establish an e-transition from ¢, back to the
old initial state, go:

Figure 17-12.

Returning now to the examples M; and M, above, we see that this method
of construction would produce the fa’s in Fig. 17-13, accepting LT and L3,
respectively.

This completes our informal demonstration that every finite automaton
language is a regular language. As we have said, we will not attempt to show
the converse here, It relies essentially on a procedure for extracting from any
given fa a representation of the language it accepts. This representation can
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be shown to involve only the empty and unit languages together with the
operations of union, concatenation, and Kleene star, and thus, that every
fal is a regular language.

17.2.1 Pumping Theorem for fal’s

Consider an infinite fal L. By definition, it is accepted by some fa M, which,
again by definition, has a finite number of states. But since L is infinite,
there are strings in L which are as long as we please, and certainly L contains
strings with more symbols than the number of states in M. Thus, since M
accepts every string in L, there must be a loop in M —in particular, a loop
which lies along a path from the initial state to some final state, In other
words, in accepting a string longer than the number of states of M, M must
enter some state more than once, and a path leading from such a state back
to that state constitutes a loop along an accepting path.

Let ¢ be the string of symbols which M reads on going from its initial
state to the state at the beginning of some loop (call it ¢;). Let y be the
string read by M in going around the loop once, i.e, from g¢; to the first
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re-entry to ¢;. Finally, let z be the string read on going from ¢; to some final
state. Thus, zyz 1s accepted by M

But now notice that any loop lying along an accepting path can be tra-
versed any number of times—zeroc or more—and the result will still be an
accepting path. Therefore, if M accepts zyz in the way indicated, it will
also accept zz,zyyz, 2yyyz, . .., in fact all strings of the form zy™z for n > 0,
Finally, we observe that if L is an infinite language (so that there is no upper
bound on sentence length), there has to be some loop along an accepting
path in M such that ¥y # ¢ Otherwise, M could not accept strings of length
greater than the number of states of M. These observations are summarized
in the following theorem, known as the Pumping Theorem (for fal’s) because
the string y is said to be “pumped”, i.e , 1epeated with each traversal of the
loop recognizing it.

THEOREM 17.2 If L is an infinite fal over alphabet X, then there are strings
T,y,z € X" such that y # e and zy™z € L for all n > 0. n

As an example, consider the language
(17-9) {=z € {a,b}" | z contains an odd number of b’s }

Since this is an infinite fal, the Pumping Theorem applies. Hence, there
exist strings z, ¥, and z (y # e) such that 2y™z € L for alln > 0 Many
examples of such strings could be found; to take just one, let z = e, y = bb,
and z = ab. Then it is true that ab, bbab, bbbbab, bbbbbbab, .. ., aze all in L;
that is (bb)"ab € L for all n > 0. For some choices of z, y, and z, this will
not be true, but that doesn’t matter: the theorem guarantees only that at
least one choice for z, ¥, and z exists such that the specified condition holds.

The usefulness of this theorem lies in its application to languages which
are not fal’s. Suppose we have a language [ which is infinite and for which
we could somehow show that for no choice of z, y, and =z (y # e) whatsover
is it the case that zy™z € L for all n > 0. In such a situation we would be
justified in concluding that L is not a fal. Here we are using the theorem
in its contrapositive form. As stated, it 1s a conditional: If L is an infinite
fal, then so-and-so. The contrapositive is: if not-so-and-so, then L is not an
infinite fal. For example, consider the language

(17-10) L = {a™b" | n > 0}
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and let us show that it is not a fal using the Pumping Theorem. If L were
a fal, there would be some z, ¥, and z (y # e) such that zy™z € L for all
n > 0 We show that no such z, y, and z exist.

The string zyz would have to be in L, so what could y consist of? It
can’t be empty, so it would have to consist of (1) some number of a’s, or (2)
some number of b’s, or (3) some number of a’s followed by some number of
b’s. It is easy to see that (3) is impossible because any string that contains
more than one repetition of y, e g, zyyz, will contain b’s preceding a’s—the
b’s at the end of the first ¥ and the a’s at the beginning of the next—which
could not be a string in L. So such a choice of y is not pumpable.

What about case (1)7 Here all the b’s are contained in the z part, and as
y is pumped, the number of a’s in the string will increase while the number of
b’s remains constant Thus, we will continually be producing strings which
have more a’s than b’s in them, which cannot be in the language a™b™.

Case (2) is parallel, but here the number of b’s outstrips the number of
a’s. These are the only logical possibilities for the choice of y, and since none
meet the condition laid down in the Pumping Theorem, we conclude that
no such z, y, z exist for this language Conclusion: a™b™ is not a fal

What we have just done, then, is to show that there is no fa accepting
a™b™ without actually attempting to construct such an automaton.

One should also note that the Pumping Theorem does not yield partic-
ularly useful information when one shows that the consequent of the con-
ditional is true. If we were to consider the language L = {z € {a,b0}" | z
contains equal numbers of a’s and b’s in any order } and observe that for
z =—e, y = ab, and z = e it is the case that zy™z € L for all n > 0, this
would tell us nothing about whether L is a fal or not. Given A — B and
B, we can conclude nothing about the truth or falsity of A. As it happens,
the language just mentioned is not a fal The moral is that the Pumping
Theorem may be useful in showing that certain languages are not fal’s but
may not prove useful in other cases, even though the languages in question
are in fact not fal’s.

17.3 Type 3 grammars and finite automaton lan-
guages
We now want to examine the fal’s from the point of view of grammars which

generate them. Recall our previous discussion of formal grammars as con-
sisting of Vr, the terminal vocabulary; Vi, the non-terminal vocabulary; S,
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the initial symbol; and R, a set of rules or productions. The various types
of grammars differ in the form of productions they may contain, and here
we want to focus our attention on Type 3 grammars, also called right linear
grammars, in which each production is either of the form A - 2B or A — ¢,
where A and B are in Vy and z is any string in V7. That is, each rule of a
Type 3 grammar has a single non-terminal on the left side, and on the right
a string of terminals (possibly empty) followed by at most one non-terminal
symbol An example is shown in (17-11)

(17-11) G = {(Vr,Vy, S, R}, where V¢ = {a,b}; Vv = {5, 4, B}; and

(S > ad )
A aA
R:{Aﬁw3>
B — bB
(B—b

An example of a derivation by this grammar is shown in (17-12):

(17-12) S = aA = aad = aabbB = aabbbB = aabbbb

The phrase-structure tree associated with this derivation is shown in Fig.
(17-14).

It is evident from this tree why the Type 3 grammars are also called
right linear: the non-terminal symbols form a single linear sequence down
the right of the tree. (There is also a class of grammars called left linear
in which every rule is of the foorm A — Bz or A — z. The more general
class of linear grammars has every rule of the foorm A — zBy or A — =z,
ie., the right side of each rule has at most one non-terminl symbol but
it need not to be left-most or right-most in the string. What we will say
here about right-linear grammars could equally well be formulated in terms
of left-linear grammars—they are equivalent in generative capacity. Linear
grammars, however, generate a larger class of languages.)

Note that in a derivation by a right-linear grammar there is exactly
one non-terminal symbol at the right end of each string until the last one,
at which point a rule of the form A — =z is applied and the derivation
terminates. This observation suggests an analogy to finite automata: the
one non-terminal symbol at the right side of a string is like the state of a fa
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Figure 17-14.

in that the future course of the derivation or computation can depend only on
the identity of that state or symbol and the given productions of the device
in question. In particular, the past history, i.e., the string already read by
the fa or the string already generated by the grammar, has no influence on
the future course of events,

Let us then associate with each rule of a Type 3 grammar of the form
A - zB a transition in a (non-deterministic) fa from state A to state B
reading z. Further, let us associate each rule of the form A — 2z with a
tranisition from state A reading z to a designated final state F'. The initial
state of the automaton will, of course, be S. Carrying out this construction
for the grammar in (17-11) gives:

It should be reasonably easy to convince oneself that this fa accepts the
same language as that generated by the grammar in (17-11). Moreover,
the method is general and can be applied to any given Type 3 grammar to
produce an equivalent fa. ‘Equivalent,” of course, means that the language
accepted by the fa is the same as the language generated by the Type 3
grammar.

On further consideration, we see that there is no reason why we should
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a b
S F—.
Figure 17-15.

consider fa’s only as acceptors of languages. We might as well think of an
fa as a language generator which starts in an initial state, moves from state
to state emitting, or writing, symbols on an output tape, and halting at
will in either a final or non-final state. If the fa halts in a final state, the
output string is said to be generated; otherwise, it is not generated. The state
diagram of a fa is the same whichever way we want to look at it, and the same
language would be accepted by a given fa acceptor as that generated by the
fa regarded as generator. From this point of view, then, non-deterministic
fa’s and Type 3 grammars are virtually isomorphic representations.

Problem: How could one construe a Type 3 grammar as accepting rather
than generating strings, i.e., how would the rules and derivations be inter-
preted?

What we have just argued (without giving a formal proof) is that every
Type 3 language is a fal. To show the converse is equally easy, but the
construction proceeds in the opposite direction. Given a fa, we use its in-
structions to create the rules of a Type 3 grammar in the following way For
each transition (g, , ¢;), we put in the grammar a rule ¢; — z¢;. Thus,
the states of the fa become non-terminal symbols of the grammar, and the
alphabet of the fa becomes the terminal alphabet of the grammar Finally,
for each transition (g;,z,q;) where g; is a final state, we also add to the
grammar the rule ¢; — = If we carry out this construction on the fa in
(17-1), we get the following grammar:

(17-13) G = (Vr,Vn, g0, R), where Vr = {a,b}; Vy = {go, 01 }; and
do—=ag @1 —bg
R=<g0—=bq go—b
1 > a6Qq;r g1 >0
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A derivation of the string aaba by this grammar would be as follows:

(17-14) g0 = ago = aago = aabq, = aaba

The reader may find it instructive to compare this with an accepting com-
putation for aaba by the fa in (17-1).

To be rigorous we wauld have to give a proof that the method of construc-
tion just outlined does indeed produce a grammar equivalent to the original
fa, but we will not do so here since the equivalence is intuitively evident
The main point is that we now have three quite different characterizations
of the same class of languages: the languages accepted (or generated) by
(deterministic or non-deterministic) finite automata, the regular languages,
and the languages generated by Type 3 grammars It is always useful to
view mathematical objects from different perspectives; our understanding
is enhanced, and new methods of proof are opened up. We also come to
realize that we are dealing with a coherent, and in some sense “natural”
mathematical class.

17.3.1 Properties of regular languages

We also gain in understanding of mathematical objects when we ascertain
their behavior under various sorts of operations. Since languages are sets,
it is natural to ask how they behave when subjected to certain set-theoretic
manipulations. We have already seen, for example, that the class of fal’s
(= regular languages = Type 3 languages) is closed under the operation of
union: ie., the union of any two fal’s is also a fal. Similarly, we know that
the fal’s are closed under concatenation and Kleene star, What about the
operations of complementation and intersection?

Given a regular language L € ¥™, its complement, ie., £* — L, is also
regular How can we show it? Given our equivalent characterizations of this
class of languages, we can make use of whichever one is most convenient for
what we want to prove. In this case, the desired result is easiest to show
with finite automata.

Let M be a deterministic fa accepting L. Construct a new fa M’ from
M by interchanging final and non-final states. That is, M’ is identical to
M except that all final states are now non-final and vice versa. M’ is also
deterministic. Now M and M’ read any input string in the same way, in the
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sense that for a given string they go through the same state transitions. The
only difference is that when M accepts (ends in a final state), M’ rejects
(ends in a non-final state), and when M rejects, M’ accepts. Thus, M’
accepts the complement of L, which is therefore also a fal.

For example, applying this construction to the fa of (17-1), we obtain the
following deterministic fa which accepts {z € {a,b}” | = contains an even
number of b’s} This is clearly the complement of the original language.

Figure 17-16.

Problem: Why wouldn’t this procedure work in general if the original fa were
not deterministic?

It now follows that the regular languages are also closed under inter-
section, since for any sets X and ¥, X NY = (X' UY') by DeMorgan’s
Laws In more detail, if X and Y are regular languages, then so are their
complements, X’ and Y’, as we have just seen The union of the latter,
X'UY' is also regular, and the complement of the last set is also regular,
ie, (X'UY'), whichis equal to X NY

Given then that the regular languages are closed under union, intersec-
tion and complementation, and that the empty language and £~ (for any
given alphabet X) are regular, we have the result that the regular languages
over any fixed alphabet form a Boolean algebra (see Ch. 12). This gives us
some information about the class of regular languages but does not provide a
complete characterization since there are other sets of languages which also
form Boolean algebras (e.g., the set of all languages over a given alphabet)
which are not regular.

Another frequently encountered problem concerning mathematical ob-
jects is this: What questions about them can be answered by algorithm?
Or to put it another way, do there exist procedures which can be applied
mechanically to any instance of one of these objects to yield an answer to a
particular sort of question in a finite time?
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An example of this sort of consideration as applied to finite automata
would be: Given a fa M and a string z, can it be determined whether
M accepts z or not? The answer in this case is yes One procedure for
answering this question would be the following. Given M, convert it to an
equivalent deterministic fa M’ (if M is not already deterministic.) There
is an algorithm for performing this conversion, as we mentioned earlier If
z € ¥*, we know it cannot be accepted, since it contains symbols not in
the alphabet of M’ If z € ¥*, trace the computation of z by M’ There
is a unique path through the state diagram of M’ reading ¢ which ends in
some state g; If ¢; is a final state, = is accepted; otherwise, z is rejected
Since the first part of the algorithm will yield an equivalent deterministic
fa in a finite amount of time, the number of states of M being finite, and
the second part will be accomplished in a finite number of steps, viz , the
number of symbols of z, the procedure outlined is guaranteed to terminate
after a finite time with the correct answer This is an algorithmic solution
to the so-called membership question for fal’s,

Another example of a question about fa’s which has an algorithmic so-
lution is the emptiness gquestion: given an fa M, does it accept any strings
at all” One could proceed as follows If M is not deterministic, make it
so. The result is A’, which necessarily has a finite number of states and
a finite number of transitions. M’ accepts at least one string just in case
there is a path in its state diagram from the initial state to some final state
Furthermore, if there is any accepting path in M, there is an accepting path
without loops in it (Any path with loops can also be traversed by going
through each loop zero times.) Since the number of states and state connec-
tions is finite, there are only a fimite number of loop-fiee paths to examine to
determine whether any ends in a final state One could imagine systematic
ways of looking at the paths, but the essential part here is not the relative
efficiency of the process but only that it is a finite task, Thus, there is an
algorithmic solution to the emptiness question for fa’s.

Similarly, one might ask of a given fa, does it accept all strings in X~7
This can be reduced to the previous question by noting that ¥ is the com-
plement of . Given M, make M deterministic if it isn’t already, to produce
M’. Interchange final and non-final states of M’ to produce M". Apply the
algorithm for answering the emptiness question to M”. M" accepts @ iff M’
accepts X~

Problem: Given two fa’s, M, and My, show that there is an algorithm for
answering the question, is L(M;) C L(M,) (Hint: X CY if (X NY') =0)
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Is there an algorithmic solution to the question of whether two fa’s accept
the same language?

17.3.2 Inadequacy of right-linear grammars for natural lan-
guages

Is English a regular language? We can prove that it is not, using the Pumping
Theorem and the fact that regular languages are closed under intersection.

We assume that all the following are grammatical (although in some
cases surely incomprehensible) English sentences:

1) The cat died.

(17-15) (1)
(2) The cat the dog chased died.
(3)
(4)

3) The cat the dog the rat bit chased died.
4) The cat the dog the rat the elephant admired bit chased died.
etc,

These are all of the form:

17-16) (the + common noun)™ (transitive verb)™ ! intransitive verb
(

Let us take some finite set A of common noun phiases of the form the 4
common noun:

(17-17) A = {the cat, the dog, the rat, the elephant, the kangaroo,. }

Let us also choose a finite set B of transitive verbs:

(17-18) B = {chased, bit, admired, ate, befriended, ...}

Thus, the strings illustrated in (17-15) are all of the form:

(17-19) z"y™ ! died, where ¢ € A and y € B.

The language L consisting of all such strings, of which the sentences in (17-
15) are members, is easily shown not to be regular. The proof uses the
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Pumping Theorem and is very similar to the proof that {a™b™ | n > 0} is
not 1egular.

L is the result of intersecting English (considered as a set of strings) with
the regular language A”B~{died}. Since the regular languages are closed
under intersection, if English were regular, L would be also. Thus, English
is not regular

The demonstration that English is not a finite automaton language was
one of the first results to be achieved in the nascent field of mathematical
linguistics (Chomsky, 1956; 1957, Chapter 3), although Chomsky did not use
this particular method of proof, nor did he focus on the particular subset
of English exemplified in (17-15). Rather, he pointed out that English has
a certain number of constructions such as either.. .or, 1f . then, and the
agreement between the subject of a sentence and the main verb, which can
be thought of as obligatorily paried correspondences or dependencies. (In
sentences of the form Fither S; or S5, we cannot substitute then or and for
or, for example, and similarly, we cannot replace then in If 51 then S3 by
and or or, etc , and produce a grammatical sentence ) Further, these depen-
dencies can be found in grammatical sentences nested one inside the other
and to an arbitrary depth. Chomsky and Miller (1963) cite the following
example in which the dependencies are indicated by subscripts:

(17-20) Angyone; who feels that if; so-manys more, students; whom weg
haven’tg actually admitted ares sitting in on the course than, ones
we have thaty the room had to be changed, theny probably auditors
will have to be excluded, is; likely to agree that the curriculum
needs revision.

This structure of nested dependencies finds an analog in the strings of a
language like {zz® | 2 € {a,b}*} (recall that z? denotes the reversal of the
string z) TIn strings of this language, the i** symbol from the left must match
the 7* symbol from the right as indicated in the diagram of Fig 17-17:

The language zz? can be shown not to be regular by first intersecting it
with the regular language aa™bbaa* to give {a™b%a™ | n > 1} and showing
that the latter is not regular by means of the Pumping Theorem.

This result illustrates one sort of practical result that can sometimes be
obtained from the study of formal grammars and languages. A linguistic
theory proposes that the grammar of every natural language is drawn from
some infinite class G of generative devices. (This is just to say that the
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Figure 17-17

linguistic theory specifies, as it should, the form that grammars may take.)
Such a theory is supported, but not of course proven true, by each succesful
prediction, ie., whenever we are able to show that a grammar from G is
adequate for some natural language. On the other hand, repeated failure
to find an adequate grammar in G for, say, Swahili might raise doubts but
would not suffice to prove the theory wrong Since G is an infinite set, as
it will be in all interesting cases, failure after a finite number of attempts
may reflect only ineptness or bad luck. In certain cases, however, we may be
able to demonstrate conclusively that a linguistic theory is inadequate for
one or more natural languages, as we just did for the theory of right linear
grammears vis-a-vis English. We are then justified in concluding that the
theory is inadequate in principle and can be removed from consideration as
a viable proposal

Exercises

1. Consider the following state diagram:

¥os
oS

Figure 17-18.
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(a) Which of the following strings are accepted by the machine?
(i) 01011
(ii) 0011
(iii) 11001101
(iv) 01010111111

(b) Describe as simply as possible the language accepted by the au-
tomaton.

. Consider the following set of transition rules:

(SD,O) - So (53,0) - So
(S0,1) = 51 (853,1) — Sy
(51,0) — 52 (54,0) — So
(Sl,l) i S3 (54,1) - Ss
(82,0) — So  (S5,0) — So
(859,1) = 57 (S5,1) — S5

Final states: Sg, Ss.

(a) Draw a state diagram for this automaton
(b) Describe the set of input strings accepted by the automaton.

(¢) Draw a state diagram for an automaton which is equivalent to
this one but which has four states.

. Construct state diagrams for finite automata which accept the follow-
ing languages using as few states as possible:

(a) The set of all strings containing a total of n 1’s, where n is con-
gruent to 1 (modulo 3) (i.e., the remainder when n is divided by
3is 1),

(b) The set of all strings containing a total of exactly two 1’s,

(¢) The set of all strings which contain a block of at least three con-
secutive 1’s, e.g.,
010111001  but not 0101011011
001111100 0011011000
1101110111 1101100101

(Note that once such a block occurs, it is irrelevant what comes
later.)
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(d)

(e)

CHAPTER 17

The set of all strings which contain no block of more than one
consecutive 0 nor any block of more than one consecutive 1, e.g |

0 but not 0101101
e 11

101 11010
101010

0101

The set of all strings which contain the substring 101 anywhere
within them

(f)* The set of all strings in which the total number of 0’s is congruent

to the total number of 1’s modulo 3 (see part (a) above).

4. Consider non-deterministic finite automata whose input alphabet is
{the, old, man, men, is, are, here, and}.

(a)
(b)

(c)

5. (a)

(b)

Construct a state diagram for an automaton which accepts the
following language: {the man is here, the men are here}.

Do the same for the following language: {the man is here, the
men are here, the old man is here, the old men are here, the old
old man is here, the old old men are here,. ..}

Construct a state diagram for an automaton which accepts all
the sentences in (b) plus all those formed by conjoining sentences
with and, e.g., the old man is here and the old old men are here
and the men are here

Construct a state diagram for an automaton which accepts the
terminal language of the following grammar. (The input alphabet
is {a,b,c}; it does not include § or C')

=585 S—bb

S—ala C— Cc

S-sbCb C—c

S——>aa

Draw a diagram for an automaton whose language is that of part
(a) plus the empty string

6. Show how, given any finite automaton, you can construct an equiva-
lent one which has no transition arrows leading to the initial state



EXERCISES 485

All automata asked for in exercises 7 and 8 may be non-deterministic,
and of course must be finite state. The input alphabet is to be {0, 1}

7. (a) Construct an automaton A which accepts any string which con-
tains no 1’s.

(b) Construct an automaton B which accepts any string which con-
tains an odd number of 1’s, with any number (including zero) of

0.
(¢) Construct an automaton C which accepts the union L{A)U L(B)

(d) Construct an automaton D which accepts the complement L(C')’.
(Caution: first find a deterministic equivalent of C.) Describe

L(D) in words
8. (a) Construct an automaton A which accepts any string which con-
tains no block of four or more consecutive 1’s

(b) Construct an automaton B which accepts any string which con-
tains no block of three or more consecutive {’s.

(¢) Construct an automaton C which accepts the intersection L{A)N
L(B)

9. Find a regular expression for the language of:

(a) Exercise 4a (above)
(b) Exercise 4b.
(c¢) Exercise 4c.
(d) Exercise 3b.

(e) Exercise 3e.

10. Draw a state diagram for a finite automaton corresponding to the
following regular expressions.

(a) 010*1

(b) (01071)"

(c) (01071)*1

(d) (010°1)°1(0 U 1)*
(e) 1(01071)~
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(f) 1(010*1)*(0 U 1)* (Hint: this one can be done by a simpler ma-
chine than any of the others.

11. Construct Type 3 grammars that generate each of the following lan-
guages Assume a fixed terminal vocabulary Vp = {a, b}

(a) L, = {aa,ab, ba, bb}

(b) L, = {z | = contains any number of occurrences of ¢ and b in any
order }

(¢) Ls = {z contains exactly two occurrences of a, not necessarily
contiguous}

(d) Ls = {z | 2 contains exactly one occurrence of a, or exactly one
occurrence of b, or both}

(e) Ls = {z | ¢ contains an even number of a’s and an even number
of b’s} (Zero counts as even )

(f) Le = Lan Ls

12. Construct finite automata (non-deterministic) accepting each of the
languages in Exercise 11.



