Chapter 16

Basic Concepts

16.1 Languages, grammars and automata

At one level of description, a natural language is simply a set of strings—
finite sequences of words, morpheme, phonemes, or whatever. Not every
possible sequence is in the language: we distinguish the grammatical strings
from those that are ungrammatical. A grammar, then, is some explicit
device for making this distinction; it is, in other words, a means for selecting
a subset of strings, those that are grammatical, from the set of all possible
strings formed from an initially given alphabet or vocabulary.

In this chapter we will consider two classes of formal devices which can
function as grammars in this very general sense: (1) automata, which are
abstract computing machines, and (2) string rewriting systems, which gen-
erally bear the name “grammar” or “formal grammar”. The latter will be
familiar to linguists inasmuch as grammars in this sense have formed the
basis of much of the work in generative transformational theory.

We begin by considering certain properties of strings and sets of strings.
Given a finite set A, a string on (or over) A is a finite sequence of occurrences
of elements from A. For example, if 4 = {a, b, ¢}, then acbaab is a string on
A. Strings are by definition finite in length. (Infinite sequences of symbols
are also perfectly reasonable objects of study, but they are not suitable as
models for natural language strings.) The set from which strings are formed
is often called tbe wvocabulary or alphabet, and this too is always assumed
to be finite. The length of a string is, or course, the number of occurrences
of symbols in it (i.e., the number of tokens, not the number of types). The
string acbaab thus is of length 6.

433



434 CHAPTER 1b

Because we are dealing with tokens of an alphabet, there is an impor-
tant difference between the linearly ordered sequences we call strings and a
linearly ordered set If the set 4 = {a,b,c} were linearly ordered, say, as
b — a — c, each element of A would occupy a unique place in the ordering,
In a string, e g., achaab, tokens of a, occur in the first, fourth, and fifth
positions

To be formal, one could define a string of length n over the alphabet
A to be a function mapping the first n positive integers into A. For exam-
ple, acbaab would be the function {(1,a),(2,¢),(3,b),(4,a), (5,a),(6,b)}
There is little to be gained in this case by the reduction to the primitives of
set theory, however, so we will continue to think of strings simply as finite
sequences of symbols. A string may be of length 1, and so we distinguish the
string b of length 1 from the symbol b itself. We also recognize the (unique)
string of length 0, the empty string, which we will denote e (some authors
use A). Two strings are identical if they have the same symbol occurrences
in the same order; thus, acb is distinet from abe, and strings of different
length are always distinct

An important binary operation on strings is concatenation, which
amounts simply to juxtaposition. For example, the strings abca and bac can
be concatenated, in the order mentioned, to give the string abcabac. Some-
times concatenation is denoted with the symbol “”” thus, abca” bac. Con-
catenation is associative since for any strings a, 8,7,(a” 8) v = a” (87 v),
but it is not commutative, since in general @” 8 # 8 a. The empty string is
the identity element for concatenation;ie., for any string @, a” e=¢ a=
a.

Given a finite set A, the set of all strings over A4, denoted A*, together
with the operation of concatenation constitutes a monoid. Concatenation is
well-defined for any pair of strings in A™ and the result is a string in A™; the
operation is associative; and there is an identity element ( A”,” ) fails to be
a group since no element other than e has an inverse: no string concatenated
with a non-empty string z will yield the empty string. Since concatenation
is not commutative, ( 4%, ) is not an Abelian monoid.

A frequently encountered unary operation on strings is reversal. The
reversal of a string z, denoted z%, is simply the string formed by writing the
symbols of z in the reverse order. Thus (acbab)® = babca. The reversal of
e is just e itself To be formal, we could define reversal by induction on the
length of a string:



LANGUAGES, GRAMMARS AND AUTOMATA 435

DEFINITION 16.1 Given an alphabet A;

(1) Ifz is a string of length 0, then zf = z (i.e, efl = ¢)

(2) If z is a string of length k + 1, then it is of the form wa, wherea € A
and w € A*; then z® = (wa)? = aw?.
|

Concatenation and reversal are connected in the following way: For all
strings z and ¥, (27 ¥)® = y® " 2. For example,

(16-1) (bcaca)? = (ca)® " (bca)? = ac " ach = acach

Given a string z, a substring of  is any string formed from continguous
occurrences of symbols in z taken in the same order in which they occur
in . For example, bac is a substring of abacca, but neither bcc nor ¢b is
a substring. Formally, ¥ is a substring of z iff there exist strings z and
w such that z = 27y  w. In general, z or w (or both) may be empty,
so every string is trivially a substring of itself. (Non-identical substrings
can be called proper substrings.) The empty string is a substring of every
string; i.e., given z we can choose z in the definition as e and w as @ so that

~

r=¢ e z

An initial substring is called a prefiz, and a final substring, a suffiz.
Thus, ab is a (proper) prefix of abacca, and cca is a (proper) suffix of this
string.

We may now define a language (over a vocabulary A) as any subset of
A*. Since A is a denumerably infinite set, it has cardinality R,; its power
set, i.e., the set of all languages over 4, has cardinality 2% and is thus non-
denumerably infinite. Since the devices for characterizing languages which
we will consider, viz., formal grammars and automata, form denumerably
infinite classes, it follows that there are infinitely many languages—in fact,
non-denumerably infinitely many—which have no grammar., What this means
In intuitive terms is that there are languages which are such motley collec-
tions of strings that they cannot be completely characterized by any finite
device. The languages which are so characterizable exhibit a certain amount
of order or pattern in their strings which allows these strings to be distin-
guished from others in A* by a grammar or automaton with finite resources.
The study of formal languages is essentially the investigation of a scale of



436 CHAPTER 16

complexity in this patterning in strings. For example, we might define 3
language over the alphabet {a,b} in the following way:

(16-2) L = {z | z contains equal numbers of a’s and b’s (in any order)}
We might then compare this language with the following:

(16-3) L, = {z € {a,b}" | 2 = a™b™(n > 0)}, i.e, strings consisting of
some number of a’s followed by the same number of b’s
Ly, = {z € {a,b}* | = contains a number of a’s which is the square
of the number of b’s}

Is Ly or Ly in some intuitive sense more complex than L? Most would
probably agree that L, is a more complex language than L in that greater
effort would be required to determine that the members of a’s and b’s stood
the “square” relation than to determine merely that they were equal In
other words, a device which could discriminate strings from non-strings of
Ly would have to be more powerful or more “intelligent” than a device for
making the comparable discrimination for L.

What of Ly and L7 Here our intuitions are much less clear. Some might
think that it would require a less powerful device to recognize strings in L
reliably than to recognize strings in L;; others might think it is the other way
around or see no difference. As it happens, the particular scale of complexity
we will investigate (the so-called Chomsky Hierarchy) does regard L, as more
complex than L but puts L; and L in the same complexity class. At least this
is so for the overall complexity measure. Finer divisions could be established
which might distinguish Ly from L "

One linguistic application of these investigations is to try to locate nat-.
ural languages on this complexity scale. This is part of the overall task of
linguistics to characterize as precisely as possible the class of (potential and
actual) natural languages and to distinguish this class from the class of all
language-like systems which could not be natural languages. One must keep
clearly in mind the limitations of this enterprise, however, the principal one
being that languages are regarded here simply as string sets. It is clear that_'_ff
sentences of any natural language have a great deal more structure than
simply the concatenation of one element with another. Thus, to establish a
complexity scale for string sets and to place natural languages on this scale.
may, because of the neglect of other important structural properties, be to
classify natural language along an ultimately irrelevant dimension. Extend-



GRAMMARS 437

ing results from the study of formal languages into linguistic theory must
therefore be done with great caution.

16.2 Grammars

A formal grammar (or simply, grammar) is essentially a deductive system of
axioms and rules of inference (see Chapter 8), which generates the sentences
of a language as its theorems. By the usual definitions, a grammar contains
just one axiom, the string consisting of the initial symbol (usually §), and a
finite number of rules of the form 1 — w, where 9 and w are strings, and the
interpretation of a rule is the following: whenever 9 occurs as a substring
of any given string, that occurrence may be replaced by w to yield a new
string. Thus if a grammar contained the rule AB — CDA, we could derive
from the string EBABCC the string EBCDACC.

Grammars use two alphabets: a terminal alphabet and a non-terminal
alphabet, which are assumed to be disjoint. The strings we are interested
in deriving, i.e., the sentences of the language, are strings over the terminal
alphabet, but intermediate strings in derivations (proofs) by the grammar
may contain symbols from both alphabets. We also require in the rules of
the grammar that the string on the left side not consist entirely of terminal
symbols. Here is an example of a grammar meeting these requirements:

(16~4) Vr (the terminal alphabet) = {a, b}
Vn (the non-terminal alphabet) = {S, A, B}
S (the initial symbol—a member of Vi)

(S — ABS )
S —e
AB — BA

R (the set Ofrlﬂes)‘<BA->AB >
A —a
B —b /

A common notational convention is to use lower case letters for the terminal
alphabet and upper case letters for the non-terminal alphabet.

A derivation of the string abba by this grammar could proceed as follows:

(16~-5) S == ABS == ABABS == ABAB =—> ABBA —> ABbA ==
aBbA => abbA = abba



438 CHAPTER 16

Here we have used the symbol “=” to mean “yields in one rule application.”
Note that abba is not subject to further rewriting inasmuch as it consists
entirely of terminal symbols and no rule licenses rewriting strings of termi-
nals. The sequence (16-5) is said to be a derivation (of abba from §), and
the string abba is said to be generated by the grammar. The language gener-
ated by the grammar is the set of all strings generated. Here are the formal
definitions:

DEFINITION 16.2 Let ¥ = Vr U Vy. A (formal grammar G is a quadruple
(Vr,Vn,S,R), where Vr and Vi are finite disjoint sets, S is a distinguished
member of Vi, and R is a finite set of ordered pairs in X*VyX™ x X~. N

We have written ¢ — w above for clarity instead of (¢, w). The last condition
simply says that a rule rewrites a string containing at least one non-terminal
as some (possibly empty) string.

DEFINITION 16,3 Given a grammar G = (Vr,Vy, S, R), a derivation is a

sequence of strings zi,Zs,...,Zn (n > 1) such that z; = S and for each
z; (2 < i < n), z; is obtained from z;_; by one application of some rule in
R. |

To be completely formal, we would spell out in detail what it means to apply
a rule of R to a string. The reader may want to do this as an exercise.

DEFINITION 16.4 A grammar G generates a string ¢ € Vp if there is a
derivation z1,...,2, by G such that z,, = z. |

Note that by this definition only strings of terminal symbols are said to be
generated.

DEeFINITION 16.5 The language generated by a grammar G, denoted L(G),
is the set of all strings generated by G. =

The language generated by the grammar in the example of (16-4) is {z €
{a,b}" | z contains equal numbers of a’s and b’s }.



TREES 439

S
NP \VP
DA V/\Np
| N

Poss Det N

|
H’]ly sister found Art

|

a unicorn

Figure 16-1: A typical constitutent
structure tree

16.3 Trees

When the rules of a grammar are restricted to rewriting only a single non-
terminal symbol, it is possible to contrue grammars as generating constituent
structure trees rather than simply strings. An example of such a tree is shown
in Fig. 16-1.

Such diagrams represent three sorts of information about the syntactic struc-
ture of a sentence:

1. The hierarchical grouping of the parts of the sentence into constituents
2. The grammatical type of each constituent

3. The left-to-right order of the constituents

For example, Fig. 16-1 indicates that the largest constitutent, which is la-
beled by S (for Sentence), is made up of a constituent which is a N(oun)
P(hrase) and one which is a V(erb) P(hrase) and that the noun phrase is
composed of two constitutents: a Det(erminer) and a N(oun), ete. Further,



440 CHAPTER 16

in the sentence constituent the noun phrase precedes the verb phrase, the
determiner precedes the noun in the noun phrase constituents, and so on.
The tree diagram itself is said to be composed of nodes, or points, some of
which are connected by lines called branches Each node has associated with
it a label chosen from a specified finite set of grammatical categories (S, NP,
VP, etc.) and formatives (my, sister, etc ). As they are customarily drawn,
a tree diagram has a vertical orientation on the page with the nodes labeled
by the formatives at the bottom Because a branch always connects a higher
node to a lower one, it is an inherently directional connection This direc-
tionality is ordinarily not indicated by an arrow, as in the usual diagrams of
relations, but only by the vertical orientation of the tree taken together with
the convention that a branch extends from a higher node fo a lower node.



16.4 Grammars and trees

As we have said, if a grammar has only rules of the form A — 1, where
A is a nonterminal symbol, there is a natural way to associate applications
of such rules with the generation of a tree. For example, if the grammar
contains the rule A — aBec, we can associate this with the (sub)tree in Fig.
16-5.

in which A immediately dominates a,B, and ¢, and the latter three elements
stand in the precedence relation in the order given. Further, if the grammar



(iii) for each subtree of the form A

GRAMMARS AND TREES

Figure 16-5.

Figure 16-6

(i) the root is labelled with the initial symbol of the grammar

(i) the yield is a string of terminal symbols

A

Qg «-. Qn

ately dominates a; . .. ay, there is a rule in the grammar A — a;

447

also contains the rule B — ba, we can apply this rule at the node labelled
B in the preceding tree to produce the tree shown in Fig. 16-6.

Let us define the yield of a tree as the string formed by its leaves ordered
according to the precedence relation. The yield of the tree in Fig. 16-6, for
example, is abac; that of Fig. 16-5 is aBc. We can now say:

DEFINITION 16 10 A grammar (having all rules of the form A — 1) generates
a tree iff all the following hold:

in the tree, where A immedi-

Q.



448 CHAPTER 16

>m
>

A B A B
AN N
aAb]|3b

e b

>U,
>U,

A B A B
e B b a A b b
b e
Figure 16-7

Thus the grammar G = ({a,b},{S, 4, B}, S, R) where

S—~AB B - Bb
R=C(A—aAb B —b

A—=e

generates trees such as those in Fig. 16-7. We can further say that a string
is generated by such a grammar iff it is the yield of some tree which is gen-
erated. The language generated is, as usual, the set of all strings generated.
For grammars in which there is only a single symbol on the left side of each
rule, this definition and the earlier definition of generation of a string turn
out to be equivalent: a string is generated (by the earlier definition) iff it is
the yield of some generated tree.

Problem: What language is generated by the above grammar?

Such grammars have interested linguists precisely because of the possi-



GRAMMARS AND TREES 449

bility of specifying a constituent structure tree for each string generated In
attempting to write such grammars for natural languages, however, linguists
have noted that often such rules are not universally applicable but may be
allowed only in certain contexts. For example, a rule rewriting Det(erminer)
as many might be applied only if the following noun were a plural form.
Such considerations led to the investigation of formal grammar rules of the
form A — ¢/a_f, where the “/” is read “in the context”, and where “_”
marks the position of the A The interpretation of such a rule is that the
symbol A can be replaced by the string ¢ in a derivation only when the
string a immediately precedes A and the string § immediately follows 4
The context specifications are not necessarily exhaustive: additional sym-
bols may occur to the left of the a and to the right of §. For example, if the
rule were A — aBc¢/C_Dec, then the string BECADcbA could be rewritten
as BECaBcDcbA

Such rules are called contezi sensitive in contrast to rules of the form
A — 1), which are called contezt free A context free rule, thus, is a context
sensitive rule in which the context is null

A context sensitive rule A — 7//a_f can also be written as a Af — ayf
in conformity with the schema for grammar 1ules generally. So long as
we regard these grammars as string rewriting systems the notations are
interchangeable: in either case we may replace A by ¥ when we find the
substring a A, However, if we want to think of context sensitive rules
as generating trees, the two representations may not be equivalent, For
example, the rule CABD — (CAaBD could be construed either as 4 —
Aa/C_BD oras B — aB/CA_D, and the associated trees would obviously
differ depending on whether an A node or a B node was expanded.

Another problem which arises is how the context restriction is to be
satisfied by the tree. If we think of the rules as specifying how one tree
1s to be converted into the next in a derivation, then does a rule such as
A — aBc¢/C_D mean that the C and D must be leaves immediately to the
left and right, respectively, of A when the rule is applied, or is it sufficient
that the C immediately precede the A and the D immediately follow, without
necessarily being leaves along with A? Under the latter interpretation, the
following derivational step would be allowed, but by the former it would not.



450 CHAPTER 16

ﬂ\ﬂ/\
\é

@)
b
w
o

b.j___.

w__.
9’\
(wyj

Note also that in the definition of tree derivation by means of context free
rules in Def 16-10 above, we essentially thought of the trees being somehow
given in advance and then checked for well-formedness by the grammar rules.
That is, the rules served as so-called “node admissibility conditions” rather
than as directions for converting one tree into another In the context free
case, the two points of view are equivalent, but this is not the case for context
sensitive rules. For example, the grammar

(16-6) S — AB
A—al_b
B —b/a_

will generate the tree

Figure 16-8.

if the rules are interpreted as node admissibility conditions but not if they
are interpreted as tree generating rules (the problem being that the A cannot
be rewritten until the B has, and vice versa. &



THE CHOMSKY HIERARCHY 451

16.5 The Chomsky Hierarchy

By putting increasingly stringent restrictions on the allowed forms of rules
we can establish a series of grammars of decreasing generative power. Many
such series are imaginable, but the one which has received the most attention
is due to Chomsky and has come to be known as the Chomsky Hierarchy.
At the top are the most general grammars of the sort we defined above in
Section 16.2. There are no restrictions on the form of the rules except that
the left side must contain at least one non-terminal symbol (Actually, even
this restriction could be eliminated in favor of one which says simply that
the left side cannot be the empty string. The formulation we have chosen is
essentially a technical convenience) Chomsky dubbed such grammars ‘Type
0,’ and they are also sometimes called unrestricted rewriting systems (urs)
The succeeding three types are as follows:

Type 1: each rule is of the form a A8 — ayf, where ¢ # e.
Type 2: each rule is of the form 4 — 7.

Type 3: eachruleis of the form A - zB or A — z

In the above a, 3, and 7 are arbitrary strings (possibly empty unless oth-
erwise specified) over the union of the terminal and non-terminal alphabets;
A and B are non-terminals, and z is a string of terminal symbols

Type 1 grammars are also called contezt sensitive; an equivalent formu-
lation is to say that each rule is of the form ¥ — w, where w is at least
as long as 1) (ie, the rules are “non-shrinking”). Type 2 grammars are
called contezt free, and Type 3 grammars are called regular or right linear
for reasons which will become apparent in the next section,

Note that these classes of grammars do not form a strict hierarchy in the
sense that each type is a subclass of the one with the next lower number.
Every Type 1 grammar is also a Type 0 grammar, but because rules of the
form A — e are allowed in Type 2 grammars, these are not properly con-
tained in Type 1. Type 3 grammars, however, are properly contained in the
Type 2 grammars. It is nonetheless apparent, technical details concerning
the empty string aside, that the hierarchy represents a series of generally
increasing restrictions on the allowed form of rules.

The question then arises whether the languages generated by such gram-
mars stand in an analogous relationship. We say that a language is of Type



452 CHAPTER 16

n(n = 0,1, 2, o 3)iff it is generated by some grammar of Type n. For
example, we saw in Section 16.2 that L = {z € {a,b}" | = contains equal
numbers of a's and b’s} is of Type 0 inasmuch as it is generated by the gram-
mar given in 16-4 But one might wonder whether it could also be generated
by a grammar of some other type—say of Type 2 This is indeed the case;
this language is generated by the following Type 2 grammar:

(16-7) G = {{a,b},{S, A, B}, S, R) where

(S — e A=—a )

S—aB A—aS
R=< S—-04 A—-04A )
B—-b B -—aBB
. B — bS )

This fact immediately establishes this language as Type 0 also, since every
Type 2 grammar is perforce a Type 0 grammar. (It does not at the same
time establish it as a Type 1 language since the given grammar is not Type 1,
because of the rule § — e In fact, this language could not be Type 1 since
Type 1 languages can never contain e.)

Is this language also Type 37 It turns out that it is not, but to prove this
is not a simple matter. One must show somehow that no Type 3 grammar,
however elaborate, can generate this language. We will consider techniques
for proving such results in later sections.

Note that if one has two classes of grammars G; and G; such that G; is
properly contained in Gj, it does not necessarily follow that the correspond-
ing classes of languages stand in the proper subset relation. Because every
Type 7 grammar is also a Type i+ 1 grammar it does follow that every Type ¢
language is also a Type ¢ + 1 language,ie., L; C L;+y. But it might also be
the case that every Type ¢+ 1 language happens to have some Type ¢ gram-
mar which generates it. In such a case L; is a subset of L;1; but not a proper
subset. Among the earliest results achieved in the study of formal grammars
and languages were proofs that the inclusions among the languages of the
Chomsky hierarchy are in fact proper inclusions. Specifically,

(i) the Type 3 languages are properly included in the Type 2 languages;

(ii) the Type 2 languages not containing the empty string are properly
included in the Type 1 languages;

(iii) the Type 1 languages are properly included in the Type 0 languages.



LLANGUAGES AND AUTOMATA 453

Some of the proofs will be sketched in the following chapters

16.6 Languages and automata

As we mentioned at the beginning of this section, languages can also be
characterized by abstract computing devices called automata. Ultimately we
will define a hierarchy of automata and establish correspondences between
them and the grammars of the Chomsky Hierarchy. This gives us yet another
point of view from which to examine the notion of ‘complexity of a language’
which we hope eventually to put to use in characterizing natural language.

Before turning to the detailed study of the various classes of automata,
it would be well to make a few general remarks about these devices.

An automaton is an idealized abstract computing machine—that is, it is
a mathematical object rather than a physical one An automaton is charac-
terized by the manner in which it performs computations: for any automaton
there is a class of inputs to which it reacts, and a class of outputs which it
produces, the relation between these being determined by the structure, or
internal organization of the automaton We will consider only automata
whose inputs and outputs are discrete (e.g., strings over an alphabet) rather
than continuous (e g , readings on a dial), and we will not deal with automata
whose behavior is probabilistic

Central to the notion of the structure of an automaton is the concept
of a state. A state of an automaton is analogous to the arrangement of
bits in the memory banks and registers of an actual computer, but since
we are abstracting away from physical realizations here, we can think of a
state as a characteristic of an automaton which in general changes during
the course of a computation and which serves to determine the relationship
between inputs and outputs. We will consider only automata which have a
finite number of states (cf a computer whose internal hardware at any given
moment can be in only one of a finite number of different arrangements of
1’s and 0’s.)

An automaton may also have a memory. For the simplest automata, the
memory consists simply of the states themselves. More powerful automata
may be outfitted with additional devices, generally “tapes” on which the
machine can read and write symbols and do “scratch work.” Since the
amount of memory available on such tapes is potentially unlimited, these
machines can in effect overcome the limitations inherent in having only a



454 CHAPTER 16

finite number of states. We will see that the most powerful automata, Turing
machines, are capable in principle of performing any computation for which
an explicit set of instructions can be given

Automata may be regarded as devices for computing functions, i.e., for
pairing inputs with outputs, but we will normally view them as acceptors,
i.e., devices which, when given an input, either accept or reject it after some
finite amount of computation. In particular, if the input is a string over
some alphabet A, then an automaton can be thought of as the acceptor of
some language over A and the rejector of its complement. As we will see, it
is also possible to regard automata as generators of strings and languages in
a manner similar to grammars



