7.6 Formal and informal proofs

We may apply the principles developed in the preceding section on Natural
Deduction to the proof of statements about sets, Note that A C B, for
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example, is a statement which asserts that a certain two-place predicate,
4s a subset of’, holds of a particular pair of sets, A and B. That this
is customarily written A C B instead of C (A4, B) is merely a notational
convention of set theory. Similarly, ¢ € A is an open statement containing
the variable z in which “€ A” functions as a one-place predicate (3z)(z € A)
is then a statement asserting that A is not empty The Axiom of Extension
(two sets are equal if they have the same members) might be written as
(WX, Y X =Y & (Vz)(z € X 2z €Y))

The following is a proof showing formally that (VX,Y) (X =Y « (X C
Y &Y C X)) (two sets are equal iff each is a subset of the other) follows
from the Axiom of Extension as premise:

(7—52) i (VX,Y)(X =Y & (V:c)(:c ceXozeE Y))
2. Vi=Vaeo (Ve)zeVyoeele) 1, UL (twice)
3. i=Thoo(Vz)((zeVi—zeW)&(zetr—ze )
2, Bicond.
4 V=V (Ve)(z eV »zeV2)&(Ve)(z € Vo — 2 € 1}))
3, Quant. Distr. (Law 4)
5. %:V2H(I/1 g%&VZ (_:V1) 4, Definition Of(_:

In step 5 we have simply replaced two subexpressions of line 4 by their
abbreviated forms.

6. (WX, )X =Y & (XCY&Y CX))5, UG (twice)

Line 6 thus can be added to our stock of true statements about sets in general
(cf Fig 1-7).

As another illustration of a proof of a set-theoretic proposition we demon-
strate the following (which was asserted without proof in Ch. 1, Sec. 4):

For any sets X,Y, and Z, if X is a subset of Y and Y is
a subset of Z, then X is a subset of Z.

In symbols,
(7-83) (VX,Y,Z) (X CY&Y CZ)—-XC2Z)

Our demonstration uses a conditional proof:
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(7-54)

=

VN CVh&Va C Vs Aux Premise
2. {(Ve)z ey >z eVa)&(Va)(z €V — z € Va)

1, Def. of C

3. |(Ve)(zeVimeeVo)&(zeVe— z€Vs))

2, Quant. Distr. (Law 2)

4, ((veVisveW)&(vela—veVs) 3, UL

5 veEV; s veEV, 4, Simp.

6. |[veEVLa—-vEV; 5, Simp.

7. vEeEV, -veEV; 5, 6, H.S.

8 | (Vz)(zeVs >z € V) 7, UG.

9 VWCVs &, Def. of C
10. hCV&VaCVs) -V, CVs 1-9, C.P.

1. (vX,Y,2) (X CY&Y C Z)— X C Z)
10, U.G (three times)

7.7 Informal style in mathematical proofs

Mathematicians rarely present proofs in the completely formal style we have
been using since they can assume that their audience is familiar enough
with logical equivalences and rules of inference to require only an outline of
the essential steps. We have already used this style of presentation in earlier
sections (see, for example, Chapter 3, Sec. 6). Such an informal proof should
be easily expanded into a fully formal version that can be checked step by
step if there is any doubt concerning its validity. Thus, the term “informal”,
when applied to proofs, does not mean “sloppy”, only “condensed”.

To illustrate, we give (7-54) as a mathematician might write it:

(7-55) Let X,Y, and Z be arbitrary sets such that X C Y and Y C Z.
Let ¢ be an arbitrary member of X. Because X C Y,z € Y; and
because Y C Z, z € Z. Therefore, z € X — ¢ € Z, and thus
XCZz

Observe that no explicit mention is made of UI and U.G., it being
understood from the context and use of the word ‘arbitrary’ that the result
is true of all sets. In the last two sentences of the proof it is assumed that
the reader knows the definition of C and the inference rule of Hypothetical
Syllogism. The whole is in the form of a conditional proof headed by the
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statement X C Y &Y C Z, but it is left to the reader to draw the conclusion
(X CY&Y CZ)— X C Z and to generalize it universally.

As another example, we state the definition of ‘proper subset’ and give
both formal and informal proofs of a theorem containing this predicate.

(7-56) (VX,Y)X CY & (X CY&X #£Y))

The expression X # Y is an alternative notation for ~(X = Y). Sim-
flarly, X € Y, X ¢ Y, and ¢ € Y can be written in place of ~(X C V),
~(X CY),and ~(z € Y), respectively. The predicate C in (7-56) is defined
in terms of the predicates C and =, which can in turn be expressed in terms
of the predicate €, thus:

(7-587) (VX Y)XCY o ((vVe)(zeX »z€eY)&
~(Vz)(z € X - z€Y)))

We wish to prove:

For any sets X and Y, if X is a proper subset of Y, there
is some member of ¥ that is not a member of X.

That is,

(7-58) (VX,Y)X CY — (Jz)(z €Y &z ¢ X))

(7-59) Proof (formal):

1. |ViCW, Aux. Premise
2 |V CVa&Vy £ V5 1, Def. of C
3. |47 2, Simp.
4. | ~(Vi CTR &V, C V) 3, (7-52) above
5. WWZWhvihEen 4, DeM.
6. |1 CV, 2, Simp.
7. (V2" 5,6, D.S.
8. | ~(Ve)(zeVa—>2€eN) 7, Def. of C
9. | (Bz)~(zeVy »zeWy) 8, Quant. Neg.
10. [(Fz)~(z ¢ Vave e ) 9, Cond.
11 | (Zz)(z € Va &z ¢ 1) 10, DeM.
12 iCVa—(Fz)(z € Vakz g W) 1-11, Cond. Proof

13, (VXYY X CY - (Ze)(zeY &z g X)) 12, U.G. (twice)
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(7-60) Proof (informal): Let X and Y be arbitrary sets such that X C ¥
Then, by definition, X CY and X #Y. X =Y if X CY and
Y C X. Therefore, since X #Y and X C Y, it follows thatY € X,
which implies that there is some z in Y that is not in X.

As a final example we give formal and informal versions of a proof in-
volving binary relations:

For any binary relation R, R = (R7)"1.

We make use of the result proved in (7-52), ie., for all sets X and Y,
X =Y iff (X CY&Y C X). Thus we first prove R C (R™*)7?, then that
(R~1)~1 C R. (This is the customary procedure in showing equality of two
sets.)

(7-61) Proof (formal):
1| (v,m) €V Aux. Premise
[{vy,vs) is an arbitrarily chosen ordered pair in the
arbitrarily chosen binary relation V]
2. | WR)Vz,y)({z,y) € R < (y,z) € R7?) Def. of inverse
ev-?

3. | (Ve,y){z,y) € V & (y,z) 2, UL

4, | {v1,v2) €V & {vg,v,) € V71 3, U.L (twice)

5 ({vy,v2) EV — {vg,vy) e V1) & 4, Bicond.
((v2,01) € V7 = (vy,v2) € V)

6. ('Ul,'Uz> eV — (1)2,'01> € V—‘l 5, SIII'IP

7. | {vg,vy) € V1 1,6, M.P.

8 | (Va,y)({z,y) €V e (gyz) € (VTH)™H 2,UL
[generalizing line 2 again, this time with respect to V2]

9. | (v2,v1) € V7L e (wy,vq) € (V73)72 8, UL (twice)
10, | ({(vayv1) € V71 = {vg,v2) € (V71)71) & 9, Bicond.
E('Ul,'vz> (V—l)"l — (1}2,'01> € V—‘l)

11. vg,v1) € V71— (vy,v2) € (V1)1 10, Simp.

12. | {v1,va) € (V71)72 7,11, M.P.

13, (vy,v2) € V = {(vy,v2) € (V1) 1-12, C.P.

14, (Vz,9)({(z,y) € V — (z,y) € (V1)) 13. UG (twice)
15. V C(v-1)-t 14, Def. of C
16. (VR)RC(R™)7! 15, U.G.

The proof of the other half, ie. (R™?)"? C R, is quite similar and is left
as an exercise for the reader.
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Here is an informal version of the part just proved:

(7-62) Proof (informal): Let R be an arbitrarily chosen binary relation.
Assume (z,y) € R. Then by the definition of inverse, (y,z) €
R~!. Again, by the definition of inverse, if (y,z) € R™!, then
(z,y) € (R™*)"! Thus, if (z,y) € R,(z,y) € (R™})7?, and so
RC (R

In fact, if the proof were intended for readers assumed to be very familiar
with these notions, it might appear in even more condensed form:

(7-63) Proof: Let R be arelation and let (z,y) bein R. Then (y,z) € R™?
and (2,5) € (R1)"1. R C (R7)

or even
(7-64) Proof: Obvious.

A proofis in part a demonstration that some statement follows by logical
steps from assumed premises, but it is also an attempt to convince some ac-
tual or imagined audience of this logical connection. Therefore, what counts
as an adequate proof depends to a certain extent on the level of sophistica-
tion of one’s audience. Of course, as a minimal condition it rmst be valid,
but a proof at the level of detail appropriate for an introductory logic text-
book would strike an experienced mathematician as tedious and pedantic,
whereas condensed proofs omitting many logical steps appear incomprehensi-
ble to beginners.In subsequent proofs in this book we will aim for an informal
level which we hope will be neither condescending nor obscure.



