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                          2  

      2.1   Some In! nite Sets   

 Some sets have infi nitely many members. 
 Think of the set of all the New Year’s Eves from here to eternity. 
 Or if you don’t believe in eternity, think of the set of all the spatial 

points between London and New York. (Since there will always be 
another point between any two distinct such points, there will be no 
end of them.) 

 Again, think of the set of all grammatical English sentences. (Since 
there is no word limit on the length of English sentences, we can 
always go on making longer sentences from shorter ones by such 
devices as adding ‘John said that’ to the beginning, or putting ‘and 
then they had tea.’ at the end.) 

 These are slightly messy examples. If you want a nice clean exam-
ple of an infi nite set, simply take the set of all the natural numbers, 
{0, 1, 2, 3, . . .}. 

 While we are on numbers, take care not to confuse numbers with 
the numerals  that name them. (See  Boxes  4  and  5  .) Numerals are  words
like ‘one’ and ‘two’ or  symbols  like ‘1’ and ‘2’. Numbers are the more 
abstract things that these numerals name. The English word ‘two’ is a 

In! nite Sets   
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 Philosophers are very fussy (because they often need to be) about distin-

guishing words from the things that they refer to. If you want to talk about 

the word rather than the thing, you must put the word in quotes to form a 

name of that word itself. Here are some examples that illustrate this 

device.

  London contains ten million people, but ‘London’ contains six letters. 
 Jack is an unpopular person, but ‘Jack’ is a popular name. 
 Seven is an odd number, but ‘seven’ is an English word—a numeral. 
 {John, Paul, George, Ringo} is the same set as {x: x is a Beatle}, but ‘{John, Paul, 
George, Ringo}’ and ‘{x: x is a Beatle}’ are two different names for that set.   

 On the left-hand side of these examples we  use  the names, on the right we 

 mention  them. 

    Box 4  Use and Mention    

different word from the French word ‘deux’, but they both name the 
same number. Again, the Arabic ‘2’ is a different symbol from the 
Roman ‘II’ but they also both name the same number. Numerals are 
signs used in specifi c representation systems. Numbers themselves 
are timeless entities that transcend the perspective of any given  system 
of representation. (See  Box  6  .)     

     2.2   Different Kinds of Numbers   

 The most basic numbers are the  natural numbers : 0, 1, 2, 3, . . . 
 If we add the negative whole numbers to the natural numbers, then 

we get the  integers : . . . -3, -2, -1, 0, 1, 2, 3 . . . 
 In addition to the integers, we also want to recognize various kinds 

of intermediate numbers, numbers that fall between the integers. 
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 The simplest are the  rational numbers , namely those that can be 
expressed as fractions of the form p/q, where p and q are integers. 

 But we also need to recognize further numbers that are not 
rational. 

 For example, √2 is not rational. There is no way to express √2 in 
the form p/q where p and q are integers. (See  Box  7  .)  

 Similarly, π (the ratio of a circle’s circumference to its diameter) is 
not rational. It cannot be expressed as p/q with integral p and q either. 

 Many other numbers are similarly irrational. 
 The  real  numbers comprise both the rational and irrational 

numbers. 
 Any real number can be represented by an infi nitely long decimal 

expansion: e.g. 23.17564839 . . . 

    cat cat   

  Question . How many words were there in the previous line?  Answer . One 

word  type , but two  tokens  of that type. 

 The term “ ‘cat’ ” can refer either to the type word or to some speci! c 

token of it. 

 Thus:  ‘cat’ occurs often in children’s stories . Here I use “ ‘cat’ ” to refer to a 

word type. 

 But now consider :  the ! rst ‘cat’ at the beginning of this Box could have 

been written with a capital letter . Here I use “ ‘cat’ ” to refer to a speci! c token 

of the relevant type. 

 (Note how I have to use double quotes—“ ‘cat’ ”—to  mention  the  name  of 

the original word, that is, the name that we formed by putting that original word 

in single quotes.)  

    Box 5  Types and Tokens    
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 In this format, we can distinguish the rational numbers from the 
irrational ones by the fact that the rational numbers will eventually 
display some recurring sequence of digits. So for example, 1/11 is 
0.090909 . . . and 2/7 is 0.285714285714285714 . . . (See the Exercises for 
some hints about how to show that the rational numbers are just those 
whose decimal expansions recur.)  

     2.3   Two Senses of ‘More’   

 Here is a good question. Are there more natural numbers than even 
numbers? 

 In one obvious sense the answer must be yes. The set of even 
 numbers {0, 2, 4, 6, . . .} is a  proper   subset  of the set of natural numbers 
{0, 1, 2, 3, . . .}. The latter set contains all the members of the former set 
and then some. There are plenty of natural numbers that aren’t even, 
but no even numbers that aren’t natural. 

 As with sets, it is possible to doubt whether numbers really exist. If they 

are outside space and time, and have no causal impact on anything, do we 

really need to believe in them? Some philosophers are indeed inclined to 

dismiss numbers, along with sets, as no more than useful ! ctions. But, as 

before, we can bypass this issue here, and think of ourselves as exploring 

what properties numbers  would  have,  if  they existed. Even those who are 

suspicious of numbers will do well to understand their workings, so to 

speak. 

    Box 6  The Reality of  Numbers    
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 Suppose (for the sake of a ‘reductio ad absurdum’ proof) that √2  is  rational 

and so can be represented as p/q, where p and q are integers, and suppose 

further that p and q have no common factors, that is, that all cancelling has 

been done. Then it follows:

  √2 = p/q 

 2 = p 2 /q 2  

 2q 2  = p 2    

 So p must be an even number (since its square is an even number). So, for 

some integer r, p must be 2r. So

  p 2  = 4r 2    

 And, since we already know that 2q 2  = p 2 , it follows that

  q 2  = 2r 2    

 So q must be an even number too. But now q and p are both even, which 

contradicts the supposition that √2 is rational and represented as p/q 

with no common factors. So by reductio we can conclude that √2 is 

irrational. 

 When the Greeks ! rst discovered that √2 is irrational, it freaked them 

out. They knew from Pythagoras’ theorem that √2 is the length of the 

hypotenuse of a right-angled triangle whose other sides are each of length 

1. But the irrationality of √2 means that there can be no unit of length that 

will ! t exactly q times into these short sides and p times into the hypote-

nuse (for if there were, then √2 would equal p/q). To the Greeks, this seemed 

to contradict the very idea of length. It is said that the Greek mathemati-

cians who ! rst proved the irrationality of √2 tried to keep their discovery a 

secret. 

    Box 7  √2 is Irrational    
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 But in a different sense the answer is no. The even numbers can be 
paired up one-to-one  with the naturals. In this sense there are just as 
many even numbers as natural numbers.   

0 2 4 6 8 . . .
0 1 2 3 4 . . .

 This mapping gives a unique even number for every natural number, 
and vice versa. 

 There is no contradiction here. We can distinguish two senses in 
which set A can contain ‘more members’ than set B. In the fi rst sense 
(call it the ‘subset’ sense), it simply means that B is a proper subset of 
A. In the second sense (the ‘pairing’ sense), it means rather that any 
attempt to pair the members of A one-to-one with those of B will 
leave some members of A unpaired. 

 There are more natural numbers than even numbers in the subset 
sense, but not in the pairing sense—for the pairing illustrated above 
succeeds in matching every natural number with its own even number. 

 When we are dealing with fi nite sets, the two senses of ‘more’ coin-
cide. If a fi nite set B is a proper subset of fi nite set A, then the As can’t 
all be paired up one-to-one with the Bs, for there won’t be enough 
Bs—any attempted pairing will leave some extra As unpaired. 

 But with infi nite sets, B can be a proper subset of A, and still be 
paired up one-to-one with the As—for now the Bs won’t automat-
ically run out before we get to the end of the As. 

 This is in fact a defi ning characteristic of infi nite sets. The members 
of any infi nite set, but of no fi nite set, can be paired up one-to-one 
with the members of some of its proper subsets.  

     2.4   Denumerability   

 The odd numbers can also be paired one-to-one with the natural numbers.   
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1 3 5 7 9 . . .
0 1 2 3 4 . . .

 So can the squared whole numbers.   

0 1 4 9 16 . . .
0 1 2 3 4 . . .

 And all the integers.   

0 -1 +1 -2 +2 . . .
0 1 2 3 4 . . .

 What about the rational numbers? At fi rst sight it might seem that 
there are too many. There really are an awful lot. In particular, given 
any two rational numbers, however close together, there will always 
be another rational number in between them. (Mathematicians call 
this property ‘density’.) You might think that this would block any 
attempt to line them up with the natural numbers. 

 Surprisingly, however, the rational numbers can also be paired 
up one-to-one with the natural numbers. To see this, consider the 
following grid. It clearly contains all the rational numbers. And the 
arrows indicate a systematic way of going through the grid in 
sequence and thereby placing the rational numbers in a numerical 
order.   1    

1   A little complication. If we list the rational numbers as in the diagram below, 
any given rational number will recur in different guises at different points in 
the list. For example, we will not only have 1/2, but later on 2/4, 3/6, and so 
on. Since these are all the same rational number, just written in different 
ways, our list won’t really pair each rational number with a  unique  natural 
number. The remedy is to complicate the listing procedure a bit––before 
writing down the n th  rational number, check that it hasn’t already occurred in 
the list, and throw it away if it has.  
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 Whenever the members of a set can be paired one-to-one with the 
natural numbers, we say the set is  denumerable . A denumerable set is 
one that can be placed in a numerical list. A numerical list, if you think 
about it, just  is  a pairing of the listed items with the natural numbers—
the fi rst in the list with 1, the second with 2, and so on.  

     2.5   More Denumerable Sets   

 Many unruly-looking sets can be shown to be denumerable. 
 Take the set of all rectangles with rational length and breadth, for 

example. Each of these is defi ned by two rational numbers. Given that 
we can place all the rational numbers themselves in a numerical list, 
by the grid trick above, we can thus equate each of these pairs of 
rational numbers with a pair of  natural  numbers. And then we can 
apply the grid technique once more, to place these pairs of natural 
numbers themselves in a numerical list. This will then amount to a 
numerical list of the rectangles we started with. 

1/1 2/1 3/1 4/1

1/2 2/2 3/2 4/2

1/3 2/3 3/3 4/3

1/4 2/4 3/4

5/1

5/2

1/5 2/5

6/1 …

…

…

…

…

…
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 Or take the set of all English sentences. To place these in a numer-
ical list, consider all fi nitely long strings of English letters (counting a 
space as a 27 th  letter). Now order the one-letter strings alphabetically, 
then the two-letter strings, and so on. Now go through the resulting 
list and throw away all the strings which don’t make sense as English 
sentences. You’ll be left with a numerical list of English sentences. 

 There are many similar examples of denumerable sets.  

     2.6   The Non-Denumerability 
of the Real Numbers   

 We have just seen that many complicated-looking infi nite sets turn 
out to be denumerable. Does this hold for all infi nite sets? Our sur-
prising success at pairing the rational numbers and other unpromis-
ing-looking sets with the natural numbers might make you think that 
a similar trick can be pulled with all infi nite sets. But that would be a 
mistake. The  real   numbers  cannot be paired one-to-one with the natu-
ral numbers. They are  non -denumerable. Indeed the reals between 0 
and 1, or in any fi nite interval, are non-denumerable. 

 To show this, suppose (for the sake of another reductio argument) 
that the reals between 0 and 1  were  denumerable. Then they could be 
paired up with the natural numbers in some way. To illustrate,  suppose 
the pairing starts as in the list below. (This is just for illustration—the 
argument will work whatever the pairing.)   

1 0.123456…
2 0.234567…
3 0.987654…
4 0.976543…

 Now construct a new number according to the following rule: make 
the fi rst digit one more than the fi rst digit of the fi rst number in this 
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list, the second digit one more than the second digit of the second 
number, the third digit one more than the third digit of the third 
number, and so on . . . (using 0 as ‘one more than 9’ whenever the n th

digit in the n th  number is 9). 

0 . 2 4 0 2 …1 0 . 1 2 3 6 5 6 …
2 0 . 2 3 4 5 6 7 …
3 0 . 7 8 9 0 1 2 …
4 0 . 8 9 0  1 2 3 …

5 …

+ 1

 So, given our supposed initial listing of the reals, our new number will 
be 0.2402 . . . And note that this new number  can’t be anywhere in the 
original list , since it differs from the fi rst number in the fi rst digit, from 
the second in the second digit, and so on. 2

 This is Cantor’s famous diagonal argument. It shows that there are 
more real numbers than natural numbers  even in the one-to-one pairing 

2   There is a little complication in this diagonal proof too. Some real numbers 
have two decimal representations. Consider for example 0.999 . . . = 3 x 0.333 . . . = 
3 x 1/3 = 1. This shows that 0.999 . . . and 1 . . . are the same real number written in 
different ways. And this might make you worry that Cantor’s argument only 
proves that there is a ‘diagonal  representation ’ that isn’t in the original list of deci-
mal representations , not that there is a real  number  that isn’t among the  numbers
named by that list––for maybe the ‘diagonal representation’ is just an alternative 
name for one of the numbers already listed. 

 Well, it would be interesting enough to know that the set of decimal repre-
sentations is itself non-denumerable, even if the real numbers themselves 
aren’t. But in any case it is easy enough to tighten the proof so as to plug this 
hole. One of the Exercises at the end of  Chapter  3   covers this.  
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sense  of ‘more’. If you try to pair up the reals with the naturals you will 
always have some real number left over. Given any supposed listing of 
the reals, it is always possible to construct another real number that 
isn’t in that list.      

     2.7   The Abundance of the Real Numbers   

 The reals are very abundant indeed. To get some feel for this, recall 
that the real numbers are represented by  infi nitely  long decimal strings, 
including strings that display no recurring patterns. The other entities 
we have been dealing with (rational numbers, sentences, …) can all be 
represented in fi nite terms. This doesn’t stop there being infi nitely 
many rational numbers or sentences—fi nite representations can get 
longer and longer. But once we switch to  infi nitely  long strings of digits, 
we are dealing with a quite different order of plurality. 

 The example of the reals shows that infi nite sets come in different 
sizes. There is the size shared by all the denumerable sets. But the real 
numbers are bigger again. In the next chapter we shall explore the way 
in which different infi nite sets can have different sizes in this way.   
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      further reading   

Numbers: A Very Short Introduction  by Peter Higgins (Oxford University Press 
2011) explains the different kinds of numbers. 

 The last two chapters of Eric Steinhart’s  More Precisely: The Math You Need To Do 
Philosophy  (Broadview Press 2009) deal with infi nite sets and the variety of infi n-
ite numbers. 

An Introduction to the Philosophy of Mathematics  by Mark Colyvan (Cambridge Uni-
versity Press 2012) is a short and punchy introduction to the philosophical 
issues raised by numbers and mathematical objects. 

 James Robert Brown’s  Philosophy of Mathematics: An Introduction to a World of 
Proofs and Pictures  (Routledge 1999) is another lively introduction to this area.    

     exercises   

       1.  Write a sentence that both uses and mentions the word ‘philosophy’. 
Write a sentence that both uses and mentions some other word. Say 
where in the two sentences the relevant words are used and where 
mentioned.  

   2.  7 7 
 How many token numerals are on the previous line? How many type 

numerals?
 How many natural numbers are less than 10? How many  Arabic type 

numerals are written with one digit?  

   3.  Show how all the integral multiples of 5 (positive and negative) can be 
paired one-to-one with the natural numbers.  

   4.  Which of the following are subsets of the natural numbers? 

    (a)  the squares of the natural numbers  
   (b)  the square roots of the natural numbers  
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   (c)  the positive whole numbers less than 10 million  
   (d)  the rational numbers    

   5*.   Show that any rational number p/q, with p and q integers, will have a 
decimal expansion that eventually recurs. (Hint: think about what will 
happen as you generate the decimal expansion by dividing q into p.)  

   6*.   Show that any decimal number that terminates with a recurring part is 
equal to some rational number. (Hint: fi rst separate the recurring part, 
then multiply it by 10  k , where k is the number of digits in the recurring 
part, then see what happens when you subtract the original recurring 
part from this number.)     

 (*Exercises with starred numerals are more diffi cult.)     



• • • • •

30 SETS AND NUMBER S

                              3  

      3.1   Some Harder Stuff   

 This chapter will be a bit harder. 
 I regard the issues covered so far as something every educated per-

son should know about. (Maybe my expectations are a bit high––but 
you get the idea.) 

 The subject matter of this chapter, however, will be rather more 
esoteric. I shall explain some points relating to different kinds of infi n-
ities. This is not the kind of thing that is normally covered in an intro-
ductory philosophy book. 

 Still, it seems a pity not to go a bit further, now that we have come 
this far. The material in this chapter is philosophically intriguing, and 
easy enough to explain in the light of the last two chapters.  

     3.2   The Numerical Size of Sets   

 Let us start by thinking about the numerical size of sets, in the sense of 
how many members they have. (Mathematicians speak here of the 
 ‘ cardinality ’ of sets, but I shall stick to the more familiar ‘numerical size’.) 

Orders of In! nity   
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 In the last chapter we paid attention to ways in which the members 
of different sets can be paired up one-to-one. In effect, these pairing 
relationships determine the numerical size of sets. Two sets have the 
same  number  of members just in case their respective members can be 
paired up one-to-one. 

 This is obvious with fi nite sets. Two fi nite sets can be paired up one-to-
one if and only if they have the same number of members. Indeed we can 
think of the natural numbers precisely as ways of characterizing the 
pairing properties of fi nite sets. Suppose we group the fi nite sets by 
whether their members can be paired up one-to-one. So fi rst we have the 
empty set, then all the sets with a single member, then all the sets with a 
pair of members, and so on. We can then think of the natural num-
bers––0, 1, 2, . . .––as entities which characterize the common numerical 
size of the sets in each of these groups. So the number 0 represents the 
size of the empty set, the number 1 the size of all the single-membered 
sets, the number 2 the size of all the sets with a pair of members, . . . , the 
number 8 the size of all the eight-membered sets, and so on. 

 Now let us extend this kind of thinking to infi nite sets. Suppose we 
group the infi nite sets by seeing whether their members can be paired 
up one-to-one. So all the denumerable sets will be in one group, for 
example, and all the sets that can be paired with the real numbers 
between 0 and 1 in another. Then we can think of all the sets in such a 
grouping as having the same number of members. So there will be 
one ‘infi nite number’ that characterizes the denumerable sets, and a 
distinct and bigger ‘infi nite number’ that characterizes the real num-
bers between 0 and 1. 

 If asked, most people would probably say that all infi nite sets have 
the same number of members––infi nitely many. What more is there 
to say about the size of sets which outrun any fi nite numbering? 
 However, the non-denumerability of the reals has shown us that this 
reaction is too quick. Given that the real numbers between 0 and 1 
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cannot be paired up with the natural numbers, we have no choice but 
to recognize at least two infi nite numbers. There is the infi nite number 
that characterizes the denumerable sets, and the distinct and bigger 
 infi nite number that characterizes all the sets whose members can be 
paired up with the real numbers. 

 In fact we shall see soon enough that there are many more infi nite 
numbers than just these two. Once you start generating infi nite num-
bers it is hard to stop.  

     3.3   The Reals and the Power Set 
of the Natural Numbers   

 It is not hard to show that the set of  real numbers between 0 and 1   has the 
same numerical size as the set of  all subsets of the natural numbers  (the 
‘power set’ of the natural numbers, in the terminology introduced in 
 Chapter  1  ). 

 To see why, suppose we write the real numbers between 0 and 1 in 
binary notation––e.g.  0.1100101   . . . (Binary notation is simply an 
alternative way of representing numbers, using powers of 2 where 
our familiar decimal notation uses powers of 10.  See Box  8  .) Then 
we can view each real number as a  recipe  for constructing a subset of 
the natural numbers: put 0 in the subset just in case there is a ‘ 1  ’ in the 
fi rst digit of the binary expression; put 1 in the subset just in case there 
is a ‘ 1  ’ in the second digit of the binary expression; . . . put n in the subset 
just in case there is a ‘ 1  ’ in the (n+1) th  digit of the binary expression; . . . 

 This construction demonstrates that each real number between 
0 and 1 can be taken uniquely to determine a subset of the natural 
numbers. And similarly each subset of the natural numbers 
uniquely determines a real number between 0 and 1 ( . . . put a ‘ 1  ’ for 
the (n+1) th  digit of the binary expression just in case n is in the 
 subset . . .). ( See Box  8  .)  
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    Box 8   The Real Numbers and the Power Set of  the Natural Numbers   

  Ordinary decimal notation represents numbers as sums of multiples of 

powers of 10. So for example: 

   107.25 = (1 x 10 2 ) + (0 x 10 1 ) + (7 x 10 0 ) + (2 x 10 -1 ) + (5 x 10 -2 )   

 Binary notation does the same thing but uses powers of 2 in place of 

 powers of 10. So for example in binary notation the decimally represented 

107.25 comes out as: 

    1101011.01   = (1 x 2 6 ) + (1 x 2 5 ) + (0 x 2 4 ) + (1 x 2 3 ) + (0 x 2 2 ) + 

(1 x 2 1 ) + (1 x 2 0 ) + (0 x 2 -1 ) + (1 x 2 -2 ) = 64 + 32 + 8 + 2 + 1 + 1/4   

 Note how binary numerals are always strings of nothing but ‘ 1  ’s and ‘ 0  ’s 

(since multiplying by 2 moves you to the next higher power of 2). 

 So any real number between 0 and 1 can be represented as a (possibly 

in! nite) string of ‘ 1  ’s and ‘ 0  ’s, for example: 

   0.100111001010…   

 And this string can then be used as a recipe for constructing a subset of the 

natural numbers, by including a natural number in the subset iff its matching 

binary digit is a ‘ 1  ’:   

 Conversely, any subset of the natural numbers can be used as a recipe 

for constructing a binary numeral between 0 and 1, by putting ‘ 1  ’s in the 

binary string in just those places that correspond to numbers in the 

subset.  

  The natural numbers:  0   1   2   3   4   5   6   7   8…  

  Our binary string:   1      0      0      1      1      1      0      0      1…   

  The resulting subset:  {0,   3,   4,   5,   8…}  
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 So the  real numbers between 0 and 1   and  the power set of the natural num-
bers  can be paired up one-to-one, and in this sense comprise sets of the 
same numerical size. (I shall drop the qualifi cation ‘between 0 and 1’ 
henceforth, given that the set of  all  real numbers can be shown to have 
the same numerical size as the set of real numbers between 0 and 1. 
I leave this as an Exercise.) 

 Suppose we give the name ‘infi nity 0 ’ to the numerical size of the 
natural numbers and other denumerable sets, in recognition of the 
fact that this is the smallest of the infi nite numbers. 

 Now recall that any fi nite set with n members has a power set with 
2n  members––there are 2 n  ways of making subsets if we have n mem-
bers to play with. 

 Given this, it would seem natural to write the numerical size of the 
power set of the natural numbers as 2 infi nity0 . 

 And by this convention the numerical size of the real numbers will 
also be 2 infi nity0 , since they are the same numerical size as the power set 
of the natural numbers.   1

1    Don’t worry too much about whether it makes sense to raise 2 to the power 
of infi nity 0 —that is, to multiply 2 by itself infi nity 0  times. For our present 
purposes it will be enough to treat ‘2infi nity0 ’ as nothing more than a usefully 
mnemonic symbol for the numerical size of the power set of the natural 
numbers. 

 Still, for what it is worth, there is a natural way to do arithmetic with 
 infi nite numbers, and in this arithmetic we do fi nd that: 

 2 x in! nity 0  = in! nity 0  and 
 in! nity 0  x in! nity 0  = in! nity 0  
  but  
 2 in! nity0  > in! nity 0 .  
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     3.4   The Continuum Hypothesis   

 We know that 2 infi nity0 is a distinct and bigger number than infi nity 0 . 
Where 2 infi nity0  enumerates the real numbers, infi nity 0  enumerates the 
natural numbers, and Cantor’s diagonal argument showed us that 
the numerical size of the real numbers outruns that of the natural 
numbers. 

 But here is an interesting question. Is 2 infi nity0  the  next   biggest  infi nite 
number after infi nity 0 ? 

 There is no guarantee, if you think about it, that this should be so. 
Maybe there is a kind of infi nite set which is intermediate in size 
between the natural numbers and the real numbers. This would be a 
set that is too big to be paired up with the natural numbers, but too 
small for all the real numbers to be paired up with it. If this were so, 
then the numerical size of this set would be an infi nite number that 
came between infi nity 0  and 2 infi nity0 . 

 Suppose we adopt the convention that ‘infi nity 1 ’ names the next 
biggest infi nite number after infi nity 0 , ‘infi nity 2 ’ the next, and so on, 
for as long as we need to go on. (Mathematicians use ‘ℵ0 ’, ‘ℵ1 ’,… for 
this sequence––pronounced ‘aleph-zero’, ‘aleph-one’, . . . But let us 
stick to a convention that is easier to follow.) 

 Our question was whether 2 infi nity0  is the next biggest infi nite number 
after infi nity 0 . This can now be posed as the question of whether 
2infi nity0  equals infi nity 1 , or whether it is a distinct and larger infi nite 
number. 

 The claim that 2 infi nity0  is the same as infi nity 1  is the famous ‘ contin-
uum hypothesis ’. (It is so-called because the real numbers––which are 
of size 2 infi nity0 , remember––are often thought of as representing a 
continuous arrangement of points along a line. The ‘continuum 
hypothesis’ is thus the hypothesis that the number of such points is 
the next  largest infi nite number after the number of the natural 
numbers.) 
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 Amazingly, standard set theory fails to decide this question. Both 
the continuum hypothesis  and  its denial are consistent with the rest of 
set theory. 

 This is very strange. Standard set theory allows us to construct 
 infi nite sets as big as the natural numbers, and also ones as big as the 
real numbers. But it doesn’t say whether or not there are any that are 
in-between in size. 

 I didn’t go into any details at the end of  Chapter  1   about the ways in 
which mathematicians have sought to improve on the failings of naive 
set theory. But they have devised a number of alternative axiomatic 
systems that aim to capture the essential features of sets. Yet none of 
these systems decides the continuum hypothesis. If sets really existed, 
you would expect there to be a fact of the matter here, and for axio-
matic set theory to tell us what it is. The independence of the con-
tinuum hypothesis from axiomatic set theory adds weight to the 
philosophical case against the reality of sets. 

 (The discovery that the continuum hypothesis is left undecided by 
standard set theory came relatively late. In 1940 Kurt Gödel showed 
that the continuum hypothesis itself is consistent with set theory, and 
in 1963 Paul Cohen showed that the  denial  of this hypothesis is also 
consistent with set theory.)  

     3.5   An In! nity of In! nities   

 There is an infi nity of different infi nite numbers. 
 This follows from the fact that the power set of any set S is always of 

larger numerical size than the set S itself. 
 This ‘power set theorem’ can be proved by a generalized version 

of Cantor’s diagonal argument. It shows that any attempt to pair the 
members of the power set of any set S with the members of S itself 
will inevitably omit some members of the power set. There are 
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    Box 9  The Power Set Theorem   

  Take any set S and its power set P(S). We want to show that there is no 

way of pairing the members of P(S) with those of S itself. 

 Suppose (for the sake of yet another reductio argument) that there is 

such a pairing.   

 Now form a new subset K of S by going through all S’s members one by 

one and sticking them in this new subset just in case they are  not  in the 

subset they are paired with. (So the new subset K contains  a  just in case  a  

does  not  belong to L, and  b  just in case  b  does  not  belong to M, and so 

on.) 

 This new set K will now be a subset of our original S which is  different  from 

each of the subsets that were initially lined up with members of S. 

 To see that our constructed K must differ from each of the subsets that 

were initially lined up with members of S, note that K differs from L 

with respect to  a  (it contains  a  if and only if L doesn’t contain it), and 

differs from M with respect to  b  (it contains  b  if and only if M doesn’t 

contain it), . . . and in general differs from each of the subsets originally 

paired with the members of S with respect to just that member of S 

which that subset was originally paired with. 

 So we have derived a contradiction from the supposition that there is a 

way of pairing  all  the subsets of S with members of S itself.  There can be 

no such pairing. 

 (If this reminds you of the ‘diagonal’ argument from the last chapter, so it 

should––we’ve just applied the same trick to subsets that we there applied to 

decimally represented numbers.) 

  Members of S:   a    b    c   …  

  Members of P(S):  L  M  N  …  
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always too many subsets of S to be paired with the members of 
S itself. ( See Box  9  .)  

 So, just as the power set of the natural numbers is bigger in size 
than the natural numbers themselves, so also is the power set of  that
set bigger again, and so on. 

 This guarantees that we have an infi nite sequence of infi nite num-
bers, each bigger than the one before. These numbers represent the 
numerical sizes of the sequence of sets generated from the natural 
numbers by repeatedly taking power sets. 

 In line with our earlier convention, it is natural to call these 
numbers ‘infinity0  ’, ‘2 infinity0 ’, ‘2 2infinity0 ’, and so on. The rationale for 
this convention, as before, is that any set with n members has 2 n

subsets.  

     3.6   The Generalized Continuum Hypothesis   

 To repeat, the sequence of numbers infi nity0  , 2 infi nity0 , 2 2infi nity0 , . . . enu-
merates the sequence of sets generated by repeatedly taking power 
sets of the natural numbers. 

 Now, analogously to our earlier question of whether or not 2 infi nity0

is the same as infi nity 1  (the continuum hypothesis), we can ask how 
this sequence of numbers 2 infi nity0 , 2 2infi nity0 , . . . relates to the sequence 
infi nity 1 , infi nity 2 ,… Remember that this latter sequence is simply the 
sequence of  all  infi nite numbers after infi nity 0  arranged in ascending 
order. 

 The ‘ generalized  continuum hypothesis’ states that these two 
sequences coincide throughout. That is, the  generalized  continuum 
hypothesis asserts that the sequence infi nity 0 , 2 infi nity0 , 2 2infi nity0 , . . . 
comprises all the infi nite numbers. There are no infi nite numerical 
sizes in between those generated by repeatedly taking power sets of 
the  natural numbers. All infi nite sets can be paired up one-to-one 
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with one of the power sets generated in this way. (Compare the way 
that the simple continuum hypothesis said that 2 infi nity0  coincided with 
infi nity 1  and thus that there is no infi nite numerical size in between 
those of the natural numbers and their power set.) 

 Again, the generalized continuum hypothesis isn’t decided by the 
standard set theory.   
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      further reading   

 The last two chapters of Eric Steinhart’s  More Precisely: The Math You Need To Do 
Philosophy  cover the material of this chapter in more detail. 

Set Theory and the Continuum Problem  by Raymond Smullyan and Mervyn Fitting 
(Dover revised edition 2010) goes deeper into a lot of the mathematics covered 
in this chapter. 

 Adrian Moore’s  The Infi nite  (Routledge 1990) deals with some of the philosoph-
ical issues raised by the notion of infi nity.    

     exercises   

        1.   (a)  How many Arabic type numerals are there? 
   (b)  How many pairs of Arabic type numerals are there? 
   (c)  How many infi nitely long strings of Arabic type numerals are there?  

   2.   Suppose I have a numerical list of all the rational numbers in decimal 
representation. Why can’t I use Cantor’s diagonal argument to show 
that the rationals are non-denumerable?  

   3.   Tighten Cantor’s diagonal proof to deal with the problem of alternative 
decimal representations for the same real number. (Hint: we only get 
alternative decimal representations when one representation ends with 
infi nitely many nines and the other with infi nitely many zeros.)  
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   4.   In the text I said that the possibility of representing the real numbers 
between 0 and 1 in binary form demonstrates that each such number 
‘can be taken uniquely to determine a subset of the natural numbers’. 
But in fact this demonstration is not immediate. What is the 
complication?  

   5* .  Show that all the real numbers can be paired one-to-one with the reals 
between 0 and 1.           


