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1

Enumerability

Our ultimate goal will be to present some celebrated theorems about inherent limits on
what can be computed and on what can be proved. Before such results can be established,
we need to undertake an analysis of computability and an analysis of provability. Com-
putations involve positive integers 1, 2, 3, . . . in the first instance, while proofs consist of
sequences of symbols from the usual alphabet A, B, C, . . . or some other. It will turn out
to be important for the analysis both of computability and of provability to understand
the relationship between positive integers and sequences of symbols, and background
on that relationship is provided in the present chapter. The main topic is a distinction
between two different kinds of infinite sets, the enumerable and the nonenumerable. This
material is just a part of a larger theory of the infinite developed in works on set theory:
the part most relevant to computation and proof. In section 1.1 we introduce the concept
of enumerability. In section 1.2 we illustrate it by examples of enumerable sets. In the
next chapter we give examples of nonenumerable sets.

1.1 Enumerability

An enumerable, or countable, set is one whose members can be enumerated: arranged
in a single list with a first entry, a second entry, and so on, so that every member of
the set appears sooner or later on the list. Examples: the set P of positive integers is
enumerated by the list

1, 2, 3, 4, . . .

and the set N of natural numbers is enumerated by the list

0, 1, 2, 3, . . .

while the set P− of negative integers is enumerated by the list

−1, −2, −3, −4, . . . .

Note that the entries in these lists are not numbers but numerals, or names of
numbers. In general, in listing the members of a set you manipulate names, not the
things named. For instance, in enumerating the members of the United States Senate,
you don’t have the senators form a queue; rather, you arrange their names in a list,
perhaps alphabetically. (An arguable exception occurs in the case where the members

3



P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

4 ENUMERABILITY

of the set being enumerated are themselves linguistic expressions. In this case we can
plausibly speak of arranging the members themselves in a list. But we might also speak
of the entries in the list as names of themselves so as to be able to continue to insist
that in enumerating a set, it is names of members of the set that are arranged in a list.)

By courtesy, we regard as enumerable the empty set, ∅, which has no members.
(The empty set; there is only one. The terminology is a bit misleading: It suggests
comparison of empty sets with empty containers. But sets are more aptly compared
with contents, and it should be considered that all empty containers have the same,
null content.)

A list that enumerates a set may be finite or unending. An infinite set that is
enumerable is said to be enumerably infinite or denumerable. Let us get clear about
what things count as infinite lists, and what things do not. The positive integers can be
arranged in a single infinite list as indicated above, but the following is not acceptable
as a list of the positive integers:

1, 3, 5, 7, . . . , 2, 4, 6, . . .

Here, all the odd positive integers are listed, and then all the even ones. This will not
do. In an acceptable list, each item must appear sooner or later as the nth entry, for
some finite n. But in the unacceptable arrangement above, none of the even positive
integers are represented in this way. Rather, they appear (so to speak) as entries
number ∞ + 1, ∞ + 2, and so on.

To make this point perfectly clear we might define an enumeration of a set not as a
listing, but as an arrangement in which each member of the set is associated with one
of the positive integers 1, 2, 3, . . . . Actually, a list is such an arrangement. The thing
named by the first entry in the list is associated with the positive integer 1, the thing
named by the second entry is associated with the positive integer 2, and in general,
the thing named by the nth entry is associated with the positive integer n.

In mathematical parlance, an infinite list determines a function (call it f ) that takes
positive integers as arguments and takes members of the set as values. [Should we have
written: ‘call it “ f ”,’ rather than ‘call it f ’? The common practice in mathematical
writing is to use special symbols, including even italicized letters of the ordinary
alphabet when being used as special symbols, as names for themselves. In case the
special symbol happens also to be a name for something else, for instance, a function
(as in the present case), we have to rely on context to determine when the symbol is
being used one way and when the other. In practice this presents no difficulties.] The
value of the function f for the argument n is denoted f (n). This value is simply the
thing denoted by the nth entry in the list. Thus the list

2, 4, 6, 8, . . .

which enumerates the set E of even positive integers determines the function f for
which we have

f (1) = 2, f (2) = 4, f (3) = 6, f (4) = 8, f (5) = 10, . . . .

And conversely, the function f determines the list, except for notation. (The same list
would look like this, in Roman numerals: II, IV, VI, VIII, X, . . . , for instance.) Thus,
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we might have defined the function f first, by saying that for any positive integer n,
the value of f is f (n) = 2n; and then we could have described the list by saying that
for each positive integer n, its nth entry is the decimal representation of the number
f (n), that is, of the number 2n.

Then we may speak of sets as being enumerated by functions, as well as by lists.
Instead of enumerating the odd positive integers by the list 1, 3, 5, 7, . . . , we may
enumerate them by the function that assigns to each positive integer n the value
2n − 1. And instead of enumerating the set P of all positive integers by the list 1, 2,
3, 4, . . . , we may enumerate P by the function that assigns to each positive integer n
the value n itself. This is the identity function. If we call it id, we have id(n) = n for
each positive integer n.

If one function enumerates a nonempty set, so does some other; and so, in fact,
do infinitely many others. Thus the set of positive integers is enumerated not only
by the function id, but also by the function (call it g) determined by the following
list:

2, 1, 4, 3, 6, 5, . . . .

This list is obtained from the list 1, 2, 3, 4, 5, 6, . . . by interchanging entries in pairs:
1 with 2, 3 with 4, 5 with 6, and so on. This list is a strange but perfectly acceptable
enumeration of the set P: every positive integer shows up in it, sooner or later. The
corresponding function, g, can be defined as follows:

g(n) =
{

n + 1 if n is odd
n − 1 if n is even.

This definition is not as neat as the definitions f (n) = 2n and id(n) = n of the functions
f and id, but it does the job: It does indeed associate one and only one member of P
with each positive integer n. And the function g so defined does indeed enumerate
P: For each member m of P there is a positive integer n for which we have g(n) = m.

In enumerating a set by listing its members, it is perfectly all right if a member
of the set shows up more than once on the list. The requirement is rather that each
member show up at least once. It does not matter if the list is redundant: All we
require is that it be complete. Indeed, a redundant list can always be thinned out to
get an irredundant list, since one could go through and erase the entries that repeat
earlier entries. It is also perfectly all right if a list has gaps in it, since one could
go through and close up the gaps. The requirement is that every element of the set
being enumerated be associated with some positive integer, not that every positive
integer have an element of the set associated with it. Thus flawless enumerations of
the positive integers are given by the following repetitive list:

1, 1, 2, 2, 3, 3, 4, 4, . . .

and by the following gappy list:

1, −, 2, −, 3, −, 4, −, . . . .

The function corresponding to this last list (call it h) assigns values corresponding
to the first, third, fifth, . . . entries, but assigns no values corresponding to the gaps
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(second, fourth, sixth, . . . entries). Thus we have h(1) = 1, but h(2) is nothing at all,
for the function h is undefined for the argument 2; h(3) = 2, but h(4) is undefined;
h(5) = 3, but h(6) is undefined. And so on: h is a partial function of positive integers;
that is, it is defined only for positive integer arguments, but not for all such arguments.
Explicitly, we might define the partial function h as follows:

h(n) = (n + 1)/2 if n is odd.

Or, to make it clear we haven’t simply forgotten to say what values h assigns to even
positive integers, we might put the definition as follows:

h(n) =
{

(n + 1)/2 if n is odd
undefined otherwise.

Now the partial function h is a strange but perfectly acceptable enumeration of the
set P of positive integers.

It would be perverse to choose h instead of the simple function id as an enumeration
of P; but other sets are most naturally enumerated by partial functions. Thus, the set
E of even integers is conveniently enumerated by the partial function (call it j) that
agrees with id for even arguments, and is undefined for odd arguments:

j(n) =
{

n if n is even
undefined otherwise.

The corresponding gappy list (in decimal notation) is

−, 2, −, 4, −, 6, −, 8, . . . .

Of course the function f considered earlier, defined by f (n) = 2n for all positive
integers n, was an equally acceptable enumeration of E , corresponding to the gapless
list 2, 4, 6, 8, and so on.

Any set S of positive integers is enumerated quite simply by a partial function s,
which is defined as follows:

s(n) =
{

n if n is in the set S
undefined otherwise.

It will be seen in the next chapter that although every set of positive integers is
enumerable, there are sets of others sorts that are not enumerable. To say that a set
A is enumerable is to say that there is a function all of whose arguments are positive
integers and all of whose values are members of A, and that each member of A is a
value of this function: For each member a of A there is at least one positive integer
n to which the function assigns a as its value.

Notice that nothing in this definition requires A to be a set of positive integers
or of numbers of any sort. Instead, A might be a set of people; or a set of linguistic
expressions; or a set of sets, as when A is the set {P, E,∅}. Here A is a set with
three members, each of which is itself a set. One member of A is the infinite set
P of all positive integers; another member of A is the infinite set E of all even
positive integers; and the third is the empty set ∅. The set A is certainly enumerable,
for example, by the following finite list:P, E, ∅. Each entry in this list names a
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member of A, and every member of A is named sooner or later on this list. This
list determines a function (call it f ), which can be defined by the three statements:
f (1) = P, f (2) = E, f (3) = ∅. To be precise, f is a partial function of positive
integers, being undefined for arguments greater than 3.

In conclusion, let us straighten out our terminology. A function is an assignment
of values to arguments. The set of all those arguments to which the function assigns
values is called the domain of the function. The set of all those values that the function
assigns to its arguments is called the range of the function. In the case of functions
whose arguments are positive integers, we distinguish between total functions and
partial functions. A total function of positive integers is one whose domain is the
whole set P of positive integers. A partial function of positive integers is one whose
domain is something less than the whole set P . From now on, when we speak simply
of a function of positive integers, we should be understood as leaving it open whether
the function is total or partial. (This is a departure from the usual terminology, in
which function of positive integers always means total function.) A set is enumerable
if and only if it is the range of some function of positive integers. We said earlier
we wanted to count the empty set ∅ as enumerable. We therefore have to count as
a partial function the empty function e of positive integers that is undefined for all
arguments. Its domain and its range are both ∅.

It will also be important to consider functions with two, three, or more positive
integers as arguments, notably the addition function sum(m, n) = m + n and the
multiplication function prod(m, n) = m · n. It is often convenient to think of a two-
argument or two-place function on positive integers as a one-argument function on
ordered pairs of positive integers, and similarly for many-argument functions. A few
more notions pertaining to functions are defined in the first few problems at the end
of this chapter. In general, the problems at the end should be read as part of each
chapter, even if not all are going to be worked.

1.2 Enumerable Sets

We next illustrate the definition of the preceding section by some important examples.
The following sets are enumerable.

1.1 Example (The set of integers). The simplest list is 0, 1, −1, 2, −2, 3, −3, . . . . Then if
the corresponding function is called f , we have f (1) = 0, f (2) = 1, f (3) = −1, f (4) =
2, f (5) = −2, and so on.

1.2 Example (The set of ordered pairs of positive integers). The enumeration of pairs
will be important enough in our later work that it may be well to indicate two different
ways of accomplishing it. The first way is this. As a preliminary to enumerating them,
we organize them into a rectangular array. We then traverse the array in Cantor’s zig-zag
manner indicated in Figure 1.1. This gives us the list

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1), . . . .

If we call the function involved here G, then we have G(1) = (1, 1), G(2) = (1, 2), G(3) =
(2, 1), and so on. The pattern is: First comes the pair the sum of whose entries is 2, then
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(1, 1) —(1, 2)     (1, 3)     (1, 4)     (1, 5)     …

(2, 1)     (2, 2)     (2, 3)     (2, 4)     (2, 5)     …

(3, 1)     (3, 2)     (3, 3)     (3, 4)     (3, 5)     …

(4, 1)     (4, 2)     (4, 3)     (4, 4)     (4, 5)     …

(5, 1)     (5, 2)     (5, 3)     (5, 4)     (5, 5)     …

                              

Figure 1-1. Enumerating pairs of positive integers.

come the pairs the sum of whose entries is 3, then come the pairs the sum of whose entries
is 4, and so on. Within each block of pairs whose entries have the same sum, pairs appear
in order of increasing first entry.

As for the second way, we begin with the thought that while an ordinary hotel may have
to turn away a prospective guest because all rooms are full, a hotel with an enumerable
infinity of rooms would always have room for one more: The new guest could be placed
in room 1, and every other guest asked to move over one room. But actually, a little more
thought shows that with foresight the hotelier can be prepared to accommodate a busload
with an enumerable infinity of new guests each day, without inconveniencing any old guests
by making them change rooms. Those who arrive on the first day are placed in every other
room, those who arrive on the second day are placed in every other room among those
remaining vacant, and so on. To apply this thought to enumerating pairs, let us use up every
other place in listing the pairs (1, n), every other place then remaining in listing the pairs
(2, n), every other place then remaining in listing the pairs (3, n), and so on. The result will
look like this:

(1, 1), (2, 1), (1, 2), (3, 1), (1, 3), (2, 2), (1, 4), (4, 1), (1, 5), (2, 3), . . . .

If we call the function involved here g, then g(1) = (1, 1), g(2) = (2, 1), g(3) = (1, 2), and
so on.

Given a function f enumerating the pairs of positive integers, such as G or g
above, an a such that f (a) = (m, n) may be called a code number for the pair (m, n).
Applying the function f may be called decoding, while going the opposite way, from
the pair to a code for it, may be called encoding. It is actually possible to derive
mathematical formulas for the encoding functions J and j that go with the decoding
functions G and g above. (Possible, but not necessary: What we have said so far more
than suffices as a proof that the set of pairs is enumerable.)

Let us take first J . We want J (m, n) to be the number p such that G(p) = (m, n),
which is to say the place p where the pair (m, n) comes in the enumeration corre-
sponding to G. Before we arrive at the pair (m, n), we will have to pass the pair whose
entries sum to 2, the two pairs whose entries sum to 3, the three pairs whose entries
sum to 4, and so on, up through the m + n − 2 pairs whose entries sum to m + n − 1.
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The pair (m, n) will appear in the mth place after all of these pairs. So the position
of the pair (m, n) will be given by

[1 + 2 + · · · + (m + n − 2)] + m.

At this point we recall the formula for the sum of the first k positive integers:

1 + 2 + · · · + k = k(k + 1)/2.

(Never mind, for the moment, where this formula comes from. Its derivation will be
recalled in a later chapter.) So the position of the pair (m, n) will be given by

(m + n − 2)(m + n − 1)/2 + m.

This simplifies to

J (m, n) = (m2 + 2mn + n2 − m − 3n + 2)/2.

For instance, the pair (3, 2) should come in the place

(32 + 2 · 3 · 2 + 22 − 3 − 3 · 2 + 2)/2 = (9 + 12 + 4 − 3 − 6 + 2)/2 = 18/2 = 9

as indeed it can be seen (looking back at the enumeration as displayed above) that it
does: G(9) = (3, 2).

Turning now to j , we find matters a bit simpler. The pairs with first entry 1 will
appear in the places whose numbers are odd, with (1, n) in place 2n − 1. The pairs
with first entry 2 will appear in the places whose numbers are twice an odd number,
with (2, n) in place 2(2n − 1). The pairs with first entry 3 will appear in the places
whose numbers are four times an odd number, with (3, n) in place 4(2n − 1). In
general, in terms of the powers of two (20 = 1, 21 = 2, 22 = 4, and so on), (m, n)
will appear in place j(m, n) = 2m−1(2n − 1). Thus (3, 2) should come in the place
23−1(2 · 2 − 1) = 22(4 − 1) = 4 · 3 = 12, as indeed it does: g(12) = (3, 2).

The series of examples to follow shows how more and more complicated objects
can be coded by positive integers. Readers may wish to try to find proofs of their own
before reading ours; and for this reason we give the statements of all the examples
first, and collect all the proofs afterwards. As we saw already with Example 1.2,
several equally good codings may be possible.

1.3 Example. The set of positive rational numbers

1.4 Example. The set of rational numbers

1.5 Example. The set of ordered triples of positive integers

1.6 Example. The set of ordered k-tuples of positive integers, for any fixed k

1.7 Example. The set of finite sequences of positive integers less than 10

1.8 Example. The set of finite sequences of positive integers less than b, for any fixed b

1.9 Example. The set of finite sequences of positive integers

1.10 Example. The set of finite sets of positive integers
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1.11 Example. Any subset of an enumerable set

1.12 Example. The union of any two enumerable sets

1.13 Example. The set of finite strings from a finite or enumerable alphabet of symbols

Proofs
Example 1.3. A positive rational number is a number that can be expressed as a

ratio of positive integers, that is, in the form m/n where m and n are positive integers.
Therefore we can get an enumeration of all positive rational numbers by starting with
our enumeration of all pairs of positive integers and replacing the pair (m, n) by the
rational number m/n. This gives us the list

1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 2/4, 3/3, 4/2, 5/1, 1/6, . . .

or, simplified,

1, 1/2, 2, 1/3, 1, 3, 1/4, 2/3, 3/2, 4, 1/5, 1/2, 1, 2, 5/1, 1/6, . . . .

Every positive rational number in fact appears infinitely often, since for instance
1/1 = 2/2 = 3/3 = · · · and 1/2 = 2/4 = · · · and 2/1 = 4/2 = · · · and similarly for
every other rational number. But that is all right: our definition of enumerability
permits repetitions.

Example 1.4. We combine the ideas of Examples 1.1 and 1.3. You know from
Example 1.3 how to arrange the positive rationals in a single infinite list. Write a zero
in front of this list, and then write the positive rationals, backwards and with minus
signs in front of them, in front of that. You now have

. . . ,−1/3, −2, −1/2, −1, 0, 1, 1/2, 2, 1/3, . . .

Finally, use the method of Example 1.1 to turn this into a proper list:

0, 1, −1, 1/2, −1/2, 2, −2, 1/3, −1/3, . . .

Example 1.5. In Example 1.2 we have given two ways of listing all pairs of positive
integers. For definiteness, let us work here with the first of these:

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), . . . .

Now go through this list, and in each pair replace the second entry or component n
with the pair that appears in the nth place on this very list. In other words, replace
each 1 that appears in the second place of a pair by (1, 1), each 2 by (1, 2), and so on.
This gives the list

(1, (1, 1)), (1, (1, 2)), (2, (1, 1)), (1, (2, 1)), (2, (1, 2)), (3, (1, 1)), . . .

and that gives a list of triples

(1, 1, 1), (1, 1, 2), (2, 1, 1), (1, 2, 1), (2, 1, 2), (3, 1, 1), . . . .

In terms of functions, this enumeration may be described as follows. The original
enumeration of pairs corresponds to a function associating to each positive integer n
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a pair G(n) = (K (n), L(n)) of positive integers. The enumeration of triples we have
just defined corresponds to assigning to each positive integer n instead the triple

(K (n), K (L(n)), L(L(n))).

We do not miss any triples (p, q, r ) in this way, because there will always be an
m = J (q, r ) such that (K (m), L(m)) = (q, r ), and then there will be an n = J (p, m)
such that (K (n), L(n)) = (p, m), and the triple associated with this n will be precisely
(p, q, r ).

Example 1.6. The method by which we have just obtained an enumeration of
triples from an enumeration of pairs will give us an enumeration of quadruples from
an enumeration of triples. Go back to the original enumeration pairs, and replace
each second entry n by the triple that appears in the nth place in the enumeration of
triples, to get a quadruple. The first few quadruples on the list will be

(1, 1, 1, 1), (1, 1, 1, 2), (2, 1, 1, 1), (1, 2, 1, 1), (2, 1, 1, 2), . . . .

Obviously we can go on from here to quintuples, sextuples, or k-tuples for any fixed
k.

Example 1.7. A finite sequence whose entries are all positive integers less than 10,
such as (1, 2, 3), can be read as an ordinary decimal or base-10 numeral 123. The
number this numeral denotes, one hundred twenty-three, could then be taken as a
code number for the given sequence. Actually, for later purposes it proves convenient
to modify this procedure slightly and write the sequence in reverse before reading it
as a numeral. Thus (1, 2, 3) would be coded by 321, and 123 would code (3, 2, 1). In
general, a sequence

s = (a0, a1, a2, . . . , ak)

would be coded by

a0 + 10a1 + 100a2 + · · · + 10kak

which is the number that the decimal numeral ak · · · a2a1a0 represents. Also, it will
be convenient henceforth to call the initial entry of a finite sequence the 0th entry, the
next entry the 1st, and so on. To decode and obtain the i th entry of the sequence coded
by n, we take the quotient on dividing by 10i , and then the remainder on dividing by
10. For instance, to find the 5th entry of the sequence coded by 123 456 789, we divide
by 105 to obtain the quotient 1234, and then divide by 10 to obtain the remainder 4.

Example 1.8. We use a decimal, or base-10, system ultimately because human
beings typically have 10 fingers, and counting began with counting on fingers. A
similar base-b system is possible for any b > 1. For a binary, or base-2, system only
the ciphers 0 and 1 would be used, with ak . . . a2a1a0 representing

a0 + 2a1 + 4a2 + · · · + 2kak .

So, for instance, 1001 would represent 1 + 23 = 1 + 8 = 9. For a duodecimal, or
base-12, system, two additional ciphers, perhaps * and # as on a telephone, would be
needed for ten and eleven. Then, for instance, 1*# would represent 11 + 12 · 10 +
144 · 1 = 275. If we applied the idea of the previous problem using base 12 instead
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of base 10, we could code finite sequences of positive integers less than 12, and not
just finite sequences of positive integers less than 10. More generally, we can code a
finite sequence

s = (a0, a1, a2, . . . , ak)

of positive integers less than b by

a0 + ba1 + b2a2 + · · · + bkak .

To obtain the i th entry of the sequence coded by n, we take the quotient on dividing
by bi and then the remainder on dividing by b. For example, when working with
base 12, to obtain the 5th entry of the sequence coded by 123 456 789, we divide
123 456 789 by 125 to get the quotient 496. Now divide by 12 to get remainder 4. In
general, working with base b, the i th entry—counting the initial one as the 0th—of
the sequence coded by (b, n) will be

entry(i, n) = rem(quo(n, bi ), b)

where quo(x , y) and rem(x , y) are the quotient and remainder on dividing x by y.
Example 1.9. Coding finite sequences will be important enough in our later work

that it will be appropriate to consider several different ways of accomplishing this
task. Example 1.6 showed that we can code sequences whose entries may be of
any size but that are of fixed length. What we now want is an enumeration of all
finite sequences—pairs, triples, quadruples, and so on—in a single list; and for good
measure, let us include the 1-tuples or 1-term sequences (1), (2), (3), . . . as well. A
first method, based on Example 1.6, is as follows. Let G1(n) be the 1-term sequence
(n). Let G2 = G, the function enumerating all 2-tuples or pairs from Example 1.2.
Let G3 be the function enumerating all triples as in Example 1.5. Let G4, G5, . . . ,
be the enumerations of triples, quadruples, and so on, from Example 1.6. We can get
a coding of all finite sequences by pairs of positive integers by letting any sequence
s of length k be coded by the pair (k, a) where Gk(a) = s. Since pairs of positive
integers can be coded by single numbers, we indirectly get a coding of sequences of
numbers. Another way to describe what is going on here is as follows. We go back
to our original listing of pairs, and replace the pair (k, a) by the ath item on the list
of k-tuples. Thus (1, 1) would be replaced by the first item (1) on the list of 1-tuples
(1), (2), (3), . . . ; while (1, 2) would be replaced by the second item (2) on the same
list; whereas (2, 1) would be replaced by the first item (1, 1) on the list of all 2-tuples
or pairs; and so on. This gives us the list

(1), (2), (1, 1), (3), (1, 2), (1, 1, 1), (4), (2, 1), (1, 1, 2), (1, 1, 1, 1), . . . .

(If we wish to include also the 0-tuple or empty sequence ( ), which we may take to
be simply the empty set ∅, we can stick it in at the head of the list, in what we may
think of as the 0th place.)

Example 1.8 showed that we can code sequences of any length whose entries
are less than some fixed bound, but what we now want to do is show how to code
sequences of any length whose entries may be of any size. A second method, based
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on Example 1.8, is to begin by coding sequences by pairs of positive integers. We
take a sequence

s = (a0, a1, a2, . . . , ak)

to be coded by any pair (b, n) such that all ai are less than b, and n codes s in the
sense that

n = a0 + b · a1 + b2a2 + · · · + bkak .

Thus (10, 275) would code (5, 7, 2), since 275 = 5 + 7 · 10 + 2 · 102, while (12, 275)
would code (11, 10, 1), since 275 = 11 + 10 · 12 + 1 · 122. Each sequence would
have many codes, since for instance (10, 234) and (12, 328) would equally code (4,
3, 2), because 4 + 3 · 10 + 2 · 102 = 234 and 4 + 3 · 12 + 2 · 122 = 328. As with the
previous method, since pairs of positive integers can be coded by single numbers, we
indirectly get a coding of sequences of numbers.

A third, and totally different, approach is possible, based on the fact that every
integer greater than 1 can be written in one and only one way as a product of powers
of larger and larger primes, a representation called its prime decomposition. This fact
enables us to code a sequence s = (i , j , k, m, n, . . . ) by the number 2i 3 j 5k7m11n . . .

. Thus the code number for the sequence (3, 1, 2) is 233152 = 8 · 3 · 25 = 600.
Example 1.10. It is easy to get an enumeration of finite sets from an enumeration

of finite sequences. Using the first method in Example 1.9, for instance, we get the
following enumeration of sets:

{1}, {2}, {1, 1}, {3}, {1, 2}, {1, 1, 1}, {4}, {2, 1}, {1, 1, 2}, {1, 1, 1, 1}, . . . .

The set {1, 1} whose only elements are 1 and 1 is just the set {1} whose only element
is 1, and similarly in other cases, so this list can be simplified to look like this:

{1}, {2}, {1}, {3}, {1, 2}, {1}, {4}, {1, 2}, {1, 2}, {1}, {5}, . . . .

The repetitions do not matter.
Example 1.11. Given any enumerable set A and a listing of the elements of A:

a1, a2, a3, . . .

we easily obtain a gappy listing of the elements of any subset B of A simply by
erasing any entry in the list that does not belong to B, leaving a gap.

Example 1.12. Let A and B be enumerable sets, and consider listings of their
elements:

a1, a2, a3, . . . b1, b2, b3, . . . .

Imitating the shuffling idea of Example 1.1, we obtain the following listing of the
elements of the union A ∪ B (the set whose elements are all and only those items that
are elements either of A or of B or of both):

a1, b1, a2, b2, a3, b3, . . . .
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If the intersection A ∩ B (the set whose elements of both A and B) is not empty, then
there will be redundancies on this list: If am = bn , then that element will appear both
at place 2m − 1 and at place 2n, but this does not matter.

Example 1.13. Given an ‘alphabet’ of any finite number, or even an enumerable
infinity, of symbols S1, S2, S3, . . . we can take as a code number for any finite string

Sa0 Sa1 Sa2 · · · Sak

the code number for the finite sequence of positive integers

(a1, a2, a3, . . ., ak)

under any of the methods of coding considered in Example 1.9. (We are usually going
to use the third method.) For instance, with the ordinary alphabet of 26 symbols letters
S1 = ‘A’, S2 = ‘B’, and so on, the string or word ‘CAB’ would be coded by the code
for (3, 1, 2), which (on the third method of Example 1.9) would be 23 · 3 · 52 = 600.

Problems

1.1 A (total or partial) function f from a set A to a set B is an assignment for (some
or all) elements a of A of an associated element f (a) of B. If f (a) is defined for
every element a of A, then the function f is called total. If every element b of B
is assigned to some element a of A, then the function f is said to be onto. If no
element b of B is assigned to more than one element a of A, then the function
f is said to be one-to-one. The inverse function f −1 from B to A is defined by
letting f −1(b) be the one and only a such that f (a) = b, if any such a exists;
f −1(b) is undefined if there is no a with f (a) = b or more than one such a. Show
that if f is a one-to-one function and f −1its inverse function, then f −1 is total
if and only if f is onto, and conversely, f −1 is onto if and only if f is total.

1.2 Let f be a function from a set A to a set B, and g a function from the set B to a
set C . The composite function h = gf from A to C is defined by h(a) = g( f (a)).
Show that:
(a) If f and g are both total, then so is gf.
(b) If f and g are both onto, then so is gf.
(c) If f and g are both one-to-one, then so is gf.

1.3 A correspondence between sets A and B is a one-to-one total function from A
onto B. Two sets A and B are said to be equinumerous if and only if there is a
correspondence between A and B. Show that equinumerosity has the following
properties:
(a) Any set A is equinumerous with itself.
(b) If A is equinumerous with B, then B is equinumerous with A.
(c) If A is equinumerous with B and B is equinumerous with C , then A is

equinumerous with C .
1.4 A set A has n elements, where n is a positive integer, if it is equinumerous

with the set of positive integers up to n, so that its elements can be listed as
a1, a2, . . . , an . A nonempty set A is finite if it has n elements for some positive
integer n. Show that any enumerable set is either finite or equinumerous with
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the set of all positive integers. (In other words, given an enumeration, which is
to say a function from the set of positive integers onto a set A, show that if A
is not finite, then there is a correspondence, which is to say a one-to-one, total
function, from the set of positive integers onto A.)

1.5 Show that the following sets are equinumerous:
(a) The set of rational numbers with denominator a power of two (when written

in lowest terms), that is, the set of rational numbers ±m/n where n = 1 or 2
or 4 or 8 or some higher power of 2.

(b) The set of those sets of positive integers that are either finite or cofinite,
where a set S of positive integers is cofinite if the set of all positive integers
n that are not elements of S is finite.

1.6 Show that the set of all finite subsets of an enumerable set is enumerable.
1.7 Let A = {A1, A2, A3, . . .} be an enumerable family of sets, and suppose that each

Ai for i = 1, 2, 3, and so on, is enumerable. Let ∪A be the union of the family
A, that is, the set whose elements are precisely the elements of the elements of
A. Is ∪A enumerable?
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Diagonalization

In the preceding chapter we introduced the distinction between enumerable and nonenu-
merable sets, and gave many examples of enumerable sets. In this short chapter we give
examples of nonenumerable sets. We first prove the existence of such sets, and then look
a little more closely at the method, called diagonalization, used in this proof.

Not all sets are enumerable: some are too big. For example, consider the set of all sets
of positive integers. This set (call it P*) contains, as a member, each finite and each
infinite set of positive integers: the empty set ∅, the set P of all positive integers, and
every set between these two extremes. Then we have the following celebrated result.

2.1 Theorem (Cantor’s Theorem). The set of all sets of positive integers is not enu-
merable.

Proof: We give a method that can be applied to any list L of sets of positive integers
in order to discover a set !(L) of positive integers which is not named in the list. If
you then try to repair the defect by adding !(L) to the list as a new first member, the
same method, applied to the augmented list L* will yield a different set !(L*) that
is likewise not on the augmented list.

The method is this. Confronted with any infinite list L

S1, S2, S3. . . .

of sets of positive integers, we define a set !(L) as follows:

For each positive integer n, n is in !(L) if and only if n is not in Sn.(∗)

It should be clear that this genuinely defines a set !(L); for, given any positive inte-
ger n, we can tell whether n is in !(L) if we can tell whether n is in the nth set in the
list L . Thus, if S3 happens to be the set E of even positive integers, the number 3 is
not in S3 and therefore it is in !(L). As the notation !(L) indicates, the composition
of the set !(L) depends on the composition of the list L , so that different lists L may
yield different sets !(L).

To show that the set !(L) that this method yields is never in the given list L ,
we argue by reductio ad absurdum: we suppose that !(L) does appear somewhere
in list L , say as entry number m, and deduce a contradiction, thus showing that the

16
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supposition must be false. Here we go. Supposition: For some positive integer m,

Sm = !(L).

[Thus, if 127 is such an m, we are supposing that !(L) and S127 are the same set
under different names: we are supposing that a positive integer belongs to !(L) if
and only if it belongs to the 127th set in list L .] To deduce a contradiction from this
assumption we apply definition (*) to the particular positive integer m: with n = m,
(*) tells us that

m is in !(L) if and only if m is not in Sm .

Now a contradiction follows from our supposition: if Sm and !(L) are one and the
same set we have

m is in !(L) if and only if m is in Sm .

Since this is a flat self-contradiction, our supposition must be false. For no positive
integer m do we have Sm = !(L). In other words, the set !(L) is named nowhere in
list L .

So the method works. Applied to any list of sets of positive integers it yields a
set of positive integers which was not in the list. Then no list enumerates all sets of
positive integers: the set P* of all such sets is not enumerable. This completes the
proof.

Note that results to which we might wish to refer back later are given reference
numbers 1.1, 1.2, . . . consecutively through the chapter, to make them easy to locate.
Different words, however, are used for different kinds of results. The most important
general results are dignified with the title of ‘theorem’. Lesser results are called
‘lemmas’ if they are steps on the way to a theorem, ‘corollaries’ if they follow
directly upon some theorem, and ‘propositions’ if they are free-standing. In contrast
to all these, ‘examples’ are particular rather than general. The most celebrated of the
theorems have more or less traditional names, given in parentheses. The fact that 2.1
has been labelled ‘Cantor’s theorem’ is an indication that it is a famous result. The
reason is not—we hope the reader will agree!—that its proof is especially difficult,
but that the method of the proof (diagonalization) was an important innovation. In
fact, it is so important that it will be well to look at the proof again from a slightly
different point of view, which allows the entries in the list L to be more readily
visualized.

Accordingly, we think of the sets S1, S2, . . . as represented by functions s1,
s2, . . . of positive integers that take the numbers 0 and 1 as values. The relationship
between the set Sn and the corresponding function sn is simply this: for each positive
integer p we have

sn(p) =
{

1 if p is in Sn

0 if p is not in Sn.

Then the list can be visualized as an infinite rectangular array of zeros and ones, in
which the nth row represents the function sn and thus represents the set Sn . That is,
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1 2 3 4

s1 s1(1) s1(2) s1(3) s1(4)

s2 s2(1) s2(2) s2(3) s2(4)

s3 s3(1) s3(2) s3(3) s3(4)

s4 s4(1) s4(2) s4(3) s4(4)

Figure 2-1. A list as a rectangular array.

the nth row

sn(1)sn(2)sn(3)sn(4) . . .

is a sequence of zeros and ones in which the pth entry, sn(p), is 1 or 0 according as
the number p is or is not in the set Sn . This array is shown in Figure 2-1.

The entries in the diagonal of the array (upper left to lower right) form a sequence
of zeros and ones:

s1(1) s2(2) s3(3) s4(4) . . .

This sequence of zeros and ones (the diagonal sequence) determines a set of positive
integers (the diagonal set). The diagonal set may well be among those listed in L. In
other words, there may well be a positive integer d such that the set Sd is none other
than our diagonal set. The sequence of zeros and ones in the dth row of Figure 2-1
would then agree with the diagonal sequence entry by entry:

sd (1) = s1(1), sd (2) = s2(2), sd (3) = s3(3), . . . .

That is as may be: the diagonal set may or may not appear in the list L , depending
on the detailed makeup of the list. What we want is a set we can rely upon not to appear
in L , no matter how L is composed. Such a set lies near to hand: it is the antidiagonal
set, which consists of the positive integers not in the diagonal set. The corresponding
antidiagonal sequence is obtained by changing zeros to ones and ones to zeros in the
diagonal sequence. We may think of this transformation as a matter of subtracting
each member of the diagonal sequence from 1: we write the antidiagonal sequence as

1 − s1(1), 1 − s2(2), 1 − s3(3), 1 − s4(4), . . . .

This sequence can be relied upon not to appear as a row in Figure 2-1, for if it did
appear—say, as the mth row—we should have

sm(1) = 1 − s1(1), sm(2) = 1 − s2(2), . . . , sm(m) = 1 − sm(m), . . . .

But the mth of these equations cannot hold. [Proof: sm(m) must be zero or one. If zero,
the mth equation says that 0 = 1. If one, the mth equation says that 1 = 0.] Then the
antidiagonal sequence differs from every row of our array, and so the antidiagonal set
differs from every set in our list L . This is no news, for the antidiagonal set is simply
the set !(L). We have merely repeated with a diagram—Figure 2-1—our proof that
!(L) appears nowhere in the list L .

Of course, it is rather strange to say that the members of an infinite set ‘can be
arranged’ in a single list. By whom? Certainly not by any human being, for nobody
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has that much time or paper; and similar restrictions apply to machines. In fact, to
call a set enumerable is simply to say that it is the range of some total or partial
function of positive integers. Thus, the set E of even positive integers is enumerable
because there are functions of positive integers that have E as their range. (We had
two examples of such functions earlier.) Any such function can then be thought of as
a program that a superhuman enumerator can follow in order to arrange the members
of the set in a single list. More explicitly, the program (the set of instructions) is:
‘Start counting from 1, and never stop. As you reach each number n, write a name of
f (n) in your list. [Where f (n) is undefined, leave the nth position blank.]’ But there
is no need to refer to the list, or to a superhuman enumerator: anything we need to say
about enumerability can be said in terms of the functions themselves; for example, to
say that the set P* is not enumerable is simply to deny the existence of any function
of positive integers which has P* as its range.

Vivid talk of lists and superhuman enumerators may still aid the imagination, but
in such terms the theory of enumerability and diagonalization appears as a chapter
in mathematical theology. To avoid treading on any living toes we might put the
whole thing in a classical Greek setting: Cantor proved that there are sets which even
Zeus cannot enumerate, no matter how fast he works, or how long (even, infinitely
long).

If a set is enumerable, Zeus can enumerate it in one second by writing out an
infinite list faster and faster. He spends 1/2 second writing the first entry in the list;
1/4 second writing the second entry; 1/8 second writing the third; and in general, he
writes each entry in half the time he spent on its predecessor. At no point during the
one-second interval has he written out the whole list, but when one second has passed,
the list is complete. On a time scale in which the marked divisions are sixteenths of
a second, the process can be represented as in Figure 2-2.

0 1/16 2/16 3/16 4/16 5/16 6/16 7/16
8/16

9/16
10/16

11/16
12/16

13/16
14/16

15/16 1

Zeus makes 1st entry 2nd entry 3rd entry &c.

Figure 2-2. Completing an infinite process in finite time.

To speak of writing out an infinite list (for example, of all the positive integers, in
decimal notation) is to speak of such an enumerator either working faster and faster
as above, or taking all of infinite time to complete the list (making one entry per
second, perhaps). Indeed, Zeus could write out an infinite sequence of infinite lists
if he chose to, taking only one second to complete the job. He could simply allocate
the first half second to the business of writing out the first infinite list (1/4 second for
the first entry, 1/8 second for the next, and so on); he could then write out the whole
second list in the following quarter second (1/8 for the first entry, 1/16 second for the
next, and so on); and in general, he could write out each subsequent list in just half
the time he spent on its predecessor, so that after one second had passed he would
have written out every entry in every list, in order. But the result does not count as a
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single infinite list, in our sense of the term. In our sort of list, each entry must come
some finite number of places after the first.

As we use the term ‘list’, Zeus has not produced a list by writing infinitely many
infinite lists one after another. But he could perfectly well produce a genuine list
which exhausts the entries in all the lists, by using some such device as we used
in the preceeding chapter to enumerate the positive rational numbers. Nevertheless,
Cantor’s diagonal argument shows that neither this nor any more ingenious device
is available, even to a god, for arranging all the sets of positive integers into a sin-
gle infinite list. Such a list would be as much an impossibility as a round square:
the impossibility of enumerating all the sets of positive integers is as absolute as the
impossibility of drawing a round square, even for Zeus.

Once we have one example of a nonenumerable set, we get others.

2.2 Corollary. The set of real numbers is not enumerable.

Proof: If ξ is a real number and 0 < ξ < 1, then ξ has a decimal expansion
.x1x2x3. . . where each xi is one of the cyphers 0–9. Some numbers have two decimal
expansions, since for instance .2999. . . = .3000. . . ; so if there is a choice, choose
the one with the 0s rather than the one with the 9s. Then associate to ξ the set of all
positive integers n such that a 1 appears in the nth place in this expansion. Every set
of positive integers is associated to some real number (the sum of 10−n for all n in
the set), and so an enumeration of the real numbers would immediately give rise to
an enumeration of the sets of positive integers, which cannot exist, by the preceding
theorem.

Problems

2.1 Show that the set of all subsets of an infinite enumerable set is nonenumerable.
2.2 Show that if for some or all of the finite strings from a given finite or enumerable

alphabet we associate to the string a total or partial function from positive
integers to positive integers, then there is some total function on positive integers
taking only the values 1 and 2 that is not associated with any string.

2.3 In mathematics, the real numbers are often identified with the points on a line.
Show that the set of real numbers, or equivalently, the set of points on the line,
is equinumerous with the set of points on the semicircle indicated in Figure 2-3.

0 1

Figure 2-3. Interval, semicircle, and line.
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2.4 Show that the set of real numbers ξ with 0 < ξ < 1, or equivalently, the set
of points on the interval shown in Figure 2-3, is equinumerous with the set of
points on the semicircle.

2.5 Show that the set of real numbers ξ with 0 < ξ < 1 is equinumerous with the
set of all real numbers.

2.6 A real number x is called algebraic if it is a solution to some equation of the
form

cd xd + cd−1xd−1 + cd−2xd−2 + · · · + c2x2 + c1x + c0 = 0

where the ci are rational numbers and cd #= 0. For instance, for any rational
number r , the number r itself is algebraic, since it is the solution to x − r = 0;
and the square root

√
r of r is algebraic, since it is a solution to x2 − r = 0.

(a) Use the fact from algebra that an equation like the one displayed has at
most d solutions to show that every algebraic number can be described by
a finite string of symbols from an ordinary keyboard.

(b) A real number that is not algebraic is called transcendental. Prove that
transcendental numbers exist.

2.7 Each real number ξ with 0 < ξ < 1 has a binary representation 0 · x1x2x3 . . .

where each xi is a digit 0 or 1, and the successive places represent halves,
quarters, eighths, and so on. Show that the set of real numbers, ξ with 0 < ξ < 1
and ξ not a rational number with denominator a power of two, is equinumerous
with the set of those sets of positive integers that are neither finite nor cofinite.

2.8 Show that if A is equinumerous with C and B is equinumerous with D, and the
intersections A ∩ B and C ∩ D are empty, then the unions A ∪ B and C ∪ D
are equinumerous.

2.9 Show that the set of real numbers ξ with 0 < ξ< 1 (and hence by an earlier
problem the set of all real numbers) is equinumerous with the set of all sets of
positive integers.

2.10 Show that the following sets are equinumerous:
(a) the set of all pairs of sets of positive integers
(b) the set of all sets of pairs of positive integers
(c) the set of all sets of positive integers.

2.11 Show that the set of points on a line is equinumerous with the set of points on
a plane.

2.12 Show that the set of points on a line is equinumerous with the set of points in
space.

2.13 (Richard’s paradox) What (if anything) is wrong with the following argument?

The set of all finite strings of symbols from the alphabet, including the space,
capital letters, and punctuation marks, is enumerable; and for definiteness let us use
the specific enumeration of finite strings based on prime decomposition. Some strings
amount to definitions in English of sets of positive integers and others do not. Strike
out the ones that do not, and we are left with an enumeration of all definitions in
English of sets of positive integers, or, replacing each definition by the set it defines,
an enumeration of all sets of positive integers that have definitions in English. Since
some sets have more than one definition, there will be redundancies in this enumeration
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of sets. Strike them out to obtain an irredundant enumeration of all sets of positive
integers that have definitions in English. Now consider the set of positive integers
defined by the condition that a positive integer n is to belong to the set if and only if
it does not belong to the nth set in the irredundant enumeration just described.

This set does not appear in that enumeration. For it cannot appear at the nth place
for any n, since there is a positive integer, namely n itself, that belongs to this set if
and only if it does not belong to the nth set in the enumeration. Since this set does
not appear in our enumeration, it cannot have a definition in English. And yet it does
have a definition in English, and in fact we have just given such a definition in the
preceding paragraph.


