Chapter 10

Operational Structures

10.1 Groups

A group G is an algebra which consists of a set G and a single binary
operation, which we will usually write as o, but which may sometimes be
written + or X : G = (@, o). To be a group, G must satisfy the following
conditions, the group axioms:

G1: G is an algebra (i e. o completely defined and G closed under o).
G2: o is associative.

G3: @ contains an identity element.

G4: Each element in G has an inverse element.

Note that a group operation does not have to be commutative, A group
whose operation is commutative is a commutative or Abelian group.
We are already acquainted with some models of these group axioms.

a. The positive rational numbers with multiplication form a group: (G1)
the product of any two positive rationals is a unique positive rational,
(G2) multiplication is associative, (G3) 1 is the identity element, and
(G4) every positive rational p/q has an inverse ¢/p. Furthermore this
group is Abelian since multiplication is commutative.

b. The integers {0,1,2,3} form a group with the operation of addition
modulo 4. (The sum of ¢ and y modulo 4 is the remainder after
dividing z + y by 4; eg. 3 + 7 = 2 (modulo 4) ) The verification of
this will be left to the reader.
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c. The set of all even integers under addition forms a group, but the set of
all odd integers does not, since it does not contain an identity element,
and it is not closed under addition,

d. The group of ‘symmetries of the square’ is an example of a different
sort, since the elements of the set for this group are not numbers but
the following rigid motions of a square:

R - a90° clockwise rotation about its center O
R’ - a 180° clockwise rotation about its center O
R" - a 270° clockwise rotation about its center O
I - a 360° clockwise rotation about its center O
H - areflection in the horizontal axis through O
(ie flipping the square about the horizontal axis)
V - areflection in the vertical axis through O
D - areflection in the diagonal in quadrant I and III
D' - areflection in the diagonal in quadrants II and IV

The group operation is the successive performing or composition of any
of these motions: eg. Ro R = R This group is not commutative, since, for
instance, R o H = D while H o R = D',

The best way to compute the products of this group is to cut out a
square of paper and label its sides so that the manipulations can actually be
performed. First consider the front of the square:

D A

Figure 10-1.

Performing the operation defined as R will give the orientation shown in
Figure 10-2:
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Figure 10-2.

Starting from the original orientation and performing R’ gives the orien-
tation shown in Figure 10-3; if we instead perform R', the result is as shown
in Figure 10-4.

A D D C

Figure 10-3. Figure 10-4.

Performing the operation I from the original starting point of Figure
10-1, or from any other configuration, does not change the orientation at
all; in fact 7 is the identity operation for the group. The simplest way to
keep track of these operations is to label the front of the square as in Figure
10-5.

RI

Figure 10-5.
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At this point, the reader can verify such products as RoR = R', RoR' =
R',RoR =1

To label the back of the square, perform each of the reflections, starting
each time from the I position, and label the side that comes out on top with
the name of the operation. The relevant axes are as shown in Figure 10-6:

for V
L for D
I
r—1for H
for D'
Figure 10-6.

The back of the square will then be labelled as in Figure 7, with V labelling
the back of the same side that I labels on the front:

v

H

Figure 10-7.

Then the rest of the products can be verified;eg, HoR' ' =V,VoD =
R. Note that when you have, for instance, performed V' and then want to
perform D, you must find what is then the appropriate diagonal axis and
reflect the square (ie., turn it over) through that axis; the product is R,
since the two operations in succession lead to the same orientation that R
leads to directly.

It is recommended that such a square actually be constructed since this
example recurs in several subsequent illustrations and problems.

From the group axioms we can prove the following elementary thecrems.
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TugoREM 10.1 In any group, the equations xoa = b and aoy = b have the

unique solutions ¢ = bo a™! and y = a™' o b respectively =
Proof:
(boaloa = bo(a'oa) associativity
bo(aloa) = boe def inverse
boe = b def identity

Hence (boa™')oa = b,s0 z = boa™! is a solution of z oa = b. It is also the
unique solution, since

z=gzoe=zo(aca!)=(zoa)oa’

Soif zoa = b, substitute b for (zoa) in the last member of the equality above
and observe that = b 0 a”!. Similarly for the unique solution y = a=* o b
toaocy =b. =

The theorem provides an answer to the following general question: Con-
sider any two elements of a group, a and b (they need not be distinct); will
it be possible to find in the group more elements z such that z o a = 57
The theorem says that there will always be exactly one such an element,
namely whatever element is obtained by performing the operation on b and
the inverse of a.

The first part of the proof shows that b o a=! is indeed such an z, by
putting 0 ™! in for z in the product z o a and showing from the group
axioms that the result must indeed be 6. But this does not show that boa™?
is the only such z. The second part of the proof does this, in an indirect way.
First it is established that for any element z of a group, = = (zoa) o a™!.
Now consider an arbitrary element z for which z 0 @ = b. (We know already
that there is at least one such element, but so far there could be more than
one ) Then since z = (z o a) c a™! for any z, if we have an z for which
zoa = b, we see that for such an z we can deduce z = boa™!; ie., any
solution of z 0@ = b must be identical to the original solution, namely boa™,
which is to say that the solution is unique.

Cororvary 10.1 A group has only one identity element. =

Proof: By the group definition, there is at least one solution to eo z = e,
ie. z = e. By Theorem 10.1, this is the only sclution. [
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COROLLARY 10.2 A group has only one inverse a~! for each elementa m

Proof: By the group definition, there is at least one solution y = a™?! to
aoy = e. By Theorem 10 1, this solution is unique. [}

THEOREM 10.2 A group with 4 or fewer elements must be commutative H

Proof:
case (i): 1 element - trivial
case (ii): 2 distinct elements e and a,

eoa=aoce = a (identity)
case (iil): 3 distinct elements e, a and b,
eoa=aoe= a (identity)

eob=boe=>b (identity)

But ac b # a because then b would equal e; and ao b # b because then g
would equal e; hence ac b = e. Similarly for boa henceacb=boa=ce.

case (iv): 4 distinct elements e, a, b and ¢,
eoca=aoe=a,eocb=boe=>band eoc=coe=c (identity)

Consider any two non-identity elements, e.g. a and b. The product aoc b
cannot be either a or b, as above. If aob = ¢, then b = a™! and hence
boa = ealso. If aob = ¢, then boa cannot be a or b (violation of uniqueness
of identity element), or e; in the last case b would be the inverse of a, so
aocb = e, but we already have ao b = ¢. Hence bo a = ¢ also. In either case
the group is commutative. [ |

From the fact that the theorem only mentions up to 4-member groups,
it should not be inferred that groups with 5 or more members may be non-
commutative. In fact, it is provable, but tedious, that all 5-member groups
must also be commutative. Groups with 6 or more members need not be
commutative, however.

The operation on a finite group is often given by a matrix. Rows and
columns are labelled with members of the set. The value of a0 b is placed
in the cell at the a** row and the b** column. Because of its similarity to
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the multiplication table of the natural numbers less than 10, such a matrix
is generally referred to as a ‘multiplication table’. Finding the value of acb
is called ‘multiplying a by 5’ even when the operation bears no resemblance
to the operation of multiplication A word of caution: when constructing
an example of a finite group by its multiplication table, it is quite easy to
check for closure, the identity element and inverses by direct inspection of
the table. It is also straightforward to tell from the table whether a group
is commutative or not, i.e the table is symmetric around the diagonal. But
a group operation must also be associative, and there is no simple way to
check associativity by inspection of the table; rather, one has to check each
instance of the operation

10.2 Subgroups, semigroups and monoids

We define a subgroup G’ as a subalgebra of G which is itself a group We
give the following examples of subgroups as illustration.

a. The group of even integers with addition is a proper subgroup of the
group of all integers with addition.

b. The group of all rotations of the square ({I,R,R', R"},0) where o is
composition of operations as described above, is a subgroup of the
group of all symmetries of the square as in Example (d) above.

c. The system ({I, R, R'},0) is not a subgroup of the group of all symme-
tries of the square; it is not a group and it is not even a subalgebra of
the original group, because the given set {I, R, R'} is not closed under
the operation o.

d. The set of all non-negative integers with addition is a subalgebra of the
group of all integers with addition, because the non-negative integers
are closed under addition. But it is not a subgroup because it is not
itself a group: it is associative, and has an identity element (0), but all
of the members of the set except 0 lack inverses.

The order of any group G is the number of members in the set G. An
important theorem of group theory states that the order of any subgroup
exactly divides, ie. without remainder, the order of the parent group. For
instance, only subgroups of order 1, 2 and 4 are possible for a 4-member



264 CHAPTER 10

group, these being the integral divisors of 4. The theorem does not guarantee
that every subset having the proper number of members will give rise to a
subgroup — only that if a subgroup exists, its order is a divisor of the order
of the group. An immediate consequence of this theorem is that a group
G of order 5 has only the trivial subgroups of order 1 (the identity element
itself) and of order 5 (itself) as subgroup, since 5 has no other divisors.

A second theorem, of which we omit the proof since it uses notions that
are not introduced here, states that if a group is finite, then all its non-empty
subalgebras are also subgroups The practical consequence of this theorem is
that in checking whether a given system is a subgroup of a finite group, one
only needs to verify that the given subset is not empty and is closed under
the group operation, ie. is a subalgebra. If these two conditions are met,
there will necessarily be an identity element and inverses for each element.
Example (b) above is such a case. Example (d) above shows the failure of a
subalgebra to be a subgroup in an infinite case.

A third theorem about subgroups will be proven here.

THEOREM 10.3 The intersection G' N G” of two subgroups G’ and G” of a
group G is itself a subgroup of G. [

Proof:

(i) If a,b are in G' N G, they must both be in both G’ and G”. G’ and
G’ are groups, so ao b is in both, hence ao bis in G’ N G”.

(i) fa is in G' 0 G, it is in both G’ and G”. G’ and G” are groups, so
1

a~! is in both, hence G’ N G” must contain a=*.
(iii) Since G’ and G are groups, they both contain e; hence G’ N G must
contain e. =

There are some useful algebraic structures which are weaker than groups
and satisfy only some of the group axioms.

A semigroup is defined as an algebra which consists of a set and a binary
associative operation (G1 4 G2). There need not be an identity element nor
inverses for all the elements.

A monoid is defined as a semigroup which has an identity element (G1;
G2, G3). There need not be inverses for all the elements. An Abelian monoid
is a monoid with a commutative operation.
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Given these definitions, any group is a subgroup of itself, and a semigroup
and a monoid as well. Every monoid is a semigroup, but not vice versa. Here
are some telling examples.

a. The set of all non-negative integers with addition is an Abelian monoid.

b. The set of all positive integers (excluding zero) with addition is a sermi-
group but not a monoid.

Since both ordinary addition and ordinary multiplication are associative,
it can be deduced that addition and multiplication modulo any n are also
associative. Therefore any systemn with addition or multiplication, either
ordinary or modulo some n, is a semigroup if it is closed and is a monoid if
it also contains the appropriate identity element 0 or 1.

c. The set of all positive even integers with ordinary multiplication is a
semigroup but not a monoid, since 1 is missing,

d. The set of all positive odd integers with ordinary multiplication is a
monoid. (Closed since multiplication of odd integers yields only odd
integers)

e. The set {0,1,2, 3,4} with multiplication modulo 5 is a monoid.

f. The set of all multiples of 10 which are greater than 100, i.e.
{110,120,130,...}

with ordinary addition is a semigroup, but not a monoid.

None of the above examples are groups; in each example, one or more
elements lack inverses. Note that where multiplication (modulo n) is involved
no system which contains 0 can be a group, since 0 has no multiplicative
inverse.

Submonocids are defined analogously to subgroups. M is a submonoid of
the monoid M’ iff M is a monoid and its identity element is the same as
in M. The stipulation that the identity elements must be the same is not
necessary for subgroups, since there it is an automatic consequence. It is
possible to find subsets of a monoid that themselves form monoids, however,
but with different identity elements.
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10.3 Integral domains

An integral domain D is an algebra consisting of a set D and two binary
operations called ‘addition’ and ‘multiplication’, written @ 4+ b and a - b,
respectively; D = (D, +, ), which satisfies the following axioms;

D1: D is an algebra.

D2: The set D with the operation + forms an Abelian group with identity
0.

D3: The set D with the operation - forms an Abelian monoid with identity
I,and 140

D4: (Cancellation Law) If ¢ £ 0 and ¢-a = ¢ b, then a = 6.

D5: (Distributive Law) For all a,b,cin D, a  (b+¢) = (a-b) + (a ¢).

The assumption in D3 that 1 # 0 eliminates the ‘trivial’ case of the set
containing only 0, which would otherwise be an integral domain under ordi-
nary addition and multiplication. Axiom D4, which says that multiplication
obeys the cancellation law except in the case of the additive identity 0, in
effect recaptures a great deal of the structure lost by not requiring multi-
plicative inverses. In fact, whenever D is a finite set, Axiom D4 insures that
every element except 0 has a multiplicative inverse

Note that the distributive law is not symmetric between - and +; it will
not in general be true that a+ (5 ¢) = (e +5) (a+ ¢). Aside from the
requirement that 1 = 0, the distributive law is the only axiom which requires
there to be some connection between the two operations. Because integral
domains have two operations, we need to introduce some new notation for
inverses. In a group, where there is only one operation, a~! unambiguously
designated the inverse of @ with respect to the given operation. For integral
domains, we will use a~! to designate the multiplicative inverse of a (if
it has one; since not all elements need have inverses, this notation can be
used only where it can be shown that an inverse exists). We will introduce
the notation ~a to stand for the additive inverse of a, which by D2 always
exists. Thus by definition —a is the element which when added to a gives 0.
For all of the infinite models mentioned below, this notation corresponds to
our ordinary use of the minus sign, but it would be advisable to regard that
correspondence as accidental (although clearly it is not) and throughout this
section simply read ‘—a’ as ‘the additive inverse of a’.

In integral domains, as in ordinary arithmetic, the minus sign is also
used as a binary operator, corresponding to the operation of subtraction.



INTEGRAL DOMAINS 267

We can define b — a as that element z such that © + @ = & By Theorem
10.1 for groups the equation z + a = b has the unique solution b + (—a), so
the operation b — a is well defined. Thus the two uses of the minus sign are
closely related We could also have defined subtraction first, and then define
—a as 0 —a There is never any ambiguity, since subtraction is a binary
operation, whereas the sign for the additive inverse is always prefixed to a
single element

The standard model of an integral domain is the set of all integers, pos-
itive, negative and 0, with ordinary addition and multiplication. Other ex-
amples of infinite integral domains are the set of all rational numbers and
the set of real numbers, again with ordinary addition and multiplication. A
less obvious model is the set of all rational numbers whose denominator is 1
or a power of 2. Still other models can be constructed. None of these sets
form a group with multiplication, because there is no multiplicative inverse
for 0 in any of them, i.e no number which when multiplied by 0 gives 1. In
the domain of the rationals or of the reals, 0 is the only element without a
multiplicative inverse; in the domain of the integers, however, none of the
elements except 1 itself has a multiplicative inverse.

In Section 8 5.5, we introduced an axiomatic characterization of several
types of orderings for sets in general. Here we will show a different approach
to a linear or simple ordering which can be used only for integral domains,
since it makes use of the notions of addition and multiplication. The relation
< as defined below is a simple linear ordering, although we will not prove
that assertion here.

Not all integral domains can be ordered; thus the ordered integral do-
mains are a much more restricted class of systems that the integral domains.
More restricted still are the ordered integral domains whose positive ele-
ments (to be defined below) are well-ordered. These integral domains in fact
turn out to be isomorphic to the set of all integers with ordinary addition
and multiplication and, of course, to each other. For this reason, these no-
tions of ordering are of central importance in characterizing axiomatically
our ordinary system of arithmetic with integers,

DeriniTiON 10.1 An integral domain D is said to be ordered by a relation
< if the following axioms hold:

(i) Addition law. For allab,c andd ifa < bandec < d, thena+c<b+d

(ii) Multiplication law. fa<band0<c¢, thena c<b-c
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(iii) Law of trichotomy. For any a and b, one and only one of the following
holds: a < b, a="b, or a > b (also called connectedness).

We have already shown that subtraction can be defined in any integral
domalin: b~ ais equal to b+ (—a). We now make use of subtraction to define
the properties of being positive o1 negative for elements of ordered integral
domalins,

DEFINITION 10.2 An element a of an ordered integral domain is positive
if and only if a > 0; a is negative if and only if a < 0. The three basic
axioms for the ordering relation < are reflected by three similar properties
of positive elements:

() Addition. The sum of two positive elements is positive.
(ii') Multiplication. The product of two positive elements is positive.

(iif ) Trichotomy. For any given element a, one and only one of the following
holds: a is positive, a = 0 or —a is positive,

The proof of these is left to the reader.

As remarked above, not all integral domains can be ordered. Among
the integral domains which can be ordered are the familiar infinite ones:
the set of integers, or the set of all rational numbers, or the set of all real
numbers, all with ordinary addition and multiplication and < interpreted
as ‘less than or equal to’ in the usual sense. If we add to the axioms for
ordering a further axiom for well-ordering for positive elements only, we will
have a formal system all of whose models turn out to be isomorphic to the
integers with respect to addition, multiplication and <.

DEerINITION 103 A subset S of an ordered integral domain is well-ordered
if each non-empty subset §' of § contains a smallest element, 1.e. an element
a such that a < ¢ for every z in §'. =

The new axiom for well-orderings, which depends on the prior introduc-
tion of the axioms for orderings and on the definition of ‘positive’ already
given, can be stated as follows:
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Well-ordering axiom: The positive elements are well-ordered.

To illustrate the use of the well-ordering principle, we prove that in any
well-ordered integral domain, there is no element between 0 (the additive
identity) and 1 (the multiplicative identity) For the standard model, namely
the integers, the theorem may seem obvious, but it is not so obvious how to
prove it from the axioms for the well-ordered integral domains

THEOREM 10.4 There is no element between 0 and 1 in any well-ordered
integral domain. =

Proof: Assume, for a reductio ad absurdum proof, that there is at least one
element ¢ with 0 < ¢ < 1, ie. the class of such elements is not empty.
By the well-ordering axiom, there is a least element m in this class, and
0<m<1l,s00<mand 0 < (1-m). By the multiplication law for positive
elements of an ordered integral domain, 0 < m (1 -~ m), ie. 0 < m — m?,
so m*> < m. By the same axiom, 0 < m m, ie. 0 < m? Then by the
transitivity of <, 0 < m? < m < 1. The m? is another element in the class
of elements between 0 and 1, which is, moreover, smaller than m. But m was
by definition the minimum element in the class, (contradiction!). So there
is no element between 0 and 1. [}

THEOREM 10.5 A set § of positive integers which includes 1, and which
includes n + 1 whenever it includes n, includes every positive integer. =

Proof: We will prove by reductio ad absurdum that the set S’, consisting of
those positive integers not in S, is empty. Assume that S’ is not empty, then
it contains a least element m. But m # 1 by hypothesis. By Theorem 4
there is no positive integer smaller than 1, so m > 1. That means m — 1 is
positive. Since m is the smallest positive integer not in the set S, m — 1 is
in the set S, since m ~ 1 < m. Then, by hypothesis, (m — 1) + 1 is also in
S,but (m~1)4+1 =m, so minin §. Contradiction! =

We can now prove directly that Peano’s fifth postulate (see Sections 8.4
and 8 5.7) holds for the positive integers.

Principle of Finite Induction. Associate with each positive integer n a
statement P(n) which is either true or false. If (i) P(1) is true, and (ii) for
all k, P(k) implies P(k + 1), then P(n) is true for all positive integers n.
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Proof: The set of those integers k for which P(k) is true satisfies the hy.
pothesis, and hence the conclusion of Theorem 10.5. [}

To illustrate the application of the principle of finite induction in proofs,
we will use it to prove one of the laws of exponents in integral domains, for
which we first need to give a definition.

DEerFiNITION 104 A positive power @™ of a in any integral domain D i

defined recursively by (i) a* = a, (ii) &' = a™ - a. =

Using this definition, we can prove by induction that in any integral
domain (a- )" = a™ " for all n. First of all, we view the statement of the
theorem as expressing a property of n; P(n) = (a- 8)® = a™ ™. This is the
first step in setting up any proof by induction, but it is often left implicit,

The proof itself has two parts: first we prove P(1), and then we prove
that for arbitrary k, P(k) implies P(k + 1).

(3 P(1):

(a b} = ab by definition
= o by definition
(1) P(k) = P(k+1):

(a b = do* bF cond, premise

(@ Bt = (a-b)* (a b) by definition
= (& %) (a b) cond. premise

= a* (- (a b)) associativity

= a* ((b*-a) b) assaciativity
= a* ((a-b*) b) commutativity

= da* (a-(b* b)) associativity

= (a*-a) (b*-b) assaciativity

= ghktl.pktl by definition

[(a-b)* =a* 8*] - [(a B)*! = aF*? - p*1] cond proof

From (i) and (ii) it follows by the principle of finite induction that P(n)
is true for all positive integers n, i.e. that for all positive n, (a b)* = a™ 6™

We have introduced here the well-ordering principle, and hence induction,
for the positive integers. An alternative approach is to state both the well-
ordering principle and induction for the non-negative integers, in which case
the first step in an induction proof would be for the case of n = 0. The two
approaches are interdefinable.
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10.4 Morphisms

Since the notions of homomorphism and isomorphism are defined for algebras
in general, it is possible to define a morphism between algebras of different
sorts, as long as they have the same number of operations. Here we give
an example of a homomorphism between a monoid and a group, and then
discuss some group isomorphisms and an isomorphism between two integral
domains.

Consider the monoid M = (N, 4) consisting of all the non-negative inte-
gers with the operation of ordinary addition M is not a group because of the
absence of inverses, Let the group G = (G = {0,1,2,3,4}, + mod 5). We
can define a homomorphism from M to G by the function F(n) which maps
each non-negative integer in N onto the element of G which is congruent
with it modulo 5 (Numbers which are congruent mod 5 leave the same re-
mainder after division by 5 ) For example, F(16) = 1, F(23) = 3, F(45) = 0,
etc. The function F establishes a homomorphism, since F(z) + F(y)
((mod 5)) = F(z +y). The kernel of a homomorphism F is defined as the
set of elements of the domain of F which are mapped onto the identity ele-
ment in the range of F In this example, the kernel of the homomorphism
F:M — G is the set of all non-negative multiples of 5: {0,5,10,15,.. .}.

The definition of isomorphisms for groups is a direct application of the
definition of isomorphisms for algebras in general. Since a group has only
one operation, we can say simply that an isomorphism between two groups
G = (G,0) and G’ = (G, ¢’} is a one-to-one correspondence between their
elements which preserves the group operation, which may be distinct oper-
ations in the two groups. Ie., if a is mapped to a/, and b to ¥’ and vice
versa, then ao b is mapped to a’ o’ b and vice versa. Putting it more for-
mally, an isomorphism between two groups G = (G,0) and G’ = {(G’,0)
is a one-to-one correspondence F : G — G’ such that for all z,y in G,
F(z)o' F(y) = F(z oy). Here are two examples of such group isomorphisms.

Ezample 1. The group of integers {1,2, 3,4} under multiplication mod-
ulo 5 is isomorphic with the group of the integers {0,1, 2,3} under addition
modulo 4, with the correspondence

1—0,2¢—>1,33,4+—— 2

This is best illustrated by the group tables
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+ (mod4)|0 1 2 3 x (mod5)|1 2 4 3
0 01 23 1 12 4 3
1 1230 2 2 43 1
2 2 301 4 4 3 1 2
3 301 2 3 31 2 4

Ezample 2: The group of integers {0,1,2,3} under addition modulo 4 is
also isomorphic with the group of rotations of the square: let

0e—I,1+— R,2«— R 3« R

We can prove that isomorphisms are equivalence relations on the set of
all groups.

THEOREM 10.6 The relation ‘is isomorphic to’is a reflexive, symmetric and
transitive relation between groups. [ |

Proof: The reflexive property is trivial, since every group is isomorphic to
itself by the identity mapping As for the symmetric property, let F be an
isomorphic correspondence between G and G’. Since F' is one-to-one, it has
an inverse F~1 which is an isomorphism of G’ onto G Finally, if F; maps
G 1scmorphically onto G’, and F» maps G’ iscmorphically onto G”, then the
composition of Fy o Fy, the function whose value for a given argument a is
the value of F, applied to Fi(a), is an isomorphism of G with G”. ]

An isomorphism between two integral domains D and D’ is a one-to-one
correspondence of the elements a of D with the elements a’ of D', which
satisfies for all elements a,b in D the conditions

1) (a+b)Y =da +¥
2} (¢ by =a' ¥

For an example of an isomorphism between two integral domains, let us
start from the following facts about reckoning with even and odd numbers.
even + even = odd + odd = even
even + odd = odd + even = odd
even - even = even - odd = odd - even = even
odd - odd = odd



EXERCISES 273

We can regard these identities as definitions of operations of ‘addition’
and ‘multiplication’ in a new algebra of the two elements ‘even’ and ‘cdd’.
This algebra is isomorphic to the finite integral domain I3 of integers mod-
ulo 2, with ordinary addition and multiplication modulo 2, under the corre-
spondence even «— 0 and odd «— 1.

Exercises

1. Show that the integers 0,1,2, and 3 form a group with the operation
of addition modulo 4, ie. show that each of the four group axioms is
satisfied. You need not give a full demonstration of associativity—just
2 or 3 examples.

2. Which of the following are groups?

(a)
(b)
(c)

(d)

(e)

()
(8)

(h)

The integers 1,3,5,7,8 under multiplication modulo 11,
The integers 1,3,4,5,9 under multiplication modulo 11,
The system described by the following multiplication table:

ocla b ¢ d
ala b ¢ d
b|b a d ¢
cle d a a
dld ¢ b b
The system described by the following table:
ocla b ¢ d
alb d a ¢
bld ¢ b a
cla b e d
dic a d b

The set of all subsets of § = {z1,z2} with the operation of set
union.

The same set S as in (e) with the operation of set intersection.

The set of rigid motions of a square {7, H,V, R’} and the operation
of performing them successively.

The set of rigid motions of a square {I, D, R} and the operation
of performing them successively.
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{a) Draw the group operation table for the group of symmetries of
the square {I,R, R, R",H,V,D, D'}

(b) There are three different subgroups having exactly four elements,
Find them and draw their group operation tables

(¢) There are five different subgroups having exactly two elements,
Find them and draw their tables.

{d) Show which of the subgroups in (b) are isomorphic
(e) Show a non-trivial automorphism for one of the subgroups of (b).

(f) Show a homomorphism of cne of the subgroups of (b) with one
of the subgroups of (¢).

. Provethat the set consisting of the identity element alone is a subgroup

for any group

{a) Does the set {1,2,3,4,5} form a group with multiplication mod-
ulo 67 Justify your answer

(b) Show that the set {1,2,3,4,5,6} forms a group with multiplica-
tion modulo 7.

(c) Find three different proper subgroups of the group in (b).

(d) Find a set of integers which forms a group with addition modulo
some n which is isomorphic to the group in (b).

(e) Can you find a general condition on n which will identify all those
n‘s for which the set {1,2,...,n — 1} forms a group with multi-
plication modulo n? Prove your assertion if possible, otherwise
explain why you think it is correct.

. Prove that if § is a subgroup of 8’ and 8§’ is a subgroup of §”, then §

is a subgroup of S”.

(a) The set R of all strictly positive rational numbers with multipli-
cation forms a monoid which is also a group. Find a sub-monoid
Ry of R such that Rg is not a group.

{b) Is the set of all rational numbers with multiplication a semigroup?
A monoid? A group?

. Determine whether the set-theoretic operation ‘symmetric difference’ is

commutative, assoclative and idempotent. Is there an identity element
for this operation? What sets, if any, have inverses? Given the set
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{a,b} what sort of operational structure is formed by the power-

set of A with the operation of symmetric difference?

Let A = {a,b} Show that (p(A4),U) and (p(4),N) are both semi-
groups but not groups Find an isomorphism between them

(a)

(b)

(c)

Prove that if a, b and ¢ are any elements of an integral domain D,
then a+ b = a + ¢ implies b = ¢. (Hint: make use of the fact that
a has an additive inverse.)

Prove that for all ain D, ac0 = O0oa = 0. (Hint: Use a+0 = aand
the distributive law to prove that ac(a+0) = aca and ao(a+0) =
(aca)+(ao0) Note: ois used here for ‘multiplication’.)

Justify each step in the following proof of (—a) o (—b) = acb.
(Note: —a and —b are names given to the additive inverses of a
and b).

(1) [acb+ao(=b)]+(~a)o(~b) = acb+[ao(~b)+(~a)o(~b)]
(2) laob+ao(~8)]+(~a)o(~b)=aob+la+(~a)o(-b)
(3)  laob+ao(~b)]+(~a)o(~b) =aob+00(=b)

(4) [@0b+ao(=b)] +(—a)o (~b) = acb

(5) [acb+ao(~b)]+(-a)o(~b) =ac[b+ (-b)]+ (—a)o (-b)
(6) [acb+ao(=b)]+(~a)o(~b)=ao0+(~a)o(~b)

(7 [aob+aoc(-b)]+(~a)o(-b) = (-a)o(-b)

(8) (=a)o(=b)=ach

11. Prove the law of transitivity for < in an ordered integral domain, i.e.

for any a,b, and ¢, if a < b and b < ¢ then a < e
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12. Using the definition of positive elements, deduce the three basic laws
of positive elements, (i'), (ii’) and (iii’) in Def 10.2, from the laws for
<.

13. The definition of any positive power a” of ¢ in any integral domain D
is given by:

al = a

at = d*oa
(a) Prove by induction that a™ o @® = a”"" in any integral domain.
(Hint: Use induction on n; in the second part of the induction,
assume that a™ o a® = a™*" for all m and for n = k and prove

that it must then hold for all m and for n = k + 1),

(b) Prove by induction that in any integral domain (&™) = (a™)™.
(Hint: You will probably want to make use of the theorem that
@™ o 5™ = (a o b)™ which was proven in this chapter )



