Computability

Computable Functions, Logic, and
the Foundations of Mathematics

3rd edition

Richard L. Epstein
Walter A. Carnielli

Advanced Reasoning Forum
Socorro, New Mexico, USA
' ... '

ARF



COPYRIGHT © 2008 Richard L. Epstein and Walter Carnielli

ALL RIGHTS RESERVED. No part of this work covered by the
copyright hereon may be reproduced or used in any form or by any
means— graphic, electronic, or mechanical, including photocopying,
recording, taping, Web distribution, information storage and retrieval
systems, or in any other manner— without the written permission of
the authors.

The moral rights of the authors have been asserted.

For more information contact:
Advanced Reasoning Forum
P. O. Box 635
Socorro, NM 87801 USA
<arf@AdvancedReasoningForum .org>
[] ' (]
o

ARF

ISBN 978-0-9815507-2-5



Contents

The FUNDAMENTALS

Paradoxes

A. Self-Referential Paradoxes . . . . . . . . . . . ... . ... . ... 3
B. Zeno’sParadoxes . . . . . . . . . ... ... )
Exercises . . . . . . . . . e 6

What Do the Paradoxes Mean?

(Optional)
A. Philosophy and Mathematics . . . . . e e e 7
B. Achilles and the Tortoise Revisited . . . . . . . . . . .. ... ... 12
Exercises . . . . . . . . o e e e 17
Whole Numbers
A. Counting (Ordinal) vs. Quantity (Cardinal) . . . . . . . . . .. . .. 18
B. Numberis All: ¥2' . . . . . . . . . .. .. ... 19
Exercises . . . . . . . . . o e 20
Functions
A. WhatIs a Function?
1. Blackboxes . . . . . . . . .. ..o s 21
2. Domainsandranges. . . . . . . . . . .. ..., 22
3. Functions as rules, functions as collections of ordered pairs . . . . . 23
B. Terminology and Notation
1. The A-notation - . . . . . « . v . .o 24
2. One-oneandontofunctions . . . . . .. ... ......... 25
3. Composition of functions . . . . . . . . . .. .. .. ... .. 26
Exercises . . . . . . . . .. e 27
Proofs
A. WhatIsaProof? . . . . . . . . . . . ... ... . 28
B. Induction . . . . . . . . .. Lo e 29
C. Proof by Contradiction (Reductio ad Absurdum) . . . . . . . . .. .. 31
D. Proof by Construction . . . . . . . . .. . ... ... .. .. .. 31
E. Proof by Counterexample . . . . . . . . .. . .. ... ...... 32
F. OnExistence Proofs . . . . . . . ... .. ... .. ....... 32
G. The Nature of Proof: Certainty and Existence (Optional)

1. From “Mathematical proofs: the genesis of reasonable doubt”
byGinaBariKolata ., . . . . . . . ... ... ......... 33



2. The Introduction to Constructive Formalism by R.L. Goodstein
(Concluded) . . . . . . . . ... oo 35
Exercises . . . . . . . ... oo e e 36

Infinite Collections?

A. HowBigIsInfinite? . . . . . . . . . ... ... ... ...... 38
B. Enumerability: The Rationals Are Countable . . . . . . . . .. . .. 39
C. The Reals Are NotCountable . . . . . . . . .. . .. ....... 40
D. Power Sets and the Setof All Sets . . . . . . . ... ... .. ... 41
Exercises . . . . . . . . .o L e e 41

Hilbert “On the Infinite”

(Optional) . . . . . . . . . ..o 44
Exercises . . . . . . . . . . L Lo 58

II COMPUTABLE FUNCTIONS

8

10

11

Computability
A. Algorithms . . . . . .. ... 63
B. General Criteria for Algorithms
1. Mal’cev’s criteria, from Algorithms and Recursive Functions . . . . 64
2. Hermes, from Enumerability, Decidability, Computability . . . . . , 65
C. Numbering . . . . . . . . . . .. . e 68
D. Algorithm vs. Algorithmic Function . . . . . . . . . .. .. . ... 69
E. Approaches to Formalizing Computability . . . . . . . . .. .. .. 70
Exercises . . . . . . . . . . ..o 71

Turing Machines

A. Turing on Computability (Optional) . . . . . . . . . . ... . ... 72
B. Descriptions and Examples of Turing Machines . . . . . . . . . . .. 75
C. Turing Machines and Functions . . . . . . . . .. ... .. .. .. 78
Exercises . . . . . . . . .. . e e e e 83

The Most Amazing Fact and Church's Thesis

A. The Most Amazing Fact . . . . . . . . . . .. ... . ...... 85
B. Emil L. Post on Computability (Optional) . . . . . . . . . . ... .. 86
Primitive Recursive Functions
A. Definitionby Induction . . . . . . . .. ... 00000 91
B. The Definition of the Primitive Recursive Functions
1. Basic (initial) functions . . . . . . . . . .. .. ... ... L. 92
2. Basicoperations . . . . .. .. ... .. .. ... ... 92
3. Aninductive definition of the class of functions . . . . . . . ., . . 93
C. Examples
1. Theconstants . . . . . . . . . . . . .. .. .. .. ... 93
2. Addition . . . .. .. 94



12

13

14

15

Exponentiation . . . . ., . . ... .. ... ... .. ...,
Signature and zerotest . . . . . . . . . ... ... ..,

AN

7. Predecessor and limited subtraction . . . . . . . . . . . . .. ..
ExercisesPart1 . . . . . . . . . . .. ..o
D. Other Operations That Are Primitive Recursive

1. Addition and multiplication of functions . . . . . . . . . . . . ..
Functions defined according to conditions . . . . . . . . . . . ..
Predicates and logical operations . . . . . . . . ... .. . ...
Bounded minimization . . . . . . . . .. . ... .. ... ..
Existence and universality belowabound . . . . . . . . . . . .
Iteration . . . . . . . . . ...
Simultaneously defined functions . . . . . . . . . . .. . ...

. Course-of-values induction . . . . . . . .. ... ... ...
E. Prime Numbers for Codings . . . . . . . . . .. . . . ... ...
F. Numbering the Primitive Recursive Functions . . . . . . . . . . . .
G. Why Primitive Recursive # Computable . . . . . . . . . ... ..
ExercisesPart2 . . . . . . . . . .. ..o ..o

PN LA LN

The Grzegorczyk Hierarchy
(Optional)
A. Hierarchies and Bounded Recursion . . . . . .. . .. ... ...
B. The Elementary Functions . . . . . . . . . .. .. ... ....
C. TIterating Iteration: The Ackermann-Péter Function
1. The functions W, and proof by double induction . . . . . . . . .
2. Dominating the primitive recursive functions . . . . . . . . . . .
3. The Ackermann—Péter function and nested double recursion . . . .
D. The Grzegorczyk Hierarchy . . . . . . . . . . . .. ... .. ..
Exercises . . . . . . . . . . e

Multiple Recursion

(Optional)

A. The Multiply Recursive Functions
1. Doublerecursion . . . . . . . . . . . . ... ... ...
2. n-foldrecursion . . . . . . . . . . . ... ...
3. Diagonalizing the multiply recursive functions . . . . . . . . . .

B. RecursiononOrder Types . . . . . . . . . . . . ... ... ...

The Least Search Operator

A. The u-Operator . . . . . . . . . . .. . . . ...
B. The min-Operator . . . . . . . . . .. .. ... ... .....
C. The i-Operator Is a Computable Operation . . . . . . . . .. .. .

Partial Recursive Functions

A. The Partial Recursive Functions . . . . . . . . .. .. .. ...,
B. Diagonalization and the Halting Problem . . . . . . . . . .. ...
C. The General Recursive Functions . . . . . . . . . . ... . ...



D. Godel on Partial Functions . . ., . . . . . . . . . .. .. .. ..
BXercises . . . . - . . . o e e e e e

16 Numbering the Partial Recursive Functions

Why and How: Theldea . . . . . .. . .. . ... .......
Indices for the Partial Recursive Functions . . . . . . . . . . . ..
Algorithmic Classes (Optional) . . . . . . . . . .. ... .. ..
The Universal Computation Predicate . . . . . . . . . .. . .. ..
The Normal Form Theorem . . . . . . . . . . . .. ... . ...

omEmUNw»

17 Listability
A. Listability and Recursively Enumerable Sets . . . . . . . . . . . ..
B. Domains of Partial Recursive Functions . . . . . . . . . . . . . ..
C. TheProjectionTheorem . . . . . . . . . .. ... . ......
EXercises . . . . . . . . oo e e e

18 Turing Machine Computable = Partial Recursive
(Optional)
A. Partial Recursive Implies Turing Machine Computable . . . . . . . .
B. Turing Machine Computable Implies Partial Recursive . . . . . . . .

II1 LOGIC and ARTTHMETIC

19 Propositional Logic
A. Hilbert’s Program Revisited . . . . . . . . .. ... ... ....
B. Formal Systems . . . . . . .. .. ... ... ...
C. Propositional Logic
1. The formal language . . . . . . . . . . ... . ... ....
2. Truth and falsity: truth-tables for the connectives . . . . . . . . .
3, Validity . ... ...
D. Decidability of Validity
1. Checkingforvalidity . . . . . . ... .. .. ... ... ..
2, Decidability . . . . .. ... ... o
E. Axiomatizing Propositional Logic . . . . . . . . . .. . .. ...
F. Proving As a Computable Procedure . . . . . . . . ... ... ..
Appendix (Optional)
1. The Unique Readability Theorem . . . . . . . . . . . .. . ..
2. The Completeness Theorem for Classical Propositional Logic . . .
Exercises . . . . . . . . . oL

20 An Overview of First-Order Logic and Godel’s Theorems

21 First-Order Arithmetic
A. A Formal Language for Arithmetic . . . . . . . .. .. ... ...



22

23

24

1. Variables . . . . . . . .. .. ... 174
2. Arithmetic functionsandterms . . . . . . . . . . . .. . ... 174
3. Numerals in unary notation . . . . . . . . . . .. ... . .. 175
4. Quantifiers: existence and universality . . . . . . . . . . . .. 175
S. The formal language . . . . . . . . . ... . ... . ..., 176
6. The standard interpretation and axiomatizing . . . . . . . . . . . 177
B. Principles of Reasoning and Logical Axioms
1. Closed wffs and the rule of generalization . . . . . . . . ., .. 177
2. The propositional connectives . . . . . . . . . .. .. .. .. 179
3. Substitution foravariable . . . . . . .. ... ... ... .. 179
4. Distributing the universal quantifier . . . . . . . . ... .. .. 179
5. Equality . . . . . .. oL 180
6. Moreprinciples? . . . . . . . . ... L 180
C. The Axiom System Q
1. Theaxioms . . . . . . . . . . . e 180
2. Onconsistencyandtruth . . . . . . . . . . ... ... .. .. 182
D. 3-Introduction and Properties of =: Some Proofsin@ . . . . . . . . 182
E. Weaknessof System @ . . . . . . . . . . .. .. ..., 184
F. Proving Asa Computable Procedure . . . . . . . . . .. ... .. 185
Exercises . . . . . . . . . . e e e e e e 186
Functions Representable in Formal Arithmetic
A. Dispensing with Primitive Recursion . . . . . . . . .. . .. ... 189
1. Adigression onnumbertheory . . . . . . . . .. .. ... .. 190
2. A characterization of the partial recursive functions . . . . . . . . 191
B. The Recursive Functions Are Representablein@ . . . . . . . ., . .. 192
C. The Functions Representable in @ Are Recursive . . . . . . . . . .. 199
D. Representability of Recursive Predicates . . . . . . . . . .. . .. 200
Exercises . . . . . . . . . ..o 201

The Undecidability of Arithmetic

A, QIsUndecidable . . . . .. ... . . .. .. ... ...... 202
B. Theories of Arithmetic
1. Fragments simplerthan@ . . . . . . . . ... ... ... .. 203
2. Theories . . . . . . . . . . . . .o e 203
3. Axiomatizable theories . . . . . . . . . .. ... ... ... 204
4. Functionsrepresentableinatheory . . . . . . . .. .. .. .. 204
5. Undecidable theories . . . . . . . . . . .. ... .. .... 205
C. Peano Arithmetic (PA) and Arithmetic . . . . . . . . . .. . ... 205
Exercises . . . . . . . . oL e 208

The Unprovability of Consistency

A. Self-Reference in Arithmetic: The Liar Paradox . . . . . . . . . . . 210
B. The Unprovability of Consistency . . . . . . . . .. ... . ... 212
C. Historical Remarks . . . . . . . . . . . .. . ... ....... 216

Exercises . . . . . . . . . Lo, 218



IV CHURCH’S THESIS, CONSTRUCTIVE MATHEMATICS,

25

26

27

and MATHEMATICS AS MODELING

Church’s Thesis
A, History . . . ... Lo e
B. A Definition or a Thesis?

. Ondefinitions . . . . . . . . . .. . . ..o

226

. Kalmdr, from “An argument against the plausibility of Church’s Thesis” 227

. A platonist perspective' Godel . . . . ... ...

guments For and Against

For oo

. Not every recursive function is computable: theoretical vs.
actual computability . . . . ... . ...
3. Interpretation of the quantifiers in the thesis/definition . . . . . .
4. A paradoxical consequence? . . . . . . . . . .. ... L.
D. Interpreting the Evidence . . . . . . . . .. . ... ... ...,
Exercises . . . . . . . . .o

N—-Eu-.:;wm»—-
@)
=
-
=
@
= M
w
[
(@]
=
Q&
g
o
i
w
=
(43
w
<8
w

Constructivist Views of Mathematics . . . . . . .. .. ... ..
A. Intuitionism
1. L.E.J. Brouwer, from “Intuitionism and formalism”, 1913 . . . . .
2. Modem intuitionism . . . . . . . ... ... oL
B. Recursive Analysis . . . . . . . .. ... ..o
C. Bishop’s Constructivism
1. Errett Bishop, from Foundations of Constructive Analysis . . . . .
2. Some definitions from Bishop’s program . . . . . . . . . . . .
D. Criticisms of Intuitionism and Bishop’s Constructivism
1. Paul Bernays on intuitionism . . . . . . . . . ... ... ...
2. Nicolas Goodman, from “Reflections on Bishop’s
philosophy of mathematics” . . . . . . . .. ... ... ...
E. Strict Finitism
1. D. van Dantzig, “Is 1010, finite number?” . . . .. .. ...
2. David Isles, from “Remarks on the notion of standard non-isomorphic
natural number series” . . . . . . .. L. oL oL L.
BXercises . . . . . . . o . .o e e e e e

Mathematics as Modeling
Richard L. Epstein, “On mathematics” . . . . . . . . . . .. ... ..

COMPUTABILITY and UNDECIDABILITY—A Timeline .

Bibliography . . . . . . . . ... oo
Glossary and Index of Notation . . . . . . . . . . . ... ... ....
Index . . . . . . . e

228
229
230

231
232
234
235

237
238

239
240
246
248

249
254

255

256

260

263
270

273

305



Preface

Why was the theory of computable functions developed before there were any
computers?

The formal theory of computable functions and their relation to logic arose as
a response to the ferment in the foundations of mathematics at the beginning of this
century. The paradoxes of self-reference and the question of how or even whether
we are justified in using infinite sets stood at the center of that development, and
those paradoxes are no less interesting, nor settled, now. Along with readings from
the originators of the subject, the paradoxes and doubts about the infinite serve to
motivate the study of the technical mathematics in this book and place the mathe-
matics in its history.

Some mathematicians may prefer a straight mathematical development; for
that Part II, Computable Functions, and Part III, Logic and Arithmetic, will suffice.
In Part IT we describe the notion of computability, present the Turing machine model,
and then develop the theory of partial recursive functions as far as the Normal Form
Theorem. In Part ITI we begin with propositional logic and give an overview of
predicate logic and Godel’s theorems, which can serve as a summary for a short
course. A full development of the syntactic part of first-order logic and Godel’s
theorems then follows. Part I, The Fundamentals, can be referred to for notation
and basic proof techniques.

Philosophy, however, has been the motive for much of logic and computability.
In Part I we give the philosophical background for discussions about the foundations
of mathematics while presenting the notions of whole number, function, proof, and
real number. Hilbert’s paper “On the infinite” sets the stage for the analysis of
computability in Part II. In Part IV we consider the significance of the technical
work with discussions of Church’s Thesis, constructivity in mathematics, and
mathematics as modeling.

Many exercises are included, beginning gently in Part I and progressing to a
graduate level in the final chapters. The most difficult ones, marked with a dagger
, may be skipped, although all are intended to be read. Solutions to the exercises
can be found in the Instructor’s Manual (available from the Advanced Reasoning
Forum, www.AdvancedReasoningForum.org), which also contains suggestions for
course outlines. Sections marked “Optional” are not essential for the technical
development of chapters which follow, although they often provide important
motivation.



For the second edition: Beyond the addition of a timeline on computability

and undecidability written by Epstein, we have confined our changes almost entirely
to technical corrections, adding only two new quotes from Godel (p. 173 and p. 215).
One noteworthy change is the replacement of Fermat’s Last Theorem by Goldbach’s
Conjecture as an example of an unsolved arithmetic problem used in several
examples; the former has been shown to be true by Andrew Wiles, “Modular elliptic
curves and Fermat’s Last Theorem”, Annals of Mathematics, second series, vol.

141, 1995, pp. 443-551. Where other authors have used Fermat’s Last Theorem as
an example (Arend Heyting on p. 234, Nicholas Goodman on p. 259), a similar
substitution of Goldbach’s Conjecture would make the same point.

For the third edition: We have added a chapter that gives a very different view of
mathematics than in the other articles in the text, viewing mathematics as modeling
and not (necessarily) in need of foundations. It is the view that underlies our
presentation of the mathematics in this book.

We have made only minor corrections to the body of the text, retaining the
same pagination. A few small corrections have been made to the timeline.

The story we tell leaves no room to include a presentation of the semantics
of classical predicate logic. That material is now available in a companion to this
volume, Epstein’s Classical Mathematical Logic, Princeton University Press, 2006.
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The FUNDAMENTALS






1 Paradoxes

Much of modern logic came about as a response to problems and paradoxes in the
foundations of mathematics. Paradoxes test our intuitions: a contradiction appears,
yet the principles that clash are so fundamental we are unwilling to give them up.
So we try to resolve the paradox by making clearer distinctions or, perhaps in the
end, abandoning or modifying one of the principles.

The difference between truth and falsity and the question of how language
reflects upon itself are the themes of the paradoxes of Section A. We will see these
paradoxes and themes in one guise or another in the formalization of computable
functions, in the study of formal languages, and in reflections about artificial
intelligence. Later we will see them reappear not as paradoxes but as tools.

In Section B the principles which apparently come into conflict with our
experience concern infinite processes and completed infinities. With this we
commence our discussion of how to demarcate the borderline between the finite
and the infinite, a question still as central and unsettled as it was in Zeno’s time.

Self-Referential Paradoxes

If someone says, “I'm over 6 feet tall” or “That’s my cup of coffee,” he is using
self-reference. Self-reference is an apparently essential part of our language which
reflects our self-consciousness: without “I” and “my” we can be in the world but
not express our knowledge of that fact. Yet the power of self-reference within our
language can create puzzling problems.

1. The preoccupation with self-referential problems dates to antiquity.
Epimenides the Cretan is reported to have said, “All Cretans are liars.”
‘Was he speaking truly?

2. “This sentence is false.”
Is this true?
This is known as the antinomy of the liar, or the liar paradox, and was first
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CHAPTER 1 Paradoxes

posed by Eubulides of Miletus, a contemporary of Socrates. So perplexing did it
seem to Philetus of Cos (ca. 340-285 B.C.) that on his gravestone was written

O Stranger: Philetus of Cos am I
*Twas the Liar who made me die,
And the bad nights caused thereby.

translated by St. George Stock

3. Take three sheets of blank paper.

a. On the first sheet write, “The sentence on the other side of this is false.”
On the other side write, “The sentence on the other side of this is true.”

b. On the second sheet write on one side, “The sentence on the other side of
this is false.” On the other side write, “The sentence on the other side of
this is false.”

¢. On the third sheet write, “The sentence on the other side of this is true.” On
the other side write, “The sentence on the other side is false, or God exists.”

Which of these sentences are true? Which are false?

4. In a village there lives a barber who shaves all those and only those villagers who
don’t shave themselves. Does he shave himself?

5. Considertheset Z={X:X¢X}. IsZeZ?
This is Russell’s set theory paradox.

6. From The American Mathematical Monthly, vol. 85, no. 10, 1978

By a strange sequence of events, an undated letter has come to light, asserted to
be from Fermat to Descartes. Although the provenience of the letter is clouded
we feel it may be of interest to readers of the MONTHLY.

M. René Descartes:

You have argued cogently that he who thinks, is, without regard for the nature of
these thoughts. Reflecting upon this, I have found another use for my “method
of descent” which I think will interest you.

Consider: Most people think of themselves from time to time, but we may
suppose that there are some selfless people who never think of themselves. Let
us hypothesize that I am a person whose sole thoughts are of each of the selfless
persons. I will argue that I cannot exist, even though I have thoughts!

For, either I must be selfless or not selfless. If I am selfless, then at some
time my thoughts must turn to myself as one of the selfless persons; but by
doing so, I reveal that I am not selfless! On the other hand, if I am not selfless,
then I will sometime think of myself. However, since the only object of my
thoughts are selfless beings, I myself must have been selfless!

From this dilemma, I can only conclude that it is inconceivable that I
exist. ’

I draw the conclusion that my existence depends not only on the fact that
1 think, but also upon the content of my thoughts.

May I suggest that you pass this letter on to young Blaise Pascal. He has a
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bright mind and wide interests. Perhaps he can clarify the implications of this
for both God and Reality.

Pierre de Fermat
(Translated and communicated by R.C. Buck, who comments: “It would be
interesting if this letter were authentic, and preceded Descartes’ 1647 visit to
Pascal and the latter’s subsequent drastic change of interests.”)

B. Zeno’s Paradoxes

Zeno’s paradoxes, which we present here, were apparently directed against the
Pythagoreans who thought of space and time as consisting of points and instants.

1. Achilles and the tortoise are going to race. The tortoise is given a head start.

But no matter how swiftly Achilles runs nor how slowly the tortoise crawls, Achilles
can never overtake the tortoise. By the time Achilles reaches the initial position of
the tortoise, the latter will have advanced some short distance; by the time Achilles
covers that distance, the tortoise will have gone a bit further, and this goes on
indefinitely, so Achilles can never catch the tortoise.

This argues that motion is impossible if we assume that space and time are
infinitely subdivisible.

(Another version of this paradox is given in the reading from Goodstein, 1951,
in Chapter 2.B.)

2. But here is an argument from Zeno that shows that space and time cannot
terminate in indivisibles. It is a paraphrase of the Stade (Stadium) due to Boyer
(A History of Mathematics, p. 83).

Let’s assume that we have three tapes divided into squares of the same size:

By, By, B3 move right so that each B; passes one A; in the smallest possible
instant of time. Simultaneously, C;, C,, C; move left so that each C; passes one A;
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in an instant of time. Thus after one instant of time we have:

A ] A

But C; will have passed two B;’s. Therefore, the instant cannot be the minimum
time interval, for it must take less time for C, to pass one of the B;.

The usual resolution of the paradox of Achilles and the tortoise has recourse
to the calculus in terms of limits (Exercise 6). But that solution depends on many
assumptions about the nature of the infinite, and it is precisely the infinite that is the
problem here (in Chapter 6 we’ll see more reasons to be uneasy about any solution
that depends on limits and infinity). In the next chapter we present a resolution of
this paradox that does not use infinities.

Exercises

1. Why is the paradox ascribed to Epimenides not a paradox as stated? How can you
make it paradoxical?

2. Resolve the paradox of the barber. Can you resolve Russell’s set theory paradox
in the same way?

3. There is a fallacy in the purported letter from Fermat to Descartes, which surely
Descartes would have spotted. What is it? (Hint: What other conclusion could
Fermat have drawn?) Is this the same as the paradox of the barber?

4. Does Section A.3.c prove the existence of God?

5. The paradoxes and puzzles of Section A seem to be very much the same, but by
working through these exercises you should begin to see differences. Try to
contrast and classify the paradoxes according to principles which can be used
to resolve them or principles they call into question.

6. Give a resolution of the paradox of Achilles and the tortoise in terms of limiting
procedures from the calculus. Can the same sort of resolution be applied to the
Stade?

Further Reading
Mates in his Skeptical Essays discusses the liar paradox and its history. He makes the
important distinction, which we have glossed over, between an antinomy, which leads to
a contradiction from plausible assumptions, and a paradox, which need only give rise to
something odd, surprising, or wildly implausible.

Patrick Hughes and George Brecht have written an amusing and stimulating anthology
of paradoxes called Vicious Circles and Infinity.



2 What Do the Paradoxes Mean?
(Optional)

The paradoxes of Chapter 1 raise questions about the foundations of mathematics
and logic: What is the infinite and how are we to use it in mathematics? What is the
right way to reason? Any resolution to those paradoxes is, at least implicitly, based
on assumptions about the nature of mathematics.

In Section A of this chapter we consider the relation of philosophy to mathe-
matics and, as an example, present Plato’s influential view of mathematics as
inhabiting a world of abstractions. In Section B we consider a resolution of the
paradox of Achilles and the tortoise based on an understanding of the nature of
numbers quite different from Plato’s.

A. Philosophy and Mathematics
From Philosophy and Mathematics by Robert J. Baum

From the earliest times, man has searched for the answers to a multitude of
questions. Some are quite specific and concrete: When will the next flooding
of the Nile occur? What was the cause of this child’s death? Why did the sky
suddenly go black? Others are more general and abstract: What is justice?

Is there life after death? What are the ultimate constituents of the universe?
Although the particular concrete questions are of more immediate concern in
the everyday contexts in which they normally arise, the more general abstract
questions have been considered by many to be ultimately of more importance
and greater interest. An adequate answer to the question about the sky going
black requires reference to more abstract notions such as those of the eclipse
of the sun, and the general principles of planetary motion. The real utility of
abstract general knowledge is that just a few general principles are sufficient
for answering innumerable questions.
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But abstract general principles alone are not sufficient for providing
adequate answers to our questions. Answers have always been available—
too many answers. The Greek Sophists went so far as to claim that equally
convincing arguments can be given in support of every logically possible answer
to any question. The question thus arises: Which answer, if any, is the true
answer? Traditionally the demand was often for not merely the most probable
answer, but rather for that answer which is absolutely certain. The evidence was
required not merely to remove any reasonable doubts, but to establish the truth
of the statement beyond the shadow of any doubt. René Descartes echoed this
ancient demand, in his Meditations :

“I shall continue ... until I have found something certain, or at least,

if T can do nothing else, until I have learned with certainty that there

is nothing certain in this world. Archimedes, to move the earth from

its orbit and place it in a new position, demanded nothing more than

a fixed and immovable fulcrum; in a similar manner I shall have the

right to entertain high hopes if I am fortunate enough to find a single

truth which is certain and indubitable.” ...
With few exceptions the authors ... before 1900 studied the nature of
mathematical knowledge not for its own sake, but rather for the insights that
such a study might provide into the nature of knowledge in general. Their
concern was with general questions such as “Is certain knowledge possible?”
and “What makes knowledge certain?” (It should be noted that many
philosophers, particularly those before 1900, would have considered this
wording redundant; for them “knowledge” meant “certain knowledge,”
and “uncertain knowledge” or “probable knowledge” involved an internal
inconsistency as in “square circle.” In present-day discussions the concepts
of knowledge and certainty are usually defined independently.) Despite possible
differences in motivation and perspective, the “traditional” philosophers
arrived at conclusions which provide the foundations of and starting points

for much of the work of today’s philosophers of mathematics.
Baum, pp. 2-3

One of the earliest and still most influential views of mathematical knowledge
was that of Socrates and Plato. To them, what is real resides in “the heaven above
the heavens” and is imperceptible to our senses. Only our minds can perceive the
true form of a circle, a square, a horse, a chair. What we call the world and life are
only pale imitations. Mathematical knowledge is knowledge of these pure, eternal,
imperishable forms.

From Jowett, The Dialogues of Plato

But of the heaven which is above the heavens, what earthly poet ever did or ever
will sing worthily? It is such as I will describe; for I must dare to speak the
truth, when truth is my theme. There abides the very being with which true
knowledge is concerned; the colourless, formless, intangible essence, visible
only to mind, the pilot of the soul. The divine intelligence, being nurtured upon
mind and pure knowledge, and the intelligence of every soul which is capable of
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receiving the food proper to it, rejoices at beholding reality, and once more
gazing upon truth, is replenished and made glad, until the revolution of the
worlds brings her round again to the same place. In the revolution she beholds
justice, and temperance, and knowledge absolute, not in the form of generation
or relation, which men call existence, but knowledge absolute in existence
absolute; and beholding the other true existences in like manner, and feasting
upon them, she passes down into the interior of the heavens and returns home.

Phaedrus 247

[Socrates said:] Arithmetic has a very great and elevating effect, compelling the
soul to reason about abstract number, and rebelling against the introduction of
visible or tangible objects into the argument. You know how steadily the
masters of the art repel and ridicule any one who attempts to divide absolute
unity when he is calculating, and if you divide, they multiply, taking care that
one shall continue one and not become lost in fractions.

That is very true.

Now suppose a person were to say to them: O my friends, what are these
wonderful numbers about which you are reasoning, in which, as you say, there is
a unity such as you demand, and each unit is equal, invariable, indivisible—what
would they answer?

They would answer, as I should conceive, that they were speaking of those
numbers which can only be realized in thought.

Then you see that this knowledge may truly be called necessary,
necessitating as it clearly does the use of the pure intelligence in the attainment
of pure truth?

Yes: that is a marked characteristic of it.

And you have further observed, that those who have a natural talent for
calculation are generally quick at every other kind of knowledge; and even the
dull, if they have had an arithmetical training, although they may derive no other
advantage from it, always become much quicker than they would otherwise have
been.

Very true, he said.

And indeed, you will not easily find a more difficult study, and not many
as difficult.

You will not.

And for all these reasons, arithmetic is a kind of knowledge in which the
best natures should be trained, and which must not be given up.

I agree.

Let this then be made one of our subjects of education. And next, shall we
enquire whether the kindred science also concerns us?

You mean geometry.

Exactly so.

... the greater and more advanced part of geometry—whether that tends in
any degree to make more easy the vision of the idea of good; and thither, as I
was saying, all things tend which compel the soul to turn her gaze towards that
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place, where is the full perfection of being, which she ought, by all means,
to behold.

True, he said.

Then if geometry compels us to view being, it concerns us; if becoming
only, it does not concern us?

Yes, that is what we assert.

Yet anybody who has the least acquaintance with geometry will not deny
that such a conception of the science is in flat contradiction to the ordinary
language of geometricians.

How so?

They have in view practice only, and are always speaking, in a narrow and
ridiculous manner, of squaring and extending and applying and the like—they
confuse the necessities of geometry with those of daily life; whereas knowledge
is the real object of the whole science.

Certainly, he said.

Then must not a further admission be made?

What admission?

That the knowledge at which geometry aims is knowledge of the eternal,
and not of aught perishing and transient.

That, he replied, may be readily allowed, and is true.

Then, my noble friend, geometry will draw the soul towards truth, and
create the spirit of philosophy, and raise up that which is now unhappily allowed
to fall down.

Nothing will be more likely to have such an effect.

Republic, VII 525-527

Plato’s belief that abstract objects (such as numbers, rectangles, fields) exist
independently of us allows him to explain why mathematics is objective: theorems in
mathematics express truths about real objects and their properties. But since these
objects are not perceptible to our senses, how can we know anything about them?
Plato says that we know mathematical objects through the perception of our intellect,
which is analogous to but distinct from sense perception.

We shall call anyone who ascribes to these two beliefs a platonist, though
the term realist is often used (abstract objects are real). Actually, most platonists
believe something stronger: What we experience through our senses is the
perishable, changeable world, which is less real than the forms we perceive
through our intellect.

Plato’s views seem to countenance and perhaps encourage the greatest forms of
abstraction in mathematics. But until very recently, and very much in the time of the
Greeks, mathematics has been tied to human experience. Greek mathematics was, in
the main, geometry. Euclid’s Elements, still used in courses today, was concerned
with constructions—granted, a kind of abstract, theoretical construction—using
various tools such as straightedge and compass. His axioms were self-evident
because they corresponded to (were abstractions of) actual constructions: Every line
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can be extended, through any two points one may draw a line, and so on. All his
axioms, that is, except one:

Given two lines m and n which intersect a third line I,
if the interior angles o and B sum to less than two right angles,
then the lines, if extended indefinitely, meet on that side of 1:

1
y m
3 n

Given I, m, and n, how far do we have to go before we find that they
intersect? How far is indefinitely? For large angles the distances would be
enormous. With the other axioms, once we are given the points and lines of the
hypothesis we can make a construction which convinces us that there are indeed the
points and lines asserted to exist in the conclusion. Only for this one axiom is that
not possible. It is equivalent to what is known as Euclid’s parallel postulate:

Given a line I and a point P not on I there is one and only one line
m through P such that m is parallel to I.

For millenia mathematicians were intent on showing that this postulate could be
proved from the other axioms in order to eliminate any reliance on the unintuitively
abstract. In Chapter 7 we’ll discuss the nineteenth century resolution of those
attempts.

But a modern exponent of platonism, Godel, argues that it is essential and
unavoidable to rely on abstract objects in modern mathematics.

Classes and concepts may, however, also be conceived of as real objects, namely
as “pluralities of things” or as structures consisting of a plurality of things and
concepts as the properties and relations of things existing independently of our
definitions and constructions.

It seems to me that the assumption of such objects is quite as legitimate as
the assumption of physical bodies and there is quite as much reason to believe in
their existence. They are in the same sense necessary to obtain a satisfactory
system of mathematics as physical bodies are necessary for a satisfactory theory
of our sense perceptions and in both cases it is impossible to interpret the
propositions one wants to assert about these entities as propositions about
the “data”, i.e. in the latter case the actually occurring sense perceptions.

Godel, 1944, pp. 456-457

In the end, though, does it really matter whether we believe mathematical objects
“exist” ?
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From G. Kreisel's “Obituary of K. Godel”

The second principal aim of this memoir is to substantiate Gédel’s own view of
the essential ingredient in his early successes, which solved problems directly
relevant to principal interests of some of the most eminent mathematicians of this
century. ... His view differs sharply from the impressions of many mathematical
logicians who, over more than forty years, have looked in Gédel’s work for the
germs of some exceptionally novel mathematical constructions or for previously
unheard-of subtle distinctions, but not very convincingly. Without losing sight of
the permanent interest of his work, Godel repeatedly stressed ... how little novel
mathematics was needed; only attention to some quite commonplace (philoso-
phical) distinctions; in the case of his most famous result: between arithmetical
truth on the one hand and derivability by (any given) formal rules on the other.
Far from being uncomfortable about so to speak getting something for nothing,
he saw his early successes as special cases of a fruitful general, but neglected
scheme: ’

By attention or, equivalently, analysis of suitable traditional philosophical
notions and issues, adding possibly a touch of precision, one arrives painlessly at
appropriate concepts, correct conjectures, and generally easy proofs—to be
compared to the use of physical reasoning for developing mathematics or on a
smaller scale, the use of geometry in algebra.

Kreisel, 1980, p. 150

B. Achilles and the Tortoise Revisited

Here is a resolution of a version of the paradox of Achilles and the tortoise which
does not depend on the machinery of limits and possible infinities and which gives
us a picture of mathematics quite different from Plato’s.

The Introduction to Constructive Formalism by R. L. Goodstein

The great discoveries in mathematics are not in the nature of uncovered secrets,
pre-existing timeless truths, but are rather constructions: and that which is
constructed is a symbolism, not a proposition. The power of a living symbolism
is the source of that insight into mathematics which is termed mathematical
intuition.

In the foundations of mathematics a formal calculus plays the part which
is taken by symbolism in the informal development. A symbolism leads on, a
formal calculus leads back, and just as a formal calculus, rightly is felt by
creative mathematicians as a barrier to the free expression of ideas, so in the
critical study of the foundations, symbolism is a source of error and
misconception.

The foremost question of the foundations of mathematics for the last
twenty-five years concerns the legitimacy of certain methods of proof in mathe-
matics. What makes this question so difficult is the absence of any absolute
standard, outside mathematics, with which mathematics can be compared.
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Philosophers have held that such a standard is to be found in a study of the
Mind; that just as the laws of Nature are discovered by observation of, and
experiment in, natural phenomena, so too the laws of mathematics are to be
found as laws of thought, by a study of the thinking processes. Yet, if we
consider, we find that the ‘Laws of Nature’ are but empirical hypotheses, subject
to limitation and modification, admitting exceptions related to time and
describing the world as it is, whereas the rules of mathematics are mathematics,
timeless because they are outside time, independent of all observation and
experiment and accordingly neither true nor false, expressing no property of the
world, neither validating, nor validated by, any fact. The ‘laws of thought’, if by
the term we mean laws formulated by experimental psychologists, no more form
a standard by which the rules of mathematics can be tested, than the deductions
of a Martian, from observation of the game, test the validity of the rules of
chess.

What then is the meaning of the controversy between formalists and
constructivists? The formalists say that the criteria by which formal systems are
tested are the criteria of freedom-from-contradiction and completeness, and all
their efforts in the past twenty-five years have been directed towards proving
that a formal calculus, like Principia Mathematica, a calculus of implication,
disjunction, and quantification, contains no insoluble problems, and in particular
towards the construction of a proof of the non-contradictoriness of this calculus.
This preoccupation with contradiction springs from two widely different
sources. From the time when language first ceased to be only a vehicle of
communication and became itself an object of discourse, men have invented
paradoxes. Already in the oldest paradoxes of which we have written record, the
paradox of the “Liar” and the infinity paradox of Zeno we find the prototypes of
the paradoxes of the present day. The construction of formal systems, the very
object of which was the resolution of these paradoxes, has accomplished only
their multiplication. It seems as if the elimination of a paradox can, so to speak,
be achieved on only one plane at a time and at the cost of fresh paradoxes on
higher planes. Rather, this is the impression which the logistic technique of
paradox resolution has produced, for in fact the roots of the paradoxes lie in this
very technique.

The second source from which the fear of hidden, yet to be discovered,
contradictions springs is the uncertainty which every thinker has felt, particu-
larly in recent years, regarding the significance of postulational methods in
mathematical philosophy, a feeling that the postulation of the existence of even
a mathematical entity is entirely specious, metaphysical, and in no way
comparable to the invention of a physical entity to serve as a medium of
expression or a physical model.

Existence in mathematics. Problems regarding the existence of mathe-
matical entities are of many different kinds. Contrast the questions. Are there
numbers, do numbers exist? Does the real number “e” exist as something
apart from the sequence 1, 1+1, 1+1+1/2y, 1+1+1/00+1/3) -+ 75 Is
there a prime number greater than 1010 ?; Is there a prime pair less than 1010 7 ;

13
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greater than 1010 ? To the first question one may answer: Amongst the signs
of our language we distinguish the numerals, or number-signs, which are
constructed from the number sign “0” by the operation of placing a vertical
stroke after a number sign; the term ‘number’ is thus a classification index of
signs. The sense in which we can say that numbers exist is that number signs
are used in our language. Such questions as “have numbers an objective
reality”, “are numbers subjects or objects of thought” are disguised questions
concerning the grammar of the word “number” and ask whether or not we
formulate such sentences as: That which you see, hear, taste, touch, etc. are

numbers.
The second question is concerned with the meaning of limit-processes in

mathematics and with the concept of an infinite set. To say that the real number
“e” has an existence independent of the convergent sequence 1, 1+1, 1+1
+1/9y, 141+ 1/914+1/3] -+ is equivalent to saying that some infinite
process is completed, for instance that the process of writing down all the
digits in the decimal expansion of e has been carried through. In what sense
can an infinite process be thought of as completed? An infinite process is, by
definition, a process in which each stage of the process is followed by another
stage just as each numeral is followed by another, formed by adding a vertical
stroke to the end of the numeral. An infinite process is therefore an unfinishable
process, a process which does not contain the possibility of being completed.

A completed infinite process is a contradiction in terms.

The relation of Zeno's paradox to the formalist-finitist controversy.

It is, however, commonly argued that we can conceive of a completed infinite
process; that in fact, were it not so, Zeno’s famous argument would force us to
deny the possibility of motion. For in passing from one position A, to another
B, a body must pass through the mid-point A; of AB and then through the
mid-point A, of A} B, and then through the mid-point A3 of A,B, and so

on. Thus the motion from A to B may be considered to consist in an unlimited
(infinite) number of stages, viz., the stage of reaching A, the stage of reaching
A,, the stage of reaching A3, and so on. After any stage A, follows the stage
A, ;1 and no matter how many of the stages we have passed through we have
not reached B, and so we never reach B. But if motion from a point A to

any point B is not possible, then no motion is possible. Thus Zeno argues; and
by reductio ad absurdum (for motion is certainly possible) it follows that the
motion from A to B must be regarded as a completed infinite process. The
fallacy in this discussion is by no means easy to detect and seems to have
escaped the notice of many competent thinkers.

If we say that motion is possible we are appealing to our familiar
experience of physical bodies changing their positions. Let us imagine a man
running along a race track across which tapes are strung a few feet from the
ground. We may suppose the track is 100 yards long and that we commence to
string the tapes at the SO yard mark. If we call the ends of the track A, B and
the 50 yard mark A;, then A, is the mid-point of A; B and so on as above.

At each of the points A, A, Aj, ... atape is strung across the track. Asa
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man runs from A to B he will break each of the tapes we set up, and if we
suppose that a tape has been set up at each of the points A;, A,, A3, ... then
the runner will have broken an infinite number of tapes. In putting the argument
in this form we have only placed the difficulty in a more obvious light, for we
are now confronted with the task of setting up an unlimited number of tapes, or,
looking at it from another point of view, of isolating an unlimited number of
points. On the one hand we have the possibility of passing from A to B and

the unlimited possibility of specifying points between A and B (an unlimited
number of fractions between 0 and 100) and on the other hand the impossibility
of isolating these points on the track. How is this apparent incompatibility
resolved?

Think of a man counting from 0 to 100. He may say all the natural
numbers from 0 to 100, or he may say only the “tens” or just “fifty”,
“hundred”, or he may say “half, one, one and a half, two”, and so on, by halves,
up to a hundred. If he counts by tens can we say he has passed through all the
integers between one and a hundred (or passed over them)? And if he counts by
units, that he has passed through all the fractions between these units? One
would not hesitate to answer that the man has counted, or passed through, only
those numbers which in fact he counted, whatever they were, and that numbers
which he did not count, even though such numbers could be inserted between
the numbers which he counted, were not passed through by him in his
counting. Correspondingly when a man runs from A to B he passes those
points (or breaks those tapes) which we isolate, which we name, and these points
only and what we name will be a finite number of points, however great. The
Zeno argument achieves its end by confusing the physical possibility of motion
with the logical possibility of naming as many points as we please.

It is sometimes maintained that the resolution of Zeno’s paradox lies in the
fact that a steadily increasing infinite sequence of numbers may be bounded;
e.g., the sequence whose nth termis 7/(n+ 1) is steadily increasing, because
n+1/(n+2) exceeds A/(a+1) by 1/(n+1)(n+2) and is bounded above
by unity since n/(n+1) is 1/(n+1) less than 1 . The fact is applied to
Zeno’s argument in the following way: Suppose the tape at the point A is
fixed in 1/2 minute, the tape at the point A, in (1/2)2 minutes, the tape at
the point Az in (1/ 5)? minutes, and so on, then the first n tapes are fixed in
1 - (1/2)" minutes, so that within one minute al/ the tapes are fixed, and an
infinite operation has been completed. Thus although there always remains a
tape to be fixed no matter how many have been set up, yet within a minute of
starting there is no tape which has not yet been set up. This argument does not
however resolve the paradox but merely restates it in a fresh plane, for the
conclusion seems now to be that measurement of time is impossible, and this in
its turn is bound up with the possibility of motion (for example, time may be
measured by the motion of the hand of a clock, or the sun across the sky). The
resolution of the paradox in this form is the same as the resolution of the motion
paradox. If our criterion for the number of tapes fixed in a minute is the
criterion of experiment, then no matter how rapidly the experiment is carried
out the unfinishable task of setting up an unlimited number of tapes will not be
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finished. And if our criterion is just that 1 - (1/2)" is less than unity, then this
criterion tells us nothing about an actual experiment and we cannot appeal to the
reality of the passage of time to generate the paradox.

Consider an analogous example. A line is drawn from the point O to the
point 1. In what sense can we say that the line passes through infinitely many
points, that drawing the line completes an infinity of operations, say the opera-
tions of joining 0, 1/7 then 1/ ,2/3 then 2/3,3/4 and so on ? Let us describe
two operations. (1) Drawing the line from the point O to the point 1, and (2)
drawing a line from O to 1/3 , a line from 1/ to 2/3, a line from 2/3 to 3/ 4, and
so on. The first operation has but a single stage, the second is an unfinishable
operation by definition, since no last stage is defined. What have these
operations in common and in what way do they differ? Zeno would persuade us
that the first operation is indistinguishable from the second, thereby generating
the paradox of a finished operation being identical with an unfinishable one. In
drawing a line from O to 1 we have certainly drawn a line from 0 to 1/, and a
line from 1/ to 2/3 and a line from 2/3 to 3/ 4, and so on, so that by carrying
out the first operation, there is no stage of the second operation that is
unfinished. The fallacy in this argument is concealed beneath a dual usage of
the expression “a line is drawn from a point A to a point B ”. In describing the
first operation, and in describing each of the stages of the second operation, the
expression “a line is drawn from a point A to a point B” means a line whose
endpoints are A and B, i.e., a physical mark, a stroke, terminating at A and
B. The first operation consists in drawing a stroke from 0 to 1. The second
operation consists in drawing successively strokes from 0 to 1/2 , from 1/2 to
2/3, from 2/3to 3/4 and so on. Yet when we say that the stroke from 0 to 1 is
also a stroke from O to 1/ (or 1/ to 2/3 , etc.) we have now changed the
meaning of the expression “a stroke from A to B” for the stroke from 0 to 1
cannot be said to consist in strokes from 0 to 1/5 , from 1/7 to 2/3, etc. What
constitutes a stage of the second operation, the termination of a stroke at one of
the points 1/7,2/3,3/4 - is precisely what is lacking in the first operation.

The resolution of Zeno’s paradox may be expressed by saying that Zeno
confuses a literal and metaphorical use of the expression “moving from one
point to another”. In the literal sense of this expression motion is change of the
relative positions of physical objects, and a ‘point’ is a physical object; in this
sense motion from one point to another passes through but a finite number of
‘points’, physical objects isolated and specified on the route. We may specify as
many such objects as we please, but what we specify will have a number. The
metaphorical use of the expression “moving from one point to another” gives
this expression the sense of “a variable increasing from one value to another”.
As the variable x increases from O to 1 it passes through the values 1/9,2/3,
3/4 -+~ and so on, and therefore, seemingly an endless succession of events is
completed. But the expression “as x increases from O to 1 it passes through the
values 1/2,2/3,3/4 - and so on”, says only that the function #/(n +1) is one
which increases with m, all its values lying in (0,1) . And the proof that the
function is increasing and that its values lie in (0,1) does not involve the
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possibility of completing an endless process, for what is proved is just
that m+ 1/ m+ 2 exceeds M/ (mp+ 1) by 1/(m+ 1)(m + 2) and

that unity exceeds m/(m+ 1) by 1/(m+1) ,i.e., that (m+ 1)? =
m(m+2)+1land (m+1)-1=m.

[The remainder of the Introduction to Constructive Formalism by
Goodstein appears in Chapter 5.G.2.]

Exercises

1. What is Plato’s conception of mathematical objects? According to him, what
does it mean to say that a circle exists? That a number exists? Give a concise
explanation of why you agree or disagree with Plato’s views. If Plato is right,
how is it that we can use mathematics to build bridges?

2. In what ways does Goodstein view mathematics differently from Plato? Why
would Goodstein’s resolution of Zeno’s paradoxes be unacceptable to a platonist?
Is Goodstein’s description of the resolution by means of the calculus apt?

3. Mathematicians often view their work as abstractions from experience. Is that
viewpoint compatible with Plato’s? With Goodstein’s? Why?

Further Reading
For more of Plato as well as Aristotle on mathematics see Baum’s Philosophy and
Mathematics. Particularly illuminating are the metaphor of the cave and shadows in
Republic, VII 514-517, and Socrates’ quizzing of the slave boy in Meno 82-86, the latter
of which is used to demonstrate that we remember mathematical truths rather than invent
or discover them.

Abelson, in his article on definitions in The Encyclopedia of Philosophy, has a
succinct summary of Plato’s views as they pertain to the material in this book.
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Whole Numbers

The whole numbers 1, 2, 3, . . . seem to be fundamental to all mathematics, and
so it is with them that we begin.

Counting (Ordinal) vs. Quantity (Cardinal)

Counting: How many objects are there?

ANRIIRG

We point at one figure and say “1”, at another and say “2”, and at the last and say
“3”_ We count with the words “17, “2”, “3”; but then we use “3”, the last, as a
quantity and say that there are 3 objects.

We can compare cardinal numbers without counting, for example, are there the
same number of chairs as people in this room? Pair off the people and chairs, and
see if there are any chairs without people or people without chairs.

It is true that the acts of matching off must be carried out one by one in temporal
succession, even if it is simply the process of looking to see that each chair is
occupied. Nonetheless, the ordinal numbers are not involved because we do
not have to keep track of the relative order of which two chairs was first
checked: we need only distinguish checked from non-checked. The concept of
more or equal is prior to both cardinals and ordinals.

Wang, pp. 59-60

One of the fundamental assumptions of this course will be that we understand
how to count and that each of us can continue the sequence 1,2, 3, ... . We know
what it means to add 1 and can continue to do so indefinitely. We understand what
it means to say that there are 3 objects and that the rectangle in the diagram above is
the second one from the left.
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We will take the whole numbers 1, 2, 3, ... and 0 as primitive, undefined in
terms of any other concepts. We refer to them as whole numbers, counting numbers,
or more commonly when we include O, as the natural numbers.

What exactly is this process of adding 1? We can describe it (not define it) in
unary notation as: the whole number sequence begins with |, the next number is
represented as | |, the next as | |1, and for any representation of a number in the
sequence, the next number is represented by putting one more stroke on the right-
hand side of the previous one.

In Chapter 26 we will reconsider whether we are justified in assuming that the
natural number sequence is clear, unequivocal, and understood by us all.

Number Is All: V2

So fundamental did the counting numbers appear to Pythagoras and his followers
that he declared, “All is number.” And we have from Philolaus the dictum, “All
things which can be known have number; for it is not possible that without number
anything can be either conceived or known.”

The so-called Pythagoreans, having applied themselves to mathematics, first
advanced that study; and having been trained in it they thought that the prin-
ciples of mathematics were the principles of all things. Since of these principles
numbers are by nature first, they thought they saw many similarities to things
which exist and come into being in numbers ... justice being such and such a
modification of numbers, soul and reason another, opportunity still another, and
so with the rest, each being expressible numerically. Seeing, further, that the
properties and ratios of the musical consonances were expressible in numbers,
and that indeed all other things seemed to be wholly modelled in their nature
upon numbers, they took numbers to be the whole of reality, the elements of
numbers to be the elements of all existing things, and the whole heaven to be

a musical scale and a number.

Aristotle, Metaphysics .5.985 b 23 in John M. Robinson, 1968, p. 69

It had been a fundamental tenet of Pythagoreanism that the essence of all things,
in geometry as well as in the practical and theoretical affairs of many, are
explainable in terms of arithmos, or intrinsic properties of whole numbers or
their ratios. The dialogues of Plato show, however, that the Greek mathematical
community had been stunned by a disclosure that virtually demolished the basis
for the Pythagorean faith in whole numbers. This was the discovery that within
geometry itself the whole numbers and their ratios are inadequate to account for
even simple fundamental properties.

Boyer, A History of Mathematics, p. 79
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V2 1

1

The diagonal of a square with sides of length 1 is not a ratio of whole numbers.
For suppose V2 = P/q. Suppose also that P/q is in lowest terms; that is, no
number divides both p and g. Then p=v2 - g and p2 = 2-q2. Hence p2
is even, so p also must be even. Therefore, since p/q is in lowest terms,
gisodd. Butif p =2r,then (2r)2 =2-q2sothat 4 -r2 = 2.q2. Thus
2-r2= g2, which means that g2 is even and hence g is even. This is a
contradiction. Sov2 = P/q must be a false assumption.

At first it must have appeared natural to the Greeks to assume that all magni-
tudes of the same kind are commensurable, and that, for example, any two
lengths are multiples of the same unit. It follows from this assumption that all
points on a line can be represented by rational numbers. The discovery that the
square root of 2 is not rational, or in geometric terms, that the diagonal of a
square is not commensurable with its sides, made it clear that there are points on
a line which are not represented by rational numbers. It remains an unsettled
historical question whether the irrationality of v2 was discovered by Pythagoras
or his immediate pupils, or not long before 400 B.C. In any case, consequences
of this discovery were drawn only at the beginning of the fourth century B.C.
Eudoxus constructed a general theory of proportion which was adopted by
Euclid and further developed by Archimedes. The theory of Eudoxus may be
regarded as the beginning of a rigorous theory of irrational numbers. It leads to
the question of determining all irrational numbers or all ratios of line segments
which are not represented by fractions. Hardy considers the proof of the
irrationality of v2 as one of two examples of beautiful and significant mathe-
matics. Indeed, the proof is so simple and pure, and the theorem is so full of
deep consequences, that it cannot fail to satisfy the desire to find simple keys

to bodies of science.

Wang, p. 72

Exercises

1. Describe the process of adding 1 in decimal notation.
2. a. To be sure you understand the proof that v2 is not rational, prove that V7 is
not rational. Then show that there are arbitrarily many irrational numbers.
b. Construct line segments corresponding to v2, ¥3, V4, /5 using straightedge
and compass? (Hint: Use Pythagoras’ theorem.)
¢. How do we represent irrational numbers in our system of decimal notation?
3. Show that we cannot get +/7 from the rationals and v2 by using addition,

subtraction, multiplication, and division. That is, show that there are no rational
numbers a, b, ¢, and dsuch that V7 = 2 + 52 [c + d V3.
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Numbers, geometric figures, their properties and relations: all these are static. In this
chapter we’ll look at how we deal with processes in mathematics.

What Is a Function?
1. Black boxes

Here is an explanation of functions which we give to our first-year calculus students.
A function is something calculated by a black box.

input

You put in an object, usually a number, crank the handle, and get out something.
What you put in is called the input; what you get out is called the output. For
example, the black box that adds 3 to a number:

input 2

output 5

We call this a “black box” because we don’t care what actually goes on inside;
only the inputs and outputs are important. If another black box gives us the same
outputs for exactly the same inputs as the “+ 3 black box we’ll say it’s the same
function, even though internally it might be first adding 4 then subtracting 1.

What distinguishes a function from just any black box is that a function cannot
equivocate. For example, a black box that adds 2 and adds 3 and then tells us to
take our choice for the output doesn’t calculate a function:

21
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input 6

take your choice

Not a function

For every input there must be exactly one output.
Similarly, a black box that gives square roots isn’t a function:

input 4

take your choice

We can, however, convert the square root box into a function by agreeing
always to take the nonnegative root as the output, ignoring the negative root. Then
for every input there will be exactly one output. From now on that’s what we’ll
mean: for example, ¥4 is the nonnegative number which when squared gives 4.

2. Domains and ranges

We said that a function gives to each input an output. For instance, to every positive
real number the function v gives as output the positive square root of that number.
If we put in a negative number and crank the handle, nothing happens: we crank and
crank fruitlessly.

input - 4

Depending on what numbers we choose for our source of inputs, the v
function will give one output for every input, or will give exactly one output for
certain specified inputs, and won’t work for others. Sometimes we say that v
is a function on the real numbers which is defined only on the nonnegative real
numbers.

We can give a name to all the numbers that are suitable as inputs within the
given collection. We call these the domain. And we can collect all the outputs
and call them collectively the range.

input black box
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Beware: Terminology varies from author to author and even within the same
textbook. Sometimes the domain is construed as the collection of numbers on
which the function is given; for example the real numbers for thev function. The
words the range nearly always mean the collection of all outputs, but some authors
inadvertently use them to mean the codomain, which is a collection of numbers
within which the range can be found. For example, it’s sometimes said that the v
function is a function from the real numbers to the real numbers that is defined for
only the nonnegative real numbers.

codomain

e

We indicate the domain, X, and codomain, Y, of a function, f, by writing
f: X— Y. Weread this as “f is a function from Xto Y”. When X=Y,
we say that “f is a function on X”.

3. Functions as rules, functions as collections of ordered pairs
a. Here is a definition of “function” taken from an elementary text:

Let X and Y be two nonempty sets. Then a function from X to Y
is a rule that assigns to each element x € X aunique ye Y.

From this point of view, functions are processes which we can describe. This accords
well with much of our experience, since the processes we may wish to model are
those we can talk about. A function is not simply an assignment but a method of
assignment.

If we take this view seriously then the rule assigning + 3 to each number is a
different function than the rule “+ 4, then -1”. We have two functions, not one.
We may, if we wish, call them equivalent because they match the same inputs to the
same outputs. But most people who talk of functions as assignments or rules are
speaking suggestively and don’t wish to be taken too seriously, for they would say
that the two rules give the same function.

b. In that case we are viewing a function not as an assignment or a rule but simply
as a pairing. Actually we don’t have a good word that describes the situation which
doesn’t indicate a process. But we may look at a function as just inputs and outputs
so that, as with our black-box description, for any particular matching of inputs to
outputs there is exactly one function. This is how functions are usually given in set
theory. An example of such a definition is:

Let X and Y be two nonempty sets. Then a function from X to Y
is a collection of ordered pairs (x,y) where the first element of the pair
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is from X, the second is from Y, and if (x,y) and (x,z) belong to the
collection then y = z.

The last clause just says that to every element of X there can be at most one element
of Y to which it is paired. That is, for each input there can be at most one output. In
this way functions have become objects; we have replaced the dynamic by the static.

¢. The view of functions as collections of ordered pairs is an extensionalist view.

We may give lots of different names to a function, but the properties of the function
do not depend on our doing so. Usually this view is also platonist, in that the set of
ordered pairs is understood to exist regardless of whether we ever describe it or not.

The view of functions as rules is nonextensional in that it takes the name of
the function, that is, how we describe it, as being an essential property of the
function. Usually this is part of a stronger view, called nominalism, that a name,

a word or a description, is all that a function or any abstract object is.

The same distinctions can be applied to any mathematical “objects”:
The properties of the object depend on the name (description) we give it, or
the properties are independent of our naming.

Now we, the authors, believe that viewing functions as ordered pairs is just a
further abstraction from our daily experience with processes. So we think it’s all
right to begin our study of functions by viewing them as sets of ordered pairs, which
is how they are commonly viewed in modern mathematics. We can later return to
the less abstract view that the description of a function is an essential part of it.

Terminology and Notation
1. The A-notation
We use variables such as x and y to represent inputs. Then one way to describe a
function is to set out the process explicitly:
X 3x+7

”

Here the symbol “—>” indicates the assignment. It’s a nice notation because it
suggests the dynamic aspect of functions.

If there isn’t a standard symbol such as ¥ for the function, we usually name
the function either with a Roman letter, such as f or g, or with a Greek letter,
such as @ or y. So we might write x — f(x).

If we write just £(x) or just f(x) = 3x + 7, however, the notation is ambig-
uous. It’s not clear whether we mean the function or whether we are saying: choose
some arbitrary input x and then look at the output for that particular x , which has
the form 3x+ 7 . That is, it can mean two things: (1) the function itself (i.e., the
rule), or (2) x represents some particular number and f(x) represents the value of
f applied to that number. The latter is called the ambiguous value of f. Compare:
“3x+7 is differentiable” and “3x + 7 is less than 2.” Similarly, when we write
f(x)=7 do we mean that for some particular value of x, f(x) =7 ? Or do we
mean the function with constant output 7 ?
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Another context in which it is difficult to distinguish the reading occurs when
we have a function of two variables. For instance, we can view the process of adding
as requiring two inputs:

input 2,3

output 5

Here the order of the inputs isn’t important. We can first put in 2, then 3, or
first 3, then 2, since 3 +2 =2+ 3. But usually the order is important, and part of
the rule is the order of inputs: for example, on the real numbers the function
(x,y) = x—y . So we will always take the input of a function of several
variables to be an ordered collection of numbers. Thus for (x,y) = x+y
we have (2,3) > Sand (3,2) — 5.

We would like to distinguish between

£(2,3)=2 + 3, afunction of two variables
and
2(2)=2 + 3, afunction of one variable

We will write A x(x + 3) to indicate we are viewing the function of two variables
(x,y) > x + y as a function of only the first variable, with the second variable
held fixed as 3. Similarly, we will write Ax(x + y) to mean that we are viewing
the function of two variables (x, y) — x + y as a function of only the first
variable with the second variable held fixed. Here y is a parameter; that s, it is
viewed as held fixed throughout the discussion, although we don’t specify what
particular value is being used. Depending on what we choose for y, we get a
different function. For instance, if y = 7 we get the function Ax(x + 7).

We'll write Ax Ay (x + y), or simply Axy (x + y), to mean we are viewing
addition as a function of two variables. We’ll use this A-notation whenever the
context might not make the meaning clear; for example, we can now write A x (7)
for the function with constant output 7.

2. One-one and onto functions

Recall that for an assignment to be a function it must assign at most one
output to each input. Symbolically, if f(x) =y and f(x) = z, then y = z.
For example, if f(x) = x2 then if both f(3) = y and f(3) = z, we must
have y =z=09.

For some functions the correspondence works in the other direction, too.
Given some output we can find the input it came from because different inputs
always give different outputs. That’s not true for Ax (x2) on the real numbers
because, for example, both 3 and -3 are assigned 9. Given a number in the range,
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here 9, we can’t retrace our steps. We say a function is 1-1 or one-one (read “one
to one”) or injective if, symbolically, given f(x)= z and f(y) = z, then x = y.
For example, A x (x + 3) is a 1-1 function on the natural numbers.

Some functions use up all the numbers in the codomain. That is to say, every
number in the codomain is the output of some number in the domain. An example is
the function A x (Vx) from the nonnegative real numbers to the nonnegative real
numbers: every nonnegative real number is the square root of some nonnegative real
number, namely, its own square. Functions for which the range equals the codomain
are called onto or surjective, and if f: X— Y is onto we say “f is a function
from X onto Y. A function that is 1-1 and onto is called a bijection.

Here are the archetypal pictures:

Il
Il

A function, not 1-1, not onto Not a function

W N =

A 1-1 function, not onto An onto function, not 1-1

3. Composition of functions

If f: X— Y and g is defined on the range of f, then we can compose g with f.
The compositionis (gof)(x)=p.s 8(f(x)), as pictured below.

domain of g

X f(x) - gof(x)

domain of f range of f - range of
go f

Thus, if £(x) =3x + 7 and g(x) =2x2 , then gof(x) = 18x2+ 84x + 98 .

Beware: Some authors write fog instead of gof.
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Exercises

1. Rewrite each of the following functions on the natural numbers in each of the
three types of functional notation described in this chapter.
a. To each number assign its cube.
b. To each number assign the number 47.
c. To each number < 16 assign its square, to each number > 16 assign the
number cubed minus 2, and assign 407 to 16.

2. a. Prove that on the natural numbers f(x)=3x + 7 is 1-1.

Ax (9x6-12x3+ 6)
Ax(f(x) + g(x))

b. Prove that Ax(x* + 2) is not 1-1 on the real numbers.
3. Which of the following functions on the real numbers are equal?
a. f(x)=x%2+2
b. gx)=3x3-2
c. x> 3x3+x?
d. fog
e. gof
f.
g
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A. What Is a Proof ?

28

What is a proof ? How do we recognize when a mathematical statement has been
proved? What are the criteria? In what ways is a proof in mathematics different
from a proof in a court of law? In “The nature of mathematical proof”, R. L.
Wilder states his view:

What is the role of proof? It seems to be only a testing process that we apply to
these suggestions of our intuition.

Obviously we don’t possess, and probably will never possess, any
standard of proof that is independent of time, the thing to be proved, or the
person or school of thought using it.

Julia Robinson, a well-known logician, explained to her logic class in 1969:

A proof is a demonstration that will be accepted by any reasonable person
acquainted with the facts.

Most mathematicians do not concern themselves with clarifying precisely the
notion of proof, for they do not need to. They know intuitively what is a correct
proof and what is not. But where does this intuition come from? It is a result of
imitation and correction as we learn mathematics, each generation passing on to the
next a way of speaking mathematics, a culture of mathematics. Cultures change,
however, and the standards used in proofs now are very different from those used in
Euclid’s time or in the seventeenth century when the calculus was developed by
Newton and Leibniz. Most mathematicians believe the standard is higher now, that
we do mathematics better than any previous generation. Certainly we make many
distinctions in our work that were never made before. But are our proofs better?

To think so places mathematical proofs outside the realm of culture and into a realm
of absolute standards. One of the reasons for thinking that there is an absolute
standard of proof is that we believe that proofs give us absolute, certain knowledge,
a belief we will examine in Section G.1 below.
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One thing, though, is essential to keep in mind: a proof is a form of communi-
cation. When you write a proof you are trying to convince someone else (or possibly
yourself) that one statement follows from some others: if those others are true, then
that statement must also be true. This is the case even if you think that proofs must
adhere to an absolute platonic ideal, for in that case what you are supposedly
communicating is your vision of the platonic ideal proof of the statement.

If proofs are forms of communication, then they are highly specialized forms.
A proof in mathematics is different from one in a law court not by virtue of having
specialized terms or rigid forms of communication, for law has those too, but by the
particular forms of proof which are deemed acceptable.

In order that we can agree on some basic methods, we present a few forms of
proof which are fundamental to ‘mathematics. Then in Section G we will return to
the question of what a proof is.

Induction
1. Anexample: provethat 1+ 2+ - + n = lpn - (n +1).

Proof: 1=1/51-(1 +1). This is called the basis of the induction.
Suppose that 1+ 2+ --- + n=1/2n - (n + 1) . This is called the
induction hypothesis. Then

l+2++n+@+1) =[l/hn-(n+D]+ (n+1).
1/ (n? + n) +1/5(2n +2),
/5 % +3n+2),

Uy@+1)-(n+2).

Sol+2+--+n+@+1)

sol+2+--+n+(@+1)

sol+2++n+(@+1

Thatis, 1 + 2+ +n+m+1) = @+ -(n+1D)+1),
which was to be proved. =

The method is this: we show the statement is true for 1. Next we assume it is
true for n, an arbitrary but fixed number, and show therefore that it’s true for
n + 1. Then we conclude that it’s true for all numbers. Why? It’s true for 1;
so it’s true for 2; since it’s true for 2, it’s therefore true for 3, and so on.

Those little words “and so on” carry a lot of weight. We believe that the
natural numbers are completely specified by their method of generation: add 1,
starting at O :

0o 1 2 3 4 5 6 7

To prove a statement A by induction, we first prove it for some starting point in this
list of numbers, usually 1, but just as well 0 or 47. We then establish that we have a
method of generating proofs which is exactly analogous to the method of generating
natural numbers: if A(n)is true, then A(n + 1) is true. We have the list:
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A0), if A(0), then A(1), if A(1), then A(2), if A(2), then AQ3), ...
so A(1) s0 A(2) so A(3)

Then the statement is true for all natural numbers equal to or larger than our initial
point, whether the statement be for all numbers larger than 1 or all numbers larger
than 47 .

In essence we have only one idea: a process for generating objects one after
another without end, in one case numerals or numbers, and in the other, proofs.
We believe induction is a correct form of proof because the two applications of
the single idea are matched up. To deny proof by induction amounts to denying
that the natural numbers are completely determined by the process of adding 1 or
that we can deduce a proposition C from the propositions if B, then C and B.

2. Here is an example in which the basis of the induction is neither 0 nor 1:
prove that 1+ 27< 37 for n 2 2.

Proof: Note that the statement is false for n=1.
Basis: 1+22=5< 32=09,
Induction step: Assume for a fixed n > 2 that 1+ 2" < 37, Then

1+20+l =1+ (2-2M)
= (1+27)+ 2"
< (1+2m)+ (1+ 27)
37+ 3" by the induction hypothesis
37430430
= 3n+l

AN A

Thatis, 1+ 27 *1 <37+ which was to be proved.

3. We can use induction for any objects that we can number. Here is an example in
which we apply induction to a collection of objects, in this case finite sets of points
in the plane, where not only one but many different objects can be associated with
each natural number.

Given any collection of n points in the plane no three of which lie on a
line, there are exactly 1/on.(n - 1) line segments connecting them.

Proof: The smallest number n to which the theorem could apply is 2. Given
2 distinct points on the plane, there is exactly 1 line segment joining them, and
1/,2.(2-1)=1. So the theorem is true for n = 2.

Now suppose it is true for n ; we will show it for n+ 1. Suppose we have a
collection of n + 1 points in the plane. Call one of them P. Then the entire
collection except for P contains n points and so we can apply the induction
hypothesis: there are 1/, n - (n - 1) line segments connecting these. The only
other line segments that can be drawn in this collection are those joining P to one
of the other n points. There are n such segments. So in total there are
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(1/3n- (n - 1)) + n line segments joining points in the entire collection. And
[1n-(n -1)]+n (fpn-(n -1))+14,2n

/5 (n2 + n)

= lYy(n+1)-n

Il

which was to be proved. ™

4.  The label ‘mathematical induction’ though well established, is misleading.
Outside of mathematics, induction (here called ‘ordinary induction’ to avoid
confusion) means a process of generalization on the basis of properties of a
random or specially selected sample. ... [the] conclusion, though reasonable,
is precarious and must be regarded as no more than probably true. It can be
refuted by a single counterexample. By contrast, the conclusion of a mathema-
tical induction is quite certain, if no mistake has been made in the reasoning:
there can be no question of its being only probably true, or of the possibility of
failure in exceptional cases. Mathematical induction is not a special form of
ordinary induction; it is a variety of strict proof: a demonstration or deduction.

Max Black, in the Encyclopaedia Americana, vol. 15, 1971, p. 100

Proof by Contradiction (Reductio ad Absurdum)

The method of proof by contradiction is to assume that the conclusion is false and
hence that its negation is true. From that we derive a contradiction. Therefore, the
conclusion must be true. An example is the proof in Chapter 3.B that v2 is not
rational.

This method is based on two assumptions: (1) If a statement implies something
false, it must be false, and (2) For every statement, either it or its negation is true.
The latter is called the law of excluded middle or tertium non datur (no third way is
given) because it asserts that there is no third choice between true and false.

Proof by Construction

To show something exists we construct it. For example, in euclidean plane geometry
without the parallel postulate we can prove that given any line 1 and a point P not
on I there is at least one line m through P which is parallel to I:

Given I and P not on 1, we construct the perpendicular to I from P,
meeting I at point Q. Then we construct a perpendicular to the line

PQ at P, calling it m. Both m and I are perpendicular to PQ and
so they are parallel. Thus we have the desired parallel line.
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P

]

— I
o

The construction is described anthropomorphically and can be fleshed out by

describing precisely how to construct perpendiculars. But lines are not something
that can be drawn: lines have no breadth nor width. Constructions in mathematics,
no matter how anthropomorphic they may sound, are theoretical constructions.

We do not exhibit a parallel line in the same manner as we exhibit a woman over
2 meters tall.

E. Proof by Counterexample

Proof by counterexample is related to proof by construction. To show that a
proposition about some class of objects is not true, just “exhibit” one that fails to
have the property. For example, to prove the proposition “All cats can swim” is
false, we only need to find a cat that doesn’t swim and throw it in a lake. To show
that “All primes are odd” is false, we merely need to exhibit the number 2. The
answer to Exercise 2.b of Chapter 4 should be a proof by counterexample.

F. On Existence Proofs

We can show that something exists by a mathematical construction. But may we not
also use reductio ad absurdum?

For a finite collection a proof by contradiction can be transformed into a proof
by construction. Since we have convinced ourselves that there must be some object
satisfying the condition, we can “look” through the finite collection, testing each
object in turn until we find the one we want.

When we want to show something exists in some potentially infinite collection,
however, the situation is quite different. A proof by contradiction may give us no
information about how to actually produce the object we are looking for. Consider
the following proof that there are irrational numbers a, b such that a® is
rational:

Consider V2 ‘/7, Either it is rational or not. If it is, then we are done.
If not, take a =v2 "2 and b = V2. Then ab = (V22)2 = 2.

In Section G.2 below Goodstein discusses whether this is a legitimate proof.
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G. The Nature of Proof: Certainty and Existence
(Optional)

1. From ‘“Mathematical proofs: the genesis of reasonable doubt”
by Gina Bari Kolata

Do proofs in mathematics guarantee certain knowledge? In the following extract
Gina Bari Kolata reviews some recent work that makes us doubt that.

Investigators are finding that even theoretically decidable questions may have
proofs so long that they can never be written down, either by humans or by
computers.

To circumvent the problem of impossibly long proofs, Michael Rabin of
the Hebrew University in Jerusalem proposes that mathematicians relax their
definition of proof. In many cases it may be possible to “prove” statements
with the aid of a computer if the computer is allowed to err with a predetermined
low probability. Rabin demonstrated the feasibility of this idea with a new way
to quickly determine, with one chance in a billion of being wrong, whether or
not an arbitrarily chosen large number is a prime. Because Rabin’s method of
proof goes against deeply ingrained notions of truth and beauty in mathematics,
it is setting off a sometimes heated controversy among investigators.

Rabin became convinced of the utility of a new definition of proof when
he considered the history of attempts to prove theorems with computers. About
5 years ago, there was a great deal of interest in this way of proving theorems.
This interest arose in connection with research in artificial intelligence and,
specifically, in connection with such problems as designing automatic de-
bugging procedures to find errors in computer programs. Researchers soon
found, however, that proofs of even the simplest statements tend to require
unacceptable amounts of computer time. Rabin believes that this failure at
automatic theorem proving may be due to the inevitably great lengths of proofs
of many decidable statements rather than to a lack of ingenuity in the design of
the computer algorithms.

About 4 years ago, Albert Meyer of the Massachusetts Institute of
Technology demonstrated that computer proofs of some arbitrarily chosen
statements in a very simple logical system will necessarily be unfeasibly long,
The system consists of sets of integers and one arithmetic operation—the addition
of the number 1 to integers. It had long been known that any statement in this
logical system can be proved true or false with a finite number of steps, but
Meyer showed that this number of steps can be an iterated exponential, that is,

an exponential of an exponential of an exponential, and so on. A statement of
length n can require [a proof that uses]
222

2
steps, in which the number of powers is proportional ton. ...

[Meyer and Stockmeyer] defined “completely impossible” as requiring a

33
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computer network of 10123 components which, according to Meyer, is an
estimate of the number of proton-sized objects that would densely fill the known
universe. Then, they showed that in order to [be able to] prove an[y] arbitrary
statement consisting of 617 or fewer symbols, a computer would require 10123
components.

The problem with proofs, Rabin decided, is the demand that they be
correct. Yet humans constantly make errors in mathematics and all other
endeavors. Perhaps because of this, humans who solve problems tend to finish
their tasks, whereas computers often stop for lack of time. ...

Rabin found that if n is not a prime, at least half the integers between 1
and n will fail [a particular] test.* Thus if some number between 1 and nn is
chosen at random and tested, there is at least a 0 chance it will fail the test if n
is not a prime. If two numbers are chosen at random and tested, there is at least
a 7 chance that one of them will fail if n 1s not a prime. If 30 numbers are
chosen at random, there is at leasta 1 - ( )30 chance that one will fail the test
if n is not a prime. The chance that 30 randomly chosen numbers between 1
and n all pass the test and that n is not a prime, then, is only (15 )30 or1in
1 billion. This probabilistic method involves the testing of relatively few integers.
The number of integers tested is independent of the size of n, but does depend
upon what chance of being wrong is risked.

Rabin’s probabilistic test is far more rapid than exact tests. Exact tests
take so long that the only numbers larger than about 1060 that have been tested
are of special forms.** Rabin can test numbers of that size in about 1 second of
computer time. As an example, he and Vaughn Pratt of the Massachusetts
Institute of Technology showed that 2400 — 593 passes his test and thus is a
prime “for all practical purposes.”

Typical of the reactions of many mathematicians is that of one who said
he does not accept a probabilistic method of proof because the “glory of mathe-
matics is that existing methods of proof are essentially error-free.” Ronald
Graham of Bell Laboratories in Murray Hill and others reply that they have
more confidence in results that could be obtained by probabilistic methods
such as Rabin’s prime test than in many 400-page mathematical proofs. ...

Graham is concerned that long and involved proofs are becoming the
norm rather than the exception in mathematics, at least in certain fields such as

* Jodo Meidanis has pointed out to us that R. Solovay and V. Strassen (“A fast Monte-
Carlo test for primality,” SIAM J. Comput. 6, 1977, pp. 84-85; erratum, 7, 1978,

p. 118) showed that when n is composite at least half of the integers between 1 and n
will fail the test. Rabin (“Probabilistic algorithm for testing primality,” J. Number
Theory, 12, 1980, pp. 128-138) showed that the test can be strengthened so that only
one-fourth of the integers between 1 and n will pass it when n is composite. The
method described here as Rabin’s method is known as the Solovay-Strassen algorithm.
Rabin’s algorithm would require half of the tests for the same chance of error. —Ed.

** Nowadays there are exact primality tests that can handle numbers of 60 decimal
digits in an average time of about 10 seconds and of 200 decimal digits in about 10
minutes (H. Cohen and H.W. Lenstra, Jr. “Primality tests and Jacobi sums,” Math.
Comput. 42, 1984, pp. 297-330). —Ed.
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group theory. ... He and Paul Erdos believe that already some of the long
proofs being published are at the limit of the amount of information the human
mind can handle. Thus Graham and others stress that verification of theorems
by computers may necessarily be part of the future of mathematics. And
mathematicians may have to revise their notions of what constitutes strong
enough evidence to believe a statement is true,

2. The Introduction to Constructive Formalism
by R. L. Goodstein (Concluded)

Here Goodstein argues that a proof by contradiction can never justify the existence
of anything: the only legitimate proofs of existence are those that exhibit the object.

The infinitude of primes. We come now to the third question “Is there a prime
number greater than 1010 ” ? Consider first the question: “Is there a prime
number between 1010 and 1010 +10”? The nine numbers 1010 + 1, 1010 +2,
1010+ 3, 1010+ 4, 1010+5, 1010+ 6, 1010+7, 1010+38, 1010+ 9, canbe
tested to find whether or not they are prime, that is to say, each of the numbers
may be divided in turn by the numbers 2, 3, 4, 5, up to 105 and if one of the nine
numbers leaves a remainder not less than unity for each of the divisions then that
number is prime; if however each of the nine numbers leaves a zero remainder
for some division then none of the nine numbers is prime. In the same way we
can test whether any of the numbers between 1010 + 10 and 1010 + 20 is prime,
and, of course, the test is applicable to any finite series (i.e. a series in which the
last member is given). Thus the question “is there a prime number between a
and b” may be decided one way or the other in a specifiable number of steps,
depending only upon a and b, whatever numbers a and b may be. When,
however, we ask whether there is a prime number greater than 1010 the test is no
longer applicable since we have placed no bound on the number of experiments
to be carried out. However many numbers greater than

1010 we tested, we might not find a prime number and yet should remain always
unable to say that there was no prime greater than 1010, We might, in the
course of the experiment, chance upon a prime number, but unless this happened
the test would be inconclusive. To show that the test can really be decisive it is
necessary that we should be able in some way to limit the number of experi-
ments required, and this was achieved by Euclid when he proved that, for each
value of n, the chain of numbers from n to n! + 1 inclusive, contains at least
one prime number. {n! is the product of the whole numbers from 1 to n
inclusive.] The underlying ideas of this proof are just that n! + 1 leaves the
remainder unity when divided by any of the numbers from 2 to n, and that the
least number, above unity, which divides any number is necessarily prime
(every number has a divisor greater than unity, namely, the number itself,

and the least divisor is prime since its factors will also divide the number and

so must be unity or the least divisor itself); thus the least divisor (greater

than unity) of n! + 1 is prime and greater than n. What Euclid’s proof
accomplished is not the discovery or specification of a prime number but the
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construction of a function whose values are prime numbers. We shall have
further occasion to observe how often mathematics answers the question

“is there a number with such and such properties” by constructing a function;
the manner and kind of such constructions will form the subject of later
considerations.

When we turn to the question concerning the existence of a prime pair
greater than 1010 we are faced with the endless task of testing, one after the
other, the primes great than 1010, of which, as we have seen, we can determine
as many as we please, to find whether there are two primes which differ by 2.
In this instance no function has been constructed whose values form prime pairs,
and there is no way of deciding the question negatively. We have asked a
question—if question it be—to which there is no possibility of answering no
and to which the answer yes could be given only if we chanced to find, in the
course of the endless task of seeking through a succession of primes, a pair of
primes which differed by 2. The formalists maintain that we can conceive of
this endless task as completed and accordingly can say that the sentence
“there is a prime pair greater than 1010” must be either true or false; to this
constructivists reply that a “completed endless task” is a self-contradictory
concept and that the sentence “there is a prime pair greater than 1010 ” may be
true but could never be shown to be false, so that if it be a defining characteristic
of sentences that they be either true or false (the principle of the excluded
middle) then “there is a prime pair greater than 1010 ” is no sentence. This
dilemma has led some constructivists to deny the principle of the excluded
middle, which means they have changed the definition of “sentence”, others
to retain the principle, and, albeit unwillingly, reject the unlimited existential
proposition, whilst the formalist retains both the principle of excluded middle
and the unlimited existential proposition together with an uneasy preoccupation
with the problem of freedom-from-contradiction. The real dispute between
formalists and constructivists is not a dispute concerning the legitimacy of
certain methods of proof in mathematics; the constructivists deny and the
formalists affirm the possibility of completing an endless process.

Exercises
1. Prove by induction: 12+ 22+ -+ n2 =1l/gn-(n +1)-(2n + 1).

2. Prove by induction: Given any collection of n points in the plane no three of
which lie on a line, there are exactly /g n- (n - 1) - (n -2) triangles that
can be formed by the line segments joining the points.

3. We will prove that in every finite collection of natural numbers all of the numbers
are equal, using induction on the number of natural numbers in a collection:
The statement is true for any collection with just one natural number, a,
for a = a.
Now suppose it is true for any collection of n natural numbers.

Let aj, a, ..., a,,a,,, be any collection of n + 1 natural numbers.
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By induction hypothesis, a; = a, = --- = a, . Butalso we have a,= - =
a, = a, ,,because here, too, there are only nnumbers. Andso a; = a, = -
Sp=a,,

‘What is wrong with this “proof” ?

4. Prove by induction the Fundamental Theorem of Arithmetic:
Any natural number > 2 can be expressed as a product of primes
in one and only one way, except for the order of the primes.

5. The following questions refer to the article by Gina Bari Kolata in SectionG.1.

a. What is the difference between an error in a proof done by a computer and an
error in a proof written by a mathematician? Why do we sometimes accept
proofs in mathematics even though they may have “trivial” errors?

b. What is wrong with the following statement as a description of the method of
testing for primes: “In many cases it may be possible to “prove” statements
with the aid of a computer if the computer is allowed to err with a predeter-
mined low probability” ?

c. Is the following assertion accurate: “The glory of mathematics is that existing
methods of proof are essentially error-free” ?

6. a. In his “Introduction”, Goodstein sketches a proof of Euclid’s Theorem that
given any prime p we can find another prime between p and p! + 1. Write
up that proof in mathematical notation filling in all the details.

b. Prove that there is not an unlimited number of primes separated by 3: that is,
show that there is some number n such that there are no numbers p and
p + 3 greater than n that are prime. Does this mean that we have completed
an endless task of checking all primes? Why?

Further Reading
Another discussion of the use of computers in proofs is “The philosophical implications of
the four-color problem” by E.R. Swart.

R.C. Buck in his paper “Mathematical induction and recursive definitions” has many
interesting examples of induction; they are also of interest for Chapter 11.
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In the latter part of the nineteenth century Georg Cantor devised a theory of sets in
which he introduced infinite collections into mathematics. He was originally
motivated by problems about trigonometric series. The subject, however, soon

took on a life of its own, and in the hands of Cantor and others it was used to provide
foundations for the calculus. Integers were defined as equivalence classes of ordered
pairs of natural numbers, rationals as equivalence classes of ordered pairs of integers,
and real numbers as infinite collections of rationals. Roughly, a real number is
defined as a set of rationals which is bounded below but has no least element.

In another version, a real number is said to be an infinite equivalence class of all
sequences of rationals which “have the same limit”.

Since that time infinite collections have become standard in modern mathe-
matics, some even say essential. We don’t intend to go into why that’s the case or
explain the details of the “construction” of the real numbers from the natural
numbers. All we’re going to do here is shake hands with some infinite collections
so we’ll know what people are talking about.

How Big Is Infinite?

Let’s assume for now that we can collect into one set all the natural numbers. We’ll
call thatset N={0,1,2,3,4, ... }.

Let’s go further and say that we understand what it means to collect all the
integers together, Z={ ... ,-3,-2,-1,0, 1, 2, 3,... }. And we’ll also collect all
the rationals together, naming that collection Q. It’s a little hard to suggest the list of
elements in Q, but you know what we mean. Don’t you?

Finally, we’ll call the collection of all real numbers R. And from here on we’ll
use the words “collection” and “set” interchangeably.

The most fundamental question that occurs (at least to us) is: Just how big are
these sets? In particular, is there one level of infinity or more?
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To answer that question we must decide what it means to say that two infinite
sets have the same number of elements (a platonist would say “discover” instead of
“decide”). Let’s recall how we can determine if two finite sets have the same
number of elements. We can count both; if we get the same number each time then,
assuming we’ve made no mistake, they have the same number of elements. And we
can even say what that number is.

Or we can proceed in what Wang called a more fundamental manner and match
off the elements of one set against those of the other; for instance, matching chairs to
people in a room. If after having paired off as many as we can there are some
unpaired elements in one collection and none unpaired in the other, then the one with
unpaired elements is larger than the other. This pairing is a process, so we can use
the language of functions to describe it:

For finite sets: two sets have the same number of elements
if and only if there is a 1-1, onto function from one to the other.

Depending on whether you take matching or counting as fundamental, either this is a
fundamental, irreducible fact about finite sets, or it is the most basic theorem we can
prove about them.

Since we have no intuition about infinite collections to guide us in determining
whether two infinite sets have the same number of elements, we will extrapolate
from our experience with finite sets and make the following definition:

For infinite sets: two sets have the same number of elements
if there is a 1-1, onto function from one to the other.

We write A=B to mean that there is a one-one, onto function from A to B, and
in that case we say that A is equivalent (or equipollent) to B.
Do all infinite sets have the same number of elements?

Enumerability: The Rationals Are Countable

The simplest infinite collection is N. We say that a collection of objects A is
countable (or enumerable or denumerable) if it is a finite (possibly empty) set

or is equivalent to N. That is, for some n there is a bijection between the natural
numbers less than nand A or a bijection between all of N and A. The bijection is
called an enumeration. If a collection is countable and not finite, we sometimes
stress that by saying that it is countably infinite.

1. The collection of all even numbers is enumerable:

0o 1 2 3 4 .. n.
R 2 O
0 2 4 6 8 . 27

It is characteristic of an infinite collection that it can be put into 1-1 correspondence
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with a part of itself. Indeed, some mathematicians use this as a definition of what it
means to be infinite.

2. Since the rationals are dense in the real line, it seems there should be more of
them than natural numbers. But that’s just an illusion: We can enumerate Q.

Here is (a variation on) Cantor’s tour of the rationals.

1 2 3 4 5 6

1 1 1

4 5 6
/Z 2

4 5

3

4

4 4
2 3

From the picture it seems clear that we can follow the path, skipping any fraction

we’ve come to before, thus obtaining an enumeration of the positive rationals.

If the positive rationals are enumerable, then so are all the rationals (Exercise 3).
For a more formal proof, we first show that the set P of all ordered pairs of

natural numbers is countable. We define

J(m,n) = % [(m+n)(m+n+1)]+m

This is the ordering in the picture except that we also allow pairs with first or second
component 0. The order is according to increasing m + n, where if the sum
m + n is the same for two pairs then they are arranged with first components in
increasing order. In Exercise 4 you’re asked to show that Jis 1-1 and onto.

Now the set of positive rationals, Q*, is equivalent to a subset of P via

a>(p,q),where a = % in lowest terms (and g =1 is allowed). Finally,

we leave to you Exercise 5.d that every subset of a countable set is countable.

The Reals Are Not Countable

The rationals are countable and are dense on the real line. So surely the reals should
be countable, too? Don’t count on it.

Give the name [0,1) to the interval of reals > 0 and < 1. Then [0,1) is
equivalent to the reals > O via the bijection g(x)= 1—f—x , 50 you can show that
[0,1) = R (Exercise 8).

Now we’ll show that [0,1) isn’t countable. We'll represent the numbers in
[0,1) by decimal expansions, x =.x, x;--- X,--- . Because, for example,
.1=.099...9 ... we ensure the uniqueness of each representation by requiring
that none of our decimals ends in a tail of 9°s.
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Now suppose by way of contradiction that N = [0,1) . So there is an
enumeration of [0,1):

»
I

a

»
Il

»
I

a,+1 ifa,, <8
where b, =15 _1 ifa, >8
Then 0 < b < 1 and b does not end in a tail of 9s. But it can’t be on our list since

it disagrees with each a, on the-diagonal! So there is no enumeration of [0,1).
Thus, there are at least two levels of infinity.

Define b=.b;b, ... b

n-r

D. Power Sets and the Set of All Sets

But there are more levels of infinity still, an infinity of them.

Given a set A, we define the power set of A, written P (A), to be the set of
all subsets of A. We claim that A = P(A) .

Suppose by way of contradiction that A = P(A). Let f: A— P(A) be
onto. Denote f(a)=A,. Let B be all those elements x of A such that xg A, .
Then B is a subset of A, and hence B = A for some b. But then we have:

If be B, then by definition bg A,, so bg B.
If bg¢ B, then by definition be Ay, so be B.

Therefore, we have a contradiction. So A = P(A).

Now let’s consider the set of all sets, which we’ll call S . We’ve just shown
that the power set of S is “bigger” than S. But that’s paradoxical since by definition
S is the most inclusive of all sets. This is called Cantor’s antinomy and was known
to Cantor as early as 1899 .

If set theory and infinite sets are to be the underpinnings for a solid foundation
of the calculus, what are we to make of Cantor’s antinomy and Russell’s paradox
(Chapter 1.A.5)? Can we really trust our work with infinite sets when our intuition
is likely to lead us astray, as with Q =N, and when paradoxes, contradictions, are
lurking in the corners?

Exercises

1. Show that = is an equivalence relation. That is, show for all sets A, B, C
a A=A.
b. If A =B,then B = A.
c. f A=Band B=C,then A =C.
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2. Show that the following are countable:
a. The collection of all odd natural numbers
b. The integers
c. The collection of all primes

3. Suppose that £ : N — Q* is 1-1 and onto. Using f exhibit g: N — Q
that is 1-1 and onto.

4. Prove that J is 1-1 and onto by showing that
the number of pairs (x ,y ) such that
J(m,n) =
X +y <m +n or (x +y =m +n and x <m)
(Hint: See Chapter 5.B.1.)

5. Show that the following are denumerable:
a. All triples of natural numbers.
b. All n—tuples of natural numbers for a fixed n.
T ¢. The collection of all n-tuples of natural numbers for all n.

(Hint : Divide N into countably many countably infinite sets by taking
the n' setfor n > 1 to be all those numbers divisible by 27-1 and
no higher power of 2.)

d. Every subset of a denumerable set. (Hint: It’s immediate for finite subsets.
Otherwise pick it out from an enumeration of the whole set.)

6. Let A be any countable collection, which we shall call the alphabet; for
example, A could be the letters of the Roman alphabet or it could be the
rationals. Define a word to be any concatenation (finite sequence) of the objects
in A, for example, abaabx or % 0 % % . Show that the collection of words over
A is countable.

7. We say that a real number is algebraic if it satisfies an equation
a,x" +a x"-l+..+ ax+ a =0 where n 21, a,#0, and all
the coefficients are rational. Otherwise we call it transcendental. Show that the
set of algebraic numbers is countable. Conclude that there are transcendental
numbers. Evaluate this existence proof by Goodstein’s standards (Chapter 5.G.2).

8. a. Show that the function g:[0,1) — the nonnegative real numbers given by

g(x)= 7% is 1-1 and onto.

b. Prove that [0,1)~R.
9. Show that there are the same number of points on the real line as there are on the
plane. (Hint: Show that [0,1) = the unit square less the top and right-hand edges

by interweaving the binary expansions of x and y for the point (x,y) .)
‘What happened to our concept of dimension?

10. Compare the proof that A = P(A) with the Liar Paradox and Russell’s set
theory paradox.
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Further Reading
Cantor’s original writings on this subject, Transfinite Numbers, are still some of the clearest
and most interesting.

A very good simple introduction to set theory is Set Theory by Seymour Lipschutz.
For a fuller presentation see Hausdorff’s Set Theory. For discussions about the paradoxes
of set theory we recommend Foundations of Set Theory by Fraenkel, Bar-Hillel, and Levy.
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(Optional)

The strangeness of the results about sizes of infinities and the confusion engendered
by Russell’s paradox led many mathematicians at the beginning of the twentieth
century to question the legitimacy of using infinite collections in mathematics. A
similar situation had occurred in the previous century when Bolyai and Lobachevsky
developed non-euclidean geometries. They showed that one could add the denial of
Euclid’s axiom on parallels to his other axioms and have a geometry that, although it
seemed odd and contradicted the experience of euclidean geometry, nonetheless
appeared to have an internal consistency. Eventually it was shown by Beltrami,
Klein, and Poincaré that if euclidean geometry was free from contradiction, then so,
too, were the geometries of Bolyai and Lobachevsky. Their method was to exhibit a
model of the new geometries within euclidean geometry. Thus, the new geometries
were as secure as euclidean geometry, whose consistency was not in doubt.

Hilbert played a major role in the formalization of these geometries. In 1898-
1899 in his book Foundations of Geometry he presented an axiomatization of plane
geometry which started with a core of axioms to which could be added either
Euclid’s parallel axiom or a form of its denial due to Riemann. He then proved
sufficient theorems in his formal system to show that the two sorts of geometry
could each be fully characterized by his axiomatizations.

Later, Hilbert wished to carry over this approach to justify the use of the
infinite in mathematics. Various axiomatizations of set theory were available by the
1920s. The difficulty was to show that at least one of those axiomatizations was free
from contradiction. In the paper presented here, Hilbert reviews physical theories of
the world and concludes that we have no reason to believe there is anything in the
world which corresponds to an infinite collection. Thus we cannot justify the
axiomatizations by a model.

How then did Hilbert hope to justify the infinite in mathematics?
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Warning: The paper is long and it’s difficult to grasp it all on the first reading.
You’ll want to come back to it after we’ve studied how Hilbert’s program was
formalized and whether it was successful. Nonetheless, you should be able to
answer the exercises at the end of the chapter.

From “On the Infinite’” by David Hilbert *

As a result of his penetrating critique, Weierstrass has provided a solid founda-
tion for mathematical analysis. By elucidating many notions, in particular those
of minimum, function, and differential quotient, he removed the defects which
were still found in the infinitesimal calculus, rid it of all confused notions about
the infinitesimal, and thereby completely resolved the difficulties which stem
from that concept. If in analysis today there is complete agreement and certitude
in employing the deductive methods which are based on the concepts of irration-
al number and limit, and if in even the most complex questions of the theory of
differential and integral equations, notwithstanding the use of the most ingenious
and varied combinations of the different kinds of limits, there nevertheless is
unanimity with respect to the results obtained, then this happy state of affairs is
due primarily to Weierstrass’s scientific work.

And yet in spite of the foundation Weierstrass has provided for the
infinitesimal calculus, disputes about the foundations of analysis still go on.

These disputes have not terminated because the meaning of the infinite,
as that concept is used in mathematics, has never been completely clarified.
Weierstrass’s analysis did indeed eliminate the infinitely large and the infinitely
small by reducing statements about them to [statements about] relations between
finite magnitudes. Nevertheless the infinite still appears in the infinite numer-
ical series which defines the real numbers and in the concept of the real number
system which is thought of as a completed totality existing all at once.

In his foundation for analysis, Weierstrass accepted unreservedly and used
repeatedly those forms of logical deduction in which the concept of the infinite
comes into play, as when one treats of all real numbers with a certain property
or when one argues that there exist real numbers with a certain property.

Hence the infinite can reappear in another guise in Weierstrass’s theory
and thus escape the precision imposed by his critique. It is, therefore, the
problem of the infinite in the sense just indicated which we need to resolve
once and for all. Just as in the limit processes of the infinitesimal calculus, the
infinite in the sense of the infinitely large and the infinitely small proved to be
merely a figure of speech, so too we must realize that the infinite in the sense of
an infinite totality, where we still find it used in deductive methods, is an illu-
sion. Just as operations with the infinitely small were replaced by operations
with the finite which yielded exactly the same results and led to exactly the same
elegant formal relationships, so in general must deductive methods based on the
infinite be replaced by finite procedures which yield exactly the same results;

* Text of an address delivered June 4, 1925, before a congress of the Westphalian
Mathematical Society in Miinster, in honor of Karl Weierstrass. Translated by Erna
Putnam and Gerald Massey from Mathematische Annalen (Berlin) no.95, pp. 161-190.
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i.e., which make possible the same chains of proofs and the same methods of
getting formulas and theorems.

The goal of my theory is to establish once and for all the certitude of
mathematical methods. This is a task which was not accomplished even during
the critical period of the infinitesimal calculus. This theory should thus complete
what Weierstrass hoped to achieve by his foundation for analysis and toward the
accomplishment of which he has taken a necessary and important step.

But a still more general perspective is relevant for clarifying the concept
of the infinite. A careful reader will find that the literature of mathematics is
glutted with inanities and absurdities which have had their source in the infinite.
For example, we find writers insisting, as though it were a restrictive condition,
that in rigorous mathematics only a finite number of deductions are admissible
in a proof—as if someone had succeeded in making an infinite number of them.

Also old objections which we supposed long abandoned still reappear in
different forms. For example, the following recently appeared: Although it may
be possible to introduce a concept without risk, i.e., without getting contradic-
tions, and even though one can prove that its introduction causes no contradic-
tions to arise, still the introduction of the concept is not thereby justified. Is not
this exactly the same objection which was once brought against complex-
imaginary numbers when it was said: “True, their use doesn’t lead to any
contradictions. Nevertheless their introduction is unwarranted, for imaginary
magnitudes do not exist”? If, apart from proving consistency, the question of
the justification of a measure is to have any meaning, it can consist only in
ascertaining whether the measure is accompanied by commensurate success.
Such success is in fact essential, for in mathematics as elsewhere success is the
supreme court to whose decisions everyone submits.

As some people see ghosts, another writer seems to see contradictions
even where no statements whatsoever have been made, viz., in the concrete
world of sensation, the “consistent functioning” of which he takes as special
assumption. I myself have always supposed that only statements, and
hypotheses insofar as they lead through deductions to statements, could
contradict one another. The view that facts and events could themselves be
in contradiction seems to me to be a prime example of careless thinking.

The foregoing remarks are intended only to establish the fact that the
definitive clarification of the nature of the infinite, instead of pertaining just to
the sphere of specialized scientific interests, is needed for the dignity of the
human intellect itself.

From time immemorial, the infinite has stirred men’s emotions more
than any other question. Hardly any other idea has stimulated the mind so
fruitfully. Yet no other concept needs clarification more than it does.

Before turning to the task of clarifying the nature of the infinite, we should
first note briefly what meaning is actually given to the infinite. First let us see
what we can learn from physics. One’s first naive impression of natural events
and of matter is one of permanency, of continuity. When we consider a piece of
metal or a volume of liquid, we get the impression that they are unlimitedly



Hilbert “On the Infinite” 47

divisible, that their smallest parts exhibit the same properties that the whole
does. But wherever the methods of investigating the physics of matter have
been sufficiently refined, scientists have met divisibility boundaries which do
not result from the shortcomings of their efforts but from the very nature of
things. Consequently we could even interpret the tendency of modern science as
emancipation from the infinitely small. Instead of the old principle natura non
facit saltus, we might even assert the opposite, viz., “nature makes jumps.”

It is common knowledge that all matter is composed of tiny building
blocks called “atoms,” the combinations and connections of which produce all
the variety of macroscopic objects. Still physics did not stop at the atomism of
matter. At the end of the last century there appeared the atomism of electricity
which seems much more bizarre at first sight. Electricity, which until then had
been thought of as a fluid and was considered the model of a continuously active
agent, was then shown to be built up of positive and negative electrons.

In addition to matter and electricity, there is one other entity in physics for
which the law of conservation holds, viz., energy. But it has been established
that even energy does not unconditionally admit of infinite divisibility. Planck
has discovered quanta of energy.

Hence, a homogeneous continuum which admits of the sort of divisibility
needed to realize the infinitely small is nowhere to be found in reality. The
infinite divisibility of a continuum is an operation which exists only in thought.
1t is merely an idea which is in fact impugned by the results of our observations
of nature and of our physical and chemical experiments.

The second place where we encounter the question of whether the infinite
is found in nature is in the consideration of the universe as a whole. Here we
must consider the expanse of the universe to determine whether it embraces
anything infinitely large. But here again modern science, in particular astron-
omy, has reopened the question and is endeavoring to solve it, not by the
defective means of metaphysical speculation, but by reasons which are based
on experiment and on the application of the laws of nature. Here, too, serious
objections against infinity have been found. Euclidean geometry necessarily
leads to the postulate that space is infinite. Although euclidean geometry is
indeed a consistent conceptual system, it does not thereby follow that euclidean
geometry actually holds in reality. Whether or not real space is euclidean can be
determined only through observation and experiment. The attempt to prove the
infinity of space by pure speculation contains gross errors. From the fact that
outside a certain portion of space there is always more space, it follows only that
space is unboungied, not that it is infinite, Unboundedness and finiteness are
compatible. In so-called elliptical geometry, mathematical investigation
furnishes the natural model of a finite universe. Today the abandonment of
euclidean geometry is no longer merely a mathematical or philosophical
speculation but is suggested by considerations which originally had nothing to
do with the question of the finiteness of the universe. Einstein has shown that
euclidean geometry must be abandoned. On the basis of his gravitational theory,
he deals with cosmological questions and shows that a finite universe is possible.
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Moreover, all the results of astronomy are perfectly compatible with the
postulate that the universe is elliptical.

We have established that the universe is finite in two respects, i.e., as
regards the infinitely small and the infinitely large. But it may still be the case
that the infinite occupies a justified place in our thinking, that it plays the role
of an indispensable concept. Let us see what the situation is in mathematics.
Let us first interrogate that purest and simplest offspring of the human mind,
viz., number theory. Consider one formula out of the rich variety of elementary
formulas of number theory, e.g., the formula
*=Lln.(a+D)-2n+1)

Since we may substitute any integer whatsoever for n, for example n=2 or
n=15, this formula implicitly contains infinitely many propositions. This
characteristic is essential to a formula. It enables the formula to represent the
solution of an arithmetical problem and necessitates a special idea for its proof.
On the other hand, the individual numerical equations

2 2
1"+2°= ;235
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2 2 2 2 2
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can be verified simply by calculation and hence individually are of no especial
interest.

We encounter a completely different and quite unique conception of the
notion of infinity in the important and fruitful method of ideal elements. The
method of ideal elements is used even in elementary plane geometry. The points
and straight lines of the plane originally are real, actually existent objects. One
of the axioms that hold for them is the axiom of connection: one and only one
straight line passes through two points. It follows from this axiom that two
straight lines intersect at most at one point. There is no theorem that two
straight lines always intersect at some point, however, for the two straight lines
might well be parallel. Still we know that by introducing ideal elements, viz.,
infinitely long lines and points at infinity, we can make the theorem that two
straight lines always intersect at one and only one point come out universally
true. These ideal “infinite” elements have the advantage of making the system
of connection laws as simple and perspicuous as possible. Moreover, because of
the symmetry between a point and a straight line, there results the very fruitful
principle of duality for geometry.

Another example of the use of ideal elements are the familiar complex-
imaginary magnitudes of algebra which serve to simplify theorems about the
existence and number of roots of an equation.

[Here Hilbert talks about ideal elements in algebra.]

We now come to the most aesthetic and delicately erected structure of
mathematics, viz., analysis. You already know that infinity plays the leading
role in analysis. In a certain sense, mathematical analysis is a symphony of the
infinite.

The tremendous progress made in the infinitesimal calculus results mainly
from operating with mathematical systems of infinitely many elements. But, as
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it seemed very plausible to identify the infinite with the “very large”, there soon
arose inconsistencies which were known in part to the ancient sophists, viz., the
so-called paradoxes of the infinitesimal calculus. But the recognition that many
theorems which hold for the finite (for example, the part is smaller than the
whole, the existence of a minimum and a maximum, the interchangeability of
the order of the terms of a sum or a product) cannot be immediately and
unrestrictedly extended to the infinite, marked fundamental progress. I said at
the beginning of this paper that these questions have been completely clarified,
notably through Weierstrass’s acuity. Today, analysis is not only infallible
within its domain but has become a practical instrument for using the infinite.

But analysis alone does not provide us with the deepest insight into the
nature of the infinite. This insight is procured for us by a discipline which
comes closer to a general philosophical way of thinking and which was designed
to cast new light on the whole complex of questions about the infinite. This
discipline, created by Georg Cantor, is set theory. In this paper we are interested
only in that unique and original part of set theory which forms the central core
of Cantor’s doctrine, viz., the theory of transfinite numbers. This theory is,

I think, the finest product of mathematical genius and one of the supreme
achievements of purely intellectual human activity. What, then, is this theory?

Someone who wished to characterize briefly the new conception of the
infinite which Cantor introduced might say that in analysis we deal with the
infinitely large and the infinitely small only as limiting concepts, as something
becoming, happening, i.e., with the potential infinite. But this is not the true
infinite. We meet the true infinite when we regard the totality of number 1, 2, 3,
4, ... itself as a completed unity, or when we regard the points of an interval as a
totality of things which exist all at once. This kind of infinity is known as
actual infinity.

Frege and Dedekind, the two mathematicians most celebrated for their
work in the foundations of mathematics, independently of each other used the
actual infinite to provide a foundation for arithmetic which was independent of
both intuition and experience. This foundation was based solely on pure logic
and made use only of deductions that were purely logical. Dedekind even went
so far as not to take the notion of finite number from intuition but to derive it
logically by employing the concept of an infinite set. But it was Cantor who
systematically developed the concept of the actual infinite, Consider the two
examples of the infinite already mentioned

1. 1,2,3,4, ...
2. The points of the interval 0 to 1 or, what comes to the same thing, the
totality of real numbers between 0 and 1.

It is quite natural to treat these examples from the point of view of their size.
But such a treatment reveals amazing results with which every mathematician
today is familiar. For when we consider the set of all rational numbers, i.e., the
fractions 15 , % 5 ,17 v e s 55 .o, Wenotice that—from the sole standpoint
of its size—this set is no larger than the set of integers. Hence we say that the
rational numbers can be counted in the usual way; i.e., that they are enumerable.
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The same holds for the set of all roots of numbers, indeed even for the set of all
algebraic numbers. The second example is analogous to the first. Surprisingly
enough, the set of all points of a square or cube is no larger than the set of points
of the interval O to 1. Similarly for the set of all continuous functions. On
learning these facts for the first time, you might think that from the point of
view of size there is only one unique infinite. No, indeed! The sets in examples
(1) and (2) are not, as we say, “equivalent”. Rather, the set (2) cannot be
enumerated, for it is larger than the set (1). [For a detailed exposition of the
material above see Chapter 6.] We meet what is new and characteristic in
Cantor’s theory at this point. The points of an interval cannot be counted in the
usual way, i.e., by counting 1, 2, 3, ... . But since we admit the actual infinite,
we are not obliged to stop here. When we have counted 1, 2, 3, ..., we can
regard the objects thus enumerated as an infinite set existing all at once in a
particular order. If, following Cantor, we call the type of this order ®, then
counting continues naturally with @+ 1, ®+2, ...upto @+ ® or ®-2, ... .
[Here he discusses counting further in the infinities.]

On the basis of these concepts, Cantor developed the theory of transfinite
numbers quite successfully and invented a full calculus for them. Thus thanks to
the Herculean collaboration of Frege, Dedekind, and Cantor, the infinite was
made king and enjoyed a reign of great triumph. In daring flight, the infinite had
reached a dizzy pinnacle of success.

But reaction was not lacking. It took in fact a very dramatic form. It set
in perfectly analogously to the way reaction had set in against the development
of the infinitesimal calculus. In the joy of discovering new and important results,
mathematicians paid too little attention to the validity of their deductive methods.
For, simply as a result of employing definitions and deductive methods which
had become customary, contradictions began gradually to appear. These
contradictions, the so-called paradoxes of set theory, though at first scattered,
became progressively more acute and more serious. In particular, a contradic-
tion discovered by Zermelo and Russell [see p.4 above] had a downright
catastrophic effect when it became known throughout the world of mathematics.
Confronted by these paradoxes, Dedekind and Frege completely abandoned their
point of view and retreated. Dedekind hesitated a long time before permitting a
new edition of his epoch-making treatise Was sind und was sollen die Zahlen
to be published. In an epilogue, Frege too had to acknowledge that the direction
of his book Grundgesetze der Mathematik was wrong. Cantor’s doctrine, too,
was attacked on all sides. So violent was this reaction that even the most
ordinary and fruitful concepts and the simplest and most important deductive
methods of mathematics were threatened and their employment was on the verge
of being declared illicit. The old order had its defenders, of course. Their
defensive tactics, however, were too fainthearted and they never formed a united
front at the vital spots. Too many different remedies for the paradoxes were
offered, and the methods proposed to clarify them were too variegated.

Admittedly, the present state of affairs where we run up against the
paradoxes is intolerable. Just think, the definitions and deductive methods
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which everyone learns, teaches, and uses in mathematics, the paragon of truth
and certitude, lead to absurdities! If mathematical thinking is defective, where
are we to find truth and certitude?

There is, however, a completely satisfactory way of avoiding the paradoxes
without betraying our science. The desires and attitudes which will help us find
this way and show us what direction to take are these:

1. Wherever there is any hope of salvage, we will carefully investigate
fruitful definitions and deductive methods, We will nurse them,
strengthen them, and make them useful. No one shall drive us out of
the paradise that Cantor has created for us.

2. We must establish throughout mathematics the same certitude for our
deductions as exists in elementary number theory, which no one doubts
and where contradictions and paradoxes arise only through our own
carelessness.

Obviously these goals can be attained only after we have fully elucidated
the nature of the infinite.

We have already seen that the infinite is nowhere to be found in reality,
no matter what experiences, observations, and knowledge are appealed to. Can
thought about things be so much different from things? Can thinking processes
be so unlike the actual processes of things? In short, can thought be so far
removed from reality? Rather is it not clear that, when we think that we have
encountered the infinite in some real sense, we have merely been seduced into
thinking so by the fact that we often encounter extremely large and extremely
small dimensions in reality?

Does material logical deduction somehow deceive us or leave us in the
lurch when we apply it to real things or events?* No! Material logical deduc-
tion is indispensable. It deceives us only when we form arbitrary abstract
definitions, especially those which involve infinitely many objects. In such
cases we have illegitimately used material logical deduction; i.e., we have not
paid sufficient attention to the preconditions necessary for its valid use. In
recognizing that there are such preconditions that must be taken into account,
we find ourselves in agreement with the philosophers, notably with Kant.

Kant taught—and it is an integral part of his doctrine—that mathematics treats a
subject matter which is given independently of logic. Mathematics, therefore,
can never be grounded solely on logic. Consequently, Frege’s and Dedekind’s
attempts to so ground it were doomed to failure.

As a further precondition for using logical deduction and carrying out
logical operations, something must be given in conception, viz., certain extra-
logical concrete objects which are intuited as directly experienced prior to all
thinking. For logical deduction to be certain, we must be able to see every
aspect of these objects, and their properties, differences, sequences, and

* Throughout this paper the German word “inhaltlich” has been translated by the words
“material” or “materially” which are reserved for this purpose and which are used to
refer to matter in the sense of the traditional distinction between matter and content and
logical form.—Translator
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contiguities must be given, together with the objects themselves, as something
which cannot be reduced to something else and which requires no reduction.
This is the basic philosophy which I find necessary not just for mathematics,
but for all scientific thinking, understanding, and communicating. The subject
matter of mathematics is, in accordance with this theory, the concrete symbols
themselves whose structure is immediately clear and recognizable.

Consider the nature and methods of ordinary finitary number theory. It
can certainly be constructed from numerical structures through intuitive material
considerations. But mathematics surely does not consist solely of numerical
equations and surely cannot be reduced to them alone. Still one coula argue that
mathematics is an apparatus which, when applied to integers, always yields
correct numerical equations. But in that event we still need to investigate the
structure of this apparatus thoroughly enough to make sure that it in fact always
yields correct equations. To carry out such an investigation, we have available
only the same concrete material finitary methods as were used to derive numeri-
cal equations in the construction of number theory. This scientific requirement
can in fact be met, i.e., it is possible to obtain in a purely intuitive and finitary
way —the way we attain the truths of number theory—the insights which guaran-
tee the validity of the mathematical apparatus.

Let us consider number theory more closely. In number theory we have
the numerical symbols

1, 11, 111, 11111

where each numerical symbol is intuitively recognizable by the fact it contains
only 1’s. These numerical symbols which are themselves our subject matter
have no significance in themselves. But we require in addition to these symbols,
even in elementary number theory, other symbols which have meaning and
which serve to facilitate communication, for example the symbol 2 is used as an
abbreviation for the numerical symbol 11, and the numerical symbol 3 as an
abbreviation for the numerical symbol 111. Moreover, we use symbols like +,
=,and > to communicate statements. 2 +3 = 3 +2 is intended to communi-
cate the fact that 2 + 3 and 3 + 2, when abbreviations are taken into account, are
the self-same numerical symbol, viz., the numerical symbol 11111. Similarly, 3
> 2 serves to communicate the fact that the symbol 3, i.e., 111, is longer than the
symbol 2, i.e., 11; or, in other words, that the latter symbol is a proper part of
the former.

We also use the letters a, b, ¢ for communication.* Thus b > a
communicates the fact that the numerical symbol b is longer than the numerical
symbol a. From this point of view, a + b=b + a communicates only the fact
that the numerical symbol a + b is the same as b + a. The content of this
communication can also be proved through material deduction. Indeed, this
kind of intuitive material treatment can take us quite far.

But let me give you an example where this intuitive method is outstripped.
The largest known prime number is (39 digits)

* We use boldface letters where Hilbert used German script.—Ed.
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p = 170141 183 460 469 231 731 687 303 715 884 105 727

By a well-known method due to Euclid we can give a proof, one which remains
entirely within our finitary framework, of the statement that between p +1 and
p! + 1 there exists at least one new prime number. The statement itself conforms
perfectly to our finitary approach, for the expression “there exists” serves only
to abbreviate the expression: it is certain thatp+ 1 orp+2orp+3... or

p! + 1 is a prime number. Furthermore, since it obviously comes down to the
same thing to say: there exists a prime number which

1. > p, and at the same time is

2. Epl+1,
we are led to formulate a theorem which expresses only a part of what the
euclidean theorem expresses; viz., the theorem that there exists a prime number
> p. Although this theorem is a much weaker statement in terms of content—
it asserts only part of what the euclidean theorem asserts—and although the
passage from the euclidean theorem to this one seems quite harmless, that
passage nonetheless involves a leap into the transfinite when the partial
statement is taken out of context and regarded as an independent statement.

How can this be? Because we have an existential statement, “there
exists”! True, we had a similar expression in the euclidean theorem, but there
the “there exists” was, as I already mentioned, an abbreviation for: p + 1 or
p+2orp+3...orp!+1isaprime number—just as when, instead of saying
“either this piece of chalk or this piece or this piece ... or this piece is red” we
say briefly “there exists a red piece of chalk among these pieces.” A statement
such as “there exists” an object with a certain property in a finite totality
conforms perfectly to our finitary approach. But a statement like “either p + 1
orp+2orp+3...or(ad infinitum) ... has a certain property” is itself an
infinite logical product. Such an extension into the infinite is, unless further
explanation and precautions are forthcoming, no more permissible than the
extension from finite to infinite products in calculus. Such extensions,
accordingly, usually lapse into meaninglessness.

From our finitary point of view, an existential statement of the form
“there exists a number with a certain property” has in general only the
significance of a partial statement; i.e., it is regarded as part of a more
determinate statement. The more precise formulation may, however, be
unnecessary for many purposes.

In analyzing an existential statement whose content cannot be expressed
by a finite disjunction, we encounter the infinite. Similarly, by negating a
general statement, i.e., one which refers to arbitrary numerical symbols, we
obtain a transfinite statement. For example, the statement that if a is a
numerical symbol, then a + 1 =1 + a is universally true, is from our finitary
perspective incapable of negation. We will see this better if we consider that
this statement cannot be interpreted as a conjunction of infinitely many
numerical equations by means of “and” but only as a hypothetical judgment
which asserts something for the case when a numerical symbol is given.
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From our finitary viewpoint, therefore, we cannot argue that an equation
like the one just given, where an arbitrary numerical symbol occurs, either holds
for every symbol or is disproved by a counter example. Such an argument,
being an application of the law of excluded middle, rests on the presupposition
that the statement of the universal validity of such an equation is capable of
negation.

At any rate, we note the following: if we remain within the domain of
finitary statements, as indeed we must, we have as a rule very complicated
logical laws. Their complexity becomes unmanageable when the expressions
“all” and “there exists” are combined and when they occur in expressions
nested within other expressions. In short, the logical laws which Aristotle taught
and which men have used ever since they began to think, do not hold. We
could, of course, develop logical laws which do hold for the domain of finitary
statements. But it would do us no good to develop such a logic, for we do not
want to give up the use of the simple laws of Aristotelian logic. Furthermore,
no one, though he speak with the tongues of angels, could keep people from
negating general statements, or from forming partial judgments, or from using
tertium non datur. What, then, are we to do?

Let us remember that we are mathematicians and that as mathematicians
we have often been in precarious situations from which we have been rescued
by the ingenious method of ideal elements. I showed you some illustrious
examples of the use of this method at the beginning of this paper. Just as
i =+v~=1 was introduced to preserve in simplest form the laws of algebra (for
example, the laws about the existence and number of the roots of an equation);
just as ideal factors were introduced to preserve the simple laws of divisibility
for algebraic whole numbers (for example, a common ideal divisor for the
numbers 2 and 1 +v-5 was introduced, though no such divisor really exists);
similarly, to preserve the simple formal rules of ordinary Aristotelian logic, we
must supplement the finitary statements with ideal statements. 1t is quite ironic
that the deductive methods which Kronecker so vehemently attacked are the
exact counterpart of what Kronecker admired so enthusiastically in Kummer’s
work on number theory which Kronecker extolled as the highest achievement
of mathematics.

How do we obtain ideal statements? It is a remarkable as well as a
favorable and promising fact that to obtain ideal statements, we need only
continue in a natural and obvious fashion the development which the theory of
the foundations of mathematics has already undergone. Indeed, we should
realize that even elementary mathematics goes beyond the standpoint of intuitive
number theory. Intuitive, material number theory, as we have been construing
it, does not include the method of algebraic computation with letters. Formulas
were always used exclusively for communication in intuitive number theory.
The letters stood for numerical symbols and an equation communicated the fact
that the two symbols coincided. In algebra, on the other hand, we regard
expressions containing letters as independent structures which formalize the
material theorems of number theory. In place of statements about numerical
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symbols, we have formulas which are themselves the concrete objects of
intuitive study. In place of number-theoretic material proof, we have the
derivation of a formula from another formula according to determinate rules.

Hence, as we see even in algebra, a proliferation of finitary objects takes
place. Up to now the only objects were numerical symbols like 1, 11, ...,
11111. These alone were the objects of material treatment. But mathematical
practice goes further, even in algebra. Indeed, even when from our finitary
viewpoint a formula is valid with respect to what it signifies as, for example, the
theorem that always

a+b=b+a

where a and b stand for particular numerical symbols, nevertheless we prefer
not to use this form of communication but to replace it instead by the formula

a+b=>b+a.

This latter formula is in no wise an immediate communication of something
signified but is rather a certain formal structure whose relation to the old finitary
statements,

2+3 =3+2,
5+7=17+5,

consists in the fact that, when a and b are replaced in the formula by the
numerical symbols 2, 3, 5, 7, the individual finitary statements are thereby
obtained, i.e., by a proof procedure, albeit a very simple one. We therefore
conclude that a, b,=, +, as well as the whole formula a +b =b +a
mean nothing in themselves, no more than the numerical symbols meant
anything. Still we can derive from that formula other formulas to which we
do ascribe meaning, viz., by interpreting them as communications of finitary
statements. Generalizing this conclusion, we conceive mathematics to be a
stock of two kinds of formulas: first, those to which the meaningful communi-
cations of finitary statements correspond; and, secondly, other formulas which
signify nothing and which are the ideal structures of our theory.

Now what was our goal? In mathematics, on the one hand, we found
finitary statements which contained only numerical symbols, for example,

3>2, 2+43=3+2, 2=3, 1=#1,

which from our finitary standpoint are immediately intuitable and
understandable without recourse to anything else. These statements can be
negated, truly or falsely. One can apply Aristotelian logic unrestrictedly to them
without taking special precautions. The principle of non-contradiction holds for
them; i.e., the negation of one of these statements and the statement itself
cannot both be true. Tertium non datur holds for them; i.e., either a statement
or its negation is true. To say that a statement is false is equivalent to saying
that its negation is true. On the other hand, in addition to these elementary
statements which present no problems, we also found more problematic finitary
statements; e.g., we found finitary statements that could not be split up into
partial statements. Finally, we introduced ideal statements in order that the
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ordinary laws of logic would hold universally. But since these ideal statements,
viz., the formulas, do not mean anything insofar as they do not express finitary
statements, logical operations cannot be materially applied to them as they can
be to finitary statements. It is, therefore, necessary to formalize the logical
operations and the mathematical proofs themselves. This formalization
necessitates translating logical relations into formulas. Hence, in addition to
mathematical symbols, we must also introduce logical symbols such as

&, v, -, -
(and) (or) (implies) (not)

and in addition to the mathematical variables a, b, c, ... we must also employ
logical variables, viz., the propositional variables A, B, C ... .

How can this be done? Fortunately that same preestablished harmony
which we have so often observed operative in the history of the development of
science, that same preestablished harmony which aided Einstein by giving him
the general invariant calculus already fully developed for his gravitational
theory, comes also to our aid: we find the logical calculus already worked out in
advance. To be sure, the logical calculus was originally developed from an
altogether different point of view. The symbols of the logical calculus originally
were introduced only in order to communicate. Still it is consistent with our
finitary viewpoint to deny any meaning to logical symbols, just as we denied
meaning to mathematical symbols, and to declare that the formulas of the logical
calculus are ideal statements which mean nothing in themselves. We possess in
the logical calculus a symbolic language which can transform mathematical
statements into formulas and express logical deduction by means of formal
procedures. In exact analogy to the transition from material number theory to
formal algebra, we now treat the signs and operation symbols of the logical
calculus in abstraction from their meaning. Thus we finally obtain, instead of
material mathematical knowledge which is communicated in ordinary language,
just a set of formulas containing mathematical and logical symbols which are
generated successively, according to determinate rules. Certain of the formulas
correspond to mathematical axioms. The rules whereby the formulas are
derived from one another correspond to material deduction. Material deduction
is thus replaced by a formal procedure governed by rules. The rigorous
transition from a naive to a formal treatment is effected, therefore, both for the
axioms (which, though originally viewed naively as basic truths, have been long
treated in modern axiomatics as mere relations between concepts) and for the
logical calculus (which originally was supposed to be merely a different
language).

We will now explain briefly how mathematical proofs are formalized.

[ Here Hilbert discusses a formalization of logical deduction, a version of which
is presented in Chapters 19 and 21 of this text.]

Thus we are now in a position to carry out our theory of proof and to
construct the system of provable formulas, i.e., mathematics. But in our general
joy over this achievement and in our particular joy over finding that indispen-
sable tool, the logical calculus, already developed without any effort on our part,
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we must not forget the essential condition of our work. There is just one
condition, albeit an absolutely necessary one, connected with the method of
ideal elements. That condition is a proof of consistency, for the extension of a
domain by the addition of ideal elements is legitimate only if the extension does
not cause contradictions to appear in the old, narrower domain, or, in other
words, only if the relations that obtain among the old structures when the ideal
structures are deleted are always valid in the old domain.

The problem of consistency is easily handled in the present circumstances.
It reduces obviously to proving that from our axioms and according to the rules
we laid down we cannot get “1 #1” as the last formula of a proof, or, in other
words, that “1 #1” is not a provable formula. This task belongs just as much
to the domain of intuitive treatment as does, for example, the task of finding a
proof of the irrationality of v2 in materially constructed number theory—i.e., a
proof that it is impossible to find two numerical symbols a and b which stand in
the relation a2 = 2b2, or in other words, that one cannot produce two numerical
symbols with a certain property. Similarly, it is incumbent on us to show that
one cannot produce a certain kind of proof. A formalized proof, like a numeri-
cal symbol, is a concrete and visible object. We can describe it completely.
Further, the requisite property of the last formufa; viz., that it read “1 #1”,isa
concretely ascertainable property of the proof. And since we can, as a matter of
fact, prove that it is impossible to get a proof which has that formula as its last
formula, we thereby justify our introduction of ideal statements.

It is also a pleasant surprise to discover that, at the very same time, we
have resolved a problem which has plagued mathematicians for a long time, viz.,
the problem of proving the consistency of the axioms of arithmetic. For,
wherever the axiomatic method is used, the problem of proving consistency
arises. Surely in choosing, understanding, and using rules and axioms we do not
want to rely solely on blind faith. In geometry and physical theory, proof of
consistency is effected by reducing their consistency to that of the axioms of
arithmetic. But obviously we cannot use this method to prove the consistency of
arithmetic itself. Since our theory of proof, based on the method of ideal
elements, enables us to take this last important step, it forms the necessary
keystone of the doctrinal arch of axiomatics. What we have twice experienced,
once with the paradoxes of the infinitesimal calculus and once with the
paradoxes of set theory, will not be experienced a third time, nor ever again.

The theory of proof which we have sketched not only is capable of
providing a solid basis for the foundations of mathematics but also, I believe,
supplies a general method for treating fundamental mathematical questions
which mathematicians heretofore have been unable to handle.

In a sense, mathematics has become a court of arbitration, a supreme
tribunal to decide fundamental questions—on a concrete basis on which
everyone can agree and where every statement can be controlled.

The assertions of the new so-called “intuitionism” [see Chapter
26]—modest though they may be—must in my opinion first receive their
certificate of validity from this tribunal.
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An example of the kind of fundamental questions which can be so handled
is the thesis that every mathematical problem is solvable. We are all convinced
that it really is so. In fact one of the principal attractions of tackling a mathema-
tical problem is that we always hear this cry within us: There is the problem,
find the answer; you can find it just by thinking, for there is no ignorabimus
in mathematics. Now my theory of proof cannot supply a general method for
solving every mathematical problem—there just is no such method. Still the
proof (that the assumption that every mathematical problem is solvable is a
consistent assumption) falls completely within the scope of our theory.

I will now play my last trump. The acid test of a new theory is its ability
to solve problems which, though known for a long time, the theory was not
expressly designed to solve. The maxim “By their fruits ye shall know them”
applies also to theories.

[Here he claims to be able to resolve the continuum problem: are any

infinities bigger than N and smaller than R?]

In summary, let us return to our main theme and draw some conclusions
from all our thinking about the infinite. Our principal result is that the infinite is
nowhere to be found in reality. It neither exists in nature nor provides a legiti-
mate basis for rational thought—a remarkable harmony between being and
thought. In contrast to the earlier efforts of Frege and Dedekind, we are
convinced that certain intuitive concepts and insights are necessary conditions
of scientific knowledge, that logic alone is not sufficient. Operating with the
infinite can be made certain only by the finitary.

The role that remains for the infinite to play is solely that of an idea—if
one means by an idea, in Kant’s terminology, a concept of reason which
transcends all experience and which completes the concrete as a totality—that of
an idea which we may unhesitatingly trust with the framework erected by our
theory.

Lastly, I wish to thank P. Bernays for his intelligent collaboration and
valuable help, both technical and editorial, especially with the proof of the
continuum theorem.

Exercises

1. Why would a model (in the world) of a collection of axioms justify that the
axioms are free from contradiction?

2. a. What was the motive for Hilbert’s paper?

b. What did Weierstrass do that Hilbert so admired?

c¢. Do you agree with Hilbert when he says, “in mathematics as elsewhere
success is the supreme court to whose decisions everyone submits”? Explain.

d. What was the paradise that Cantor created?

e. Why does Hilbert say that the logical laws of Aristotle do not hold? How does
he plan to deal with that?

f. What are ideal statements in arithmetic?
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g. When are we justified in using ideal statements?

h. Why was Hilbert especially concerned about proving the consistency of
arithmetic?

i. According to Hilbert, what is the subject matter, i.e., the objects, which
mathematics studies?

j. Hilbert’s view of mathematics as presented here is called formalism. Is that
name apt?

k. What was the role of logic in Hilbert’s program? How did that differ from the
role of logic in Frege’s program?

3. A platonist would disagree with Hilbert on many points, but most fundamentally
on what justifies our use of infinities in mathematics. Explain.

4. Goodstein is a constructivist. How would he object to Hilbert’s use of ideal
statements in mathematics?

Further Reading
Michael Hand clarifies this reading a lot in his “Hilbert’s iterativistic tendencies”.
Constance Reid’s biography of Hilbert is excellent reading.






I1

COMPUTABLE FUNCTIONS






3 Computability

Hilbert’s approach is now called formalism. He wished to ground the infinite in a
contradiction-free formal system the validity of which he could prove by finitary
means. But what do “finitary means” encompass? If Hilbert could have given a
constructive proof of the consistency of his system, then the question of delimiting
the finitary from the infinitary would not need to be answered. But Hilbert and his
school failed time and again to give such a proof. Finally Godel showed that no
finitistic method of a certain limited sort could be used to analyze the problem of
consistency. Was his proof definitive or did he only show that some finitistic
means won’t work? An analysis of the notion of computability is essential to be
able to answer that question.

Do not read any further before doing the following:

‘Write up what you believe are reasonable criteria for a procedure, limited to
manipulation of natural numbers, to be finitistic, mechanical, and/or computable.
List conditions which are necessary and/or sufficient.

Algorithms

We know many algorithms. Perhaps the earliest one you learned in mathematics was

adding, which you did by reference to a fixed table. Similarly subtracting and
multiplying were originally presented to you as algorithms.

One of the first general algorithms you may have learned was how to solve
quadratic equations with real number coefficients. Given

ax2+ bx2+c=0

where a, b, c are real numbers, then if b2 - 4ac > 0 the solutions to the
equation are

_ —b++b%—4dac

- 2a
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The solution of the quadratic led in the sixteenth century to solutions of the
general third- and fourth-degree equations by similar algorithms. But for three
centuries no one was able to give an algorithm for the solutions for the general
fifth-degree equation

asx5 tagx* +a3x3 +taygx2+a x+ag=0

There was finally general agreement that what was required was a solution using
only the coefficients and the operations +, -, ~, +, and nth roots for any n. By
clearly defining the class of algorithms that were deemed acceptable, it was possible
for Abel to prove in 1824 that no such general solution existed.

Most of us are also familiar with algorithms for constructing geometric figures
using straightedge and compass, such as those for constructing a parallel (Chapter
5.D), or aright angle, or an equilateral triangle. A long-standing problem about
constructions was: given an arbitrary angle, is it possible to trisect it using only
straightedge and compass? Methods similar to those which established that the
quintic and higher degree equations can’t be solved by radicals show there can be
no such algorithm.

General Criteria for Algorithms

We need a general notion of algorithm if we wish to show that for some problems
there is no algorithmic solution. By this point you should have tried to give your
own criteria for what a computable procedure is. Let’s look at some criteria that
others have proposed.

1. Mal’cev’s criteria, from Algorithms and Recursive Functions
4

a. An algorithm is a process for the successive construction of quantities. It
proceeds in discrete time so that at the beginning there is an initial finite system
of quantities given and at every succeeding moment the system of quantities
is obtained by means of a definite law (program) from the system of quan-
tities at hand at the preceding moment of time (discreteness of the algorithm).

b. The system of quantities obtained at some (not the initial) moment of time is
uniquely determined by the system of quantities obtained in the preceding
moments of time (determinacy of the algorithm).

c. The law for obtaining the succeeding system of quantities from the preceding
must be simple and local (elementarity of the steps of the algorithm).

d. If the method of obtaining the succeeding quantity from any given quantity
does not give a result, then it must be pointed out what must be considered
to be the result of the algorithm (direction of the algorithm).

e. The initial system of quantities can be chosen from some potentially infinite
set (massivity of the algorithm). ...

The intuitive concept of an algorithm, although it is nonrigorous, is clear
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to the extent that in practice there are no serious cases when mathematicians
disagree in their opinion about whether some concretely given process is an
algorithm or not.

Mal’cev, pp. 18-19

Are Mal’cev’s criteria complete? Consider the following function:
We construct a machine that can pick up a pair of dice, shake them, roll them out,
read the top two faces, and print out the sum of the dots on them; to the number n
we associate the nth result of this process. Since this is done by a machine it is
surely mechanical. But is it an algorithm for computing a function? We believe
not, since it is not duplicable. Duplicability is an essential characteristic of any
computable procedure. Mal’cev’s criteria do not rule out this function as computable
unless we are willing to argue that the entire system of machine and dice is not
physically determined (see Exercise 2).

2. Hermes, from Enumerability, Decidability, Computability
Introductory Reflections on Algorithms

The concept of algorithm

The concept of algorithm, i.e. of a “general procedure”, is more or less known to
all mathematicians. In this introductory paragraph we want to make this concept
more precise. In doing this we want to stress what is to be considered essential.

Algorithms as general procedures. The specific way of mathematicians to
draw up and to enlarge theories has various aspects. Here we want to single out
and discuss more precisely an aspect characteristic of many developments.
Whenever mathematicians are occupied with a group of problems it is at first
mostly isolated facts that captivate their interests. Soon however they will
proceed to finding a connection between these facts. They will try to systema-
tize the research more and more with the aim of attaining a comprehensive view
and an eventual complete mastery of the field in question. Frequently the
method of attaining such mastery consists in separating special classes of
questions such that each class can be dealt with by the help of an algorithm.

An algorithm is a general procedure such that for any appropriate question the
answer can be obtained by the use of a simple computation according to a
specified method.

Examples of general procedures can be found in every mathematical
discipline. We only need to think of the division procedure for the natural
numbers given in the decimal notation, of the algorithm for the computation
of approximating decimal expressions of the square root of a natural number,
or of the method of the decomposition into partial fractions for the computation
of integrals with rational functions as integrands.

In this book we shall understand by a general procedure a process the
execution of which is clearly specified to the smallest details. Among other
things this means that we must be able to express the instructions for the
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execution of the process in a finitely long text.*

There is no room left for the practice of the creative imagination of the
executor. He has to work slavishly according to the instructions given to him,
which determine everything to the smallest detail . **

The requirements for a process to be a general procedure are very strict.

It must be clear that the ways and means which a mathematician is used to of
describing a general procedure are in general too vague to come up really to the
required standard of exactness. This applies for instance to the usual description
of methods for the solution of a linear equation system. Among other things it is
left open in this description in which way the necessary additions and multipli-
cations should be executed. It is however clear to every mathematician that in
this case and in cases of the same sort the instruction can be supplemented to
make a complete instruction which does not leave anything open.—The instruc-
tions according to which the not specially mathematically trained assistants
work in a calculating pool come relatively near to the ideal we have fixed our
eyes upon.

There is a case, which we feel is worth mentioning here, in which a
mathematician is used to speaking of a general procedure by which he does not
intend to characterize an unambiguous way of proceeding. We are thinking of
calculi with several rules such that it is not determined in which sequence the
rules should be applied. But these calculi are closely connected with the
completely unambiguously described procedures. ... In this book we want to
adopt the convention of calling procedures general procedures only if the way
of proceeding is completely unambiguous.

There are terminating algorithms, whereas other algorithms can be
continued as long as we like. The Euclidean algorithm for the determination
of the greatest common divisor of two numbers terminates; after a finite number
of steps in the computation we obtain an answer, and the procedure is at an end.
The well-known algorithm of the computation of the square root of a natural
number given in decimal notation does not, in general, terminate. We can
continue with the algorithm as long as we like, and we obtain further and further
decimal fractions as closer approximations to the root.

Realization of algorithms. A general procedure, as it is meant here, means in
any case primarily an operation (action) with concrete things. The separation of
these things from each other must be sufficiently clear. They can be pebbles

* One cannot produce an infinitely long instruction. We can however imagine the
construction of one which is potentially infinitely long. This can be obtained by first
giving a finite beginning of the instruction, and then giving a finitely long set of rules
which determines exactly how in every case the already existing part of our instruction
is to be extended. But then we can say that the finite beginning together with the finitely
long set of rules is the actual (finite) instruction.

** QObviously the schematical execution of a given general procedure is (after a few
tries) of no special interest to a mathematician. Thus we can state the remarkable fact
that by the specifically mathematical achievement of developing a general method a
creative mathematician, so to speak, mathematically depreciates the field he becomes
master of by this very method.
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(counters, small wood beads) as e.g. on the classical abacus or on the Japanese
soroban, they can be symbols as in mathematical usage (e.g. 2, x, +, (,] ),
but they can also be the cogwheels of a small calculating machine, or electrical
impulses as it is usual in big computers. The operation consists in bringing
spatially and temporally ordered things into new configurations.

For the practice of applied mathematics it is absolutely essential which
material is used to execute a procedure. However, we want to deal with the
algorithms from the theoretical point of view. In this case the material is
irrelevant. If a procedure is known to work with a certain material then this
procedure can also be transferred (more or less successfully) to another material.
Thus the addition in the domain of natural numbers can be realized by the
attachment of strokes to a line of strokes, by the adding or taking away of beads
on an abacus, or by the turning of wheels in a calculating-machine.

Since we are only interested in such questions in the domain of general
procedures which are independent of the material realization of these pro-
cedures, we can take as a basis of our considerations a realization which is
mathematically especially easy to deal with. It is therefore preferred in the
mathematical theory of algorithms to consider such algorithms which take effect
in altering a line of signs. A line of signs is a finite linear sequence of
symbols (single signs, letters). It will be taken for granted that for each
algorithm there is a finite number of letters (at least one) the collection of which
forms the alphabet which is the basis of the algorithm. The finite lines of
signs, which can be composed from the alphabet, are called words. Itis
sometimes convenient to allow the empty word O, which contains no letters.—
If A is an alphabet and W a word which is composed only of letters of A, we
call Wa word overA .

The letters of an alphabet A which is the basis of an algorithm are in a
certain sense non-essential. Namely, if we alter the letters of A and so obtain a
corresponding new alphabet A”, then we can, without difficulty, give an account
of an algorithm for A” which is “isomorphic” to the original algorithm, and
which functions, fundamentally, in the same way.

Gédel numbering.* We can, in principle, make do with an alphabet which
contains only a single letter, e.g. the letter |. The words of this alphabet are
(apart from the empty word): |, |1, |11, etc. These words can in a trivial way
be identified with the natural numbers 0, 1, 2, ... . Such an extreme standard-
ization of the “material” is advisable for some considerations. On the other
hand it is often convenient to have at our disposal the diversity of an alphabet
consisting of several elements. ...

The use of an alphabet consisting of one element only does not imply an
essential limitation. We can, as a matter of fact, associate the words W over an
alphabet A consisting of N elements with natural numbers G(W) (in such a
way that each natural number is associated with at most one word), i.e. with
words of an alphabet consisting of one element. Such a representation of G is
called a Godel numbering, and G(W) the Gédel number (with respect to G)

* Also often called arithmetization.
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of the word W. Godel ... was the first to use such a representation.

The following are the requirements for an arithmetization G.

1. If Wz W, then G(W}) z G(W,).

2. There exists an algorithm such that for any given word W the
corresponding natural number G(W) can be computed in a finite
number of steps by the help of this algorithm.,

3. For any natural number n it can be decided in a finite number of steps,
whether n is the Godel number of a word W over A.

4. There exists an algorithm such that if n is the Gédel number of a word W
over A, then this word W (which according to 1 must be unique) can be
constructed in a finite number of steps by the help of this algorithm.

Hermes, pp. 1-4

C. Numbering

Here is an example of a G6del numbering as described by Hermes. Take as alphabet
the letters a, b, ¢, and say that a word is any finite concatenation of these— that

is, a placement of these side by side in a line. For example, abacca is a word.

We can then number the words as follows:

Given aword x;x, --- x, where each x; is a, b, or ¢, we assign
to it the number 2% .34 . . p,,d" , where p; is the it prime
(2 is the Oth prime) and
1 if x;isa
d; =<2 if x; s b
3 if xjisc
The empty word is given number 0.

For example, the word abac has number 2! -32.5!.73 =30,870. The word
bbc has the number 22-32 .53 = 4500. The number 360 represents cha because
360=23.32.51

To show that this numbering satisfies Hermes criteria we need to invoke the
Fundamental Theorem of Arithmetic (Exercise 5 of Chapter 5):

Any natural number > 2 can be represented as a product of primes,
and that product is, except for the order of the primes, unique.

‘We may number all kinds of objects, not just alphabets. In general, the criteria
for a numbering to be useful are:

1. No two objects have the same number.

2. Given any object, we can “effectively” find the number for it.

3. Given any number, we can “effectively” find if it is assigned to an object
and, if so, to which object.
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D. Algorithm vs. Algorithmic Function

Numbering is one way of giving names to objects. And as long as we’re on the
subject of names, let’s recall that we agreed to treat objects extensionally: They have
properties independent of how we name them (see Chapter 4.A.3.c). Does the
distinction really matter? Consider the following function from natural numbers

to natural numbers:

1 if a consecutive runofexactlyx 5sin a row
f(x)= occurs in the decimal expansion of &
0 otherwise
No algorithm is known for computing f. It may be that none exists, but to be able

to claim there is none we would need a precise definition of “algorithm”.
Now consider the function

1 if a consecutive run of atleast x 5sin a row
g(x)= occurs in the decimal expansion of 7
0 otherwise

We claim that g is computable; that is, there is an algorithm for computing g.
Consider the following list of functions:

h(x) =1 forall x

hy(x) 1 if x = 0; for all other x, hy(x)= 0

h(x) =1 if x=0orl; forallother x, hj(x) =0
=1 if x =0, 1,0r2; forallother x, h,(x) =0

hy(x)

h(x) =1 if x=0,1, 2,...,0r k; forall other x, b (x) = 0

Each of these functions is computable. And g must be on the list: if there are no 5’s
in the expansion of 7, then g is hy ; if there is a longest run of 5’s in &t , say n,
then gis h, ; if there are arbitrarily long runs of 5’s in =t then g is h.

Of course, we can’t tell which of these descriptions is correct for g, but
we’ve shown that one of them must match the same inputs to the same outputs as the
previous description of g. We must not confuse the fact that we have chosen a bad
name for g (from the extensionalist viewpoint)-—that is, one which won’t allow us
to distinguish which h;_or h it is—with the fact that whichever function on the list
g is is computable. Properties of functions are independent of how we describe the
functions.

An algorithm is a description, a name for a function. From the extensionalist
point of view, algorithm # algorithmic function.
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E. Approaches to Formalizing Computability

We now know why we’d like to formalize the notion of computability, we have
some guidelines, and we know that if we can formalize the notion for some kind
of objects (words, numbers), we will have accomplished it for other kinds via
translations by numbering. Before we look at any particular formalization let’s
survey the different approaches.

1. Representability in a formal system (Church, 1933, Godel [and Herbrand],
1934). In this approach a formal system of arithmetic (axioms and rules of
proof) is taken and a function is declared computable if for every m and n
for which f(m) = n we can prove f(m) = n in the system. We will see
this approach in Part IIT when we formalize arithmetic.

2. The A -calculus (Church, 1936). This is closely related to representability in a
formal system. Church takes a simple formal alphabet and language together
with a notion of derivability that mocks the idea of proof yet seems simpler.
Everything is reduced to manipulation of the symbols, and f(m) = n if we
can derive this in the system. See, for example, Rosser, 1984.

3. Arnthmetical descriptions (Kleene, 1936). This approach is based on generaliz-
ing the notion of definition by induction. A class of functions that includes +
and - is “closed under” some simple rules, like definition by induction. This
yields the class of ((-) recursive functions and is the easiest system to work
with mathematically. We will develop this one fully in Chapters 11 and 14-16.

4. Machine-Iike descriptions. There have been several attempts (mostly before the
advent of working computers) to give a mathematical model of machine. Each
tries to formalize the intuitive notion by giving a description of every possible
machine.

a. Turing machines (1936) . We’ll study these in Chapter 9.

b. Markov algorithms. See Markov, 1954,

¢. Unlimited register machines (Shepherdson and Sturgis, 1963). This model
is an idealization of computers with unlimited time, unlimited memory, and
o errors.

What all these formalizations have in common is that they are all purely
syntactical, despite the often anthropomorphic descriptions. They are methods for
pushing symbols around. Here is what Mostowski has to say in his excellent survey.

However much we would like to “mathematize” the definition of com-
putability, we can never get completely rid of the semantic aspect of this
concept. The process of computation is a linguistic notion (presupposing that
our notion of language is sufficiently general); what we have to do is to delimit
a class of those functions (considered as abstract mathematical objects) for
which there exists a corresponding linguistic object (a process of computation).

Mostowski, p. 35
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computability -— a semantic, intuitive concept

computation — a syntactic, purely formal concept

Give an algorithm for finding the largest natural number that divides two given
natural numbers. Does your algorithm satisfy Mal’cev’s criteria?
(Describe your algorithm in English, not “computerese™.)

. Do you agree that the dice-rolling procedure of Section B.1 is mechanical but not

computable? How could you use Mal’cev’s criterion (b) to rule it out?
(Be careful not to implicitly use the notion of computability in explaining what
you mean by “determined”.)

. Hermes says we can identify the words 3, |, ||, 111, ... with the natural

numbers 0, 1, 2, 3, ... in a trivial way. (Does he mean numbers or numerals?)
Give the identification explicitly (cf. Exercise 3.1).

. Give two examples from your daily life in which numbers are assigned by criteria

(1), (2), and (3) of Section C.

. Consider the alphabet (, ), =, 7, pg,P;>Py > -.. - We define a word as

follows:
i. (p;) isawordfor 1=0,1,2, ... .
ii. If A and B are words, so too are (A —B) and (1B).
iii. A string of symbols is a word if and only if it arises via applications of (i)
and (ii).
Number all words effectively. (Hint: Consider the numbering in Section C.)

Further Reading
Odifreddi in Classical Recursion Theory, Chapter 1.8, discusses the issue of a process being
mechanical vs. being computable.
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A. Turing on Computability
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(Optional)

One of the first analyses of the notion of computability, and certainly the most
influential, is due to Turing.
Alan M. Turing, from “On Computable Numbers, with an
Application to the Entscheidungsproblem, > 1936

The “computable” numbers may be described briefly as the real numbers whose

expressions as a decimal are calculable by finite means. ... According to my
definition, a number is computable if its decimal can be written down by a
machine. p. 116

[Turing then gives his formal definitions and in particular says that for a real
number or function on the natural numbers to be computable it must be compu-
table by a machine that gives an output for every input.]

No attempt has yet been made to show that the “computable” numbers
include all numbers which would naturally be regarded as computable, All
arguments which can be given are bound to be, fundamentally, appeals to
intuition, and for this reason rather unsatisfactory mathematically. The real
question at issue is “What are the possible processes which can be carried out
in computing a number?”

The arguments which I shall use are of three kinds.

a. A direct appeal to intuition.

b. A proof of the equivalence of two definitions (in case the new definition has
a greater intuitive appeal). [In an appendix to the paper Turing proves that a
function is calculable by his definition if and only if it is one of Church’s
effectively calculable functions.]

c. Giving examples of large classes of numbers which are computable. ...

[I.] Computing is normally done by writing certain symbols on paper.
We may suppose this paper is divided into squares like a child’s arithmetic
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book. In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it will be
agreed that the two-dimensional character of paper is no essential of computa-
tion. Iassume then that the computation is carried out on one-dimensional
paper, i.e. on a tape divided into squares. I shall also suppose that the number
of symbols which may be printed is finite. If we were to allow an infinity of
symbols, then there would be symbols differing to an arbitrarily small extent.
The effect of this restriction of the number of symbols is not very serious. It is
always possible to use sequences of symbols in place of single symbols. Thus
an Arabic numeral such as 17 or 999999999999999 is normally treated as a
single symbol. Similarly in any European language words are treated as single
symbols (Chinese, however, attempts to have an enumerable infinity of sym-
bols). The differences from our point of view between the single and compound
symbols is that the compound symbols, if they are too lengthy, cannot be
observed at one glance. This is in accordance with experience. We cannot tell
at a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his “state of mind” at that moment. We may
suppose that there is a bound B to the number of symbols or squares which the
computer can observe at one moment. If he wishes to observe more, he must
use successive observations. We will also suppose that the number of states of
mind which need be taken into account is finite. The reasons for this are of the
same character as those which restrict the number of symbols. If we admitted an
infinity of states of mind, some of them will be “arbitrarily close” and will be
confused. Again, the restriction is not one which seriously affects computation,
since the use of more complicated states of mind can be avoided by writing
more symbols on the tape.

Let us imagine the operations performed by the computer to be split up
into “simple operations” which are so elementary that it is not easy to imagine
them further divided. Every such operation consists of some change of the
physical system if we know the sequence of symbols on the tape, which of these
are observed by the computer (possibly with a special order), and the state of
mind of the computer. We may suppose that in a simple operation not more
than one symbol is altered. Any other changes can be split up into simple
changes of this kind. The situation in regard to the squares whose symbols may
be altered in this way is the same as in regard to the observed squares. We may
therefore, without loss of generality, assume that the squares whose symbols are
changed are always “observed” squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares must be
immediately recognisable by the computer. I think it is reasonable to suppose
that they can only be squares whose distance from the closest of the immediately
previously observed squares does not exceed a certain fixed amount. Let us say
that each of the new observed squares is within L squares of an immediately
previously observed square,

73
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In connection with “immediate recognisability”, it may be thought thac
there are other kinds of square which are immediately recognisable. In particu-
lar, squares marked by special symbols might be taken as immediately recognis-
able. Now if these squares are marked only by single symbols there can be only
a finite number of them, and we should not upset our theory by adjoining these
marked squares to the observed squares. If, on the other hand, they are marked
by a sequence of symbols, we cannot regard the process of recognition as a
simple process. This is a fundamental point and should be illustrated. In most
mathematical papers the equations and theorems are numbered. Normally the
numbers do not go beyond (say) 1000. It is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we might
reach Theorem 157767733443477; then, further on in the paper, we might find
“... hence (applying Theorem 157767733443477) we have ...”. In order to
make sure which was the relevant theorem we should have to compare the two
numbers figure by figure, possibly ticking the figures off in pencil to make sure
of their not being counted twice. If in spite of this it is still thought that there are
other “immediately recognisable” squares, it does not upset my contention so
long as these squares can be found by some process of which my type of
machine is capable. This idea is developed in [IIT] below.

The simple changes must therefore include:

a. Changes of the symbol on one of the observed squares.
b. Changes of one of the squares observed to another square within L squares
of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state
of mind. The most general single operation must therefore be taken to be one of
the following:

A. A possible change (a) of symbol together with a possible change of state of
mind.

B. A possible change (b) of observed squares, together with a possible change
of state of mind.

The operation actually performed is determined, as has been suggested
[above] by the state of mind of the computer and the observed symbols. In
particular, they determine the state of mind of the computer after the operation
is carried out.

We may now construct a machine to do the work of this computer.

To each state of mind of the computer corresponds an “m-configuration” of the
machine, The machine scans B squares corresponding to the B squares
observed by the computer. In any move the machine can change a symbol on

a scanned square or can change any one of the scanned squares to another square
distant not more than L squares from one of the other scanned squares. The
move which is done, and the succeeding configuration, are determined by the
scanned symbol and the m-configuration. ...

[1II] We suppose, as in [I], that the computation is carried out on a tape;
but we avoid introducing the “state of mind” by considering a more physical
and definite counterpart of it. It is always possible for the computer to break off
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from his work, to go away and forget all about it, and later to come back and go
on with it. If he does this he must leave a note of instructions (written in some
standard form) explaining how the work is to be continued. This note is the
counterpart of the “state of mind”. We will suppose that the computer works in
such a desultory manner that he never does more than one step at a sitting. The
note of instructions must enable him to carry out one step and write the next
note. Thus the state of progress of the computation at any stage is completely
determined by the note of instructions and the symbols on the tape. That is, the
state of the system may be described by a single expression (sequence of
symbols), consisting of the symbols on the tape followed by A (which we
suppose not to appear elsewhere) and then by the note of instructions. This
expression may be called the “state formula”. We know that the state formula
at any given stage is determined by the state formula before the last step was
made, and we assume that the relation of these two formulae is expressible in the
functional calculus [see Chapter 21 of this text]. In other words, we assume that
there is an axiom A which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the state
formula at the preceding stage. If this is so, we can construct a machine to write
down the successive state formulae, and hence to compute the required number.

Turing, pp. 135-140

B. Descriptions and Examples of Turing Machines

We shall describe a machine according to the conditions prescribed by Turing in his
article given above. We are going to assume that the computer can scan only one
square at a time (Turing’s bound B will be taken to be 1), and can move at most one
square to the left or right (his bound L will be taken to be 1). The same arguments
that convinced us that having any bound at all was no restriction should also convince
us that we can simulate any higher bounds with these. We are also going to assume
that the only symbol other than a blank square which the machine can recognize is 1.
Since we can use unary notation to represent numbers, this will be no restriction on
what we can compute. This version is due in essence to Kleene, 1952, Chapter X1I;
see Odifreddi, 1989, for a detailed explanation of why the restrictions are inessential.
The machine is composed of the following parts:

1. A tape divided into squares; the tape is assumed to be finite but additional
blank squares can be added to the right end or left end at any time; that is,
the tape is “potentially infinite”.

2. A device called a head which can do the following:

i. Observe one square at one moment (the scanned square).
ii. Read whether the square is blank or has a 1 written in it.
ili. Write or delete a symbol 1.
iv. Move to the square immediately left or right of the one it is observing.

We further assume that the machine is always in one of a finite number of states
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(“of mind”, or, as Turing says, it works according to a finite supply of notes of
instructions).

The operation of the machine is determined by the current state and the current
symbol being observed (either a blank, which we notate by “0” below, ora “1”),
which generate the following single operations and a new (or possibly the same)
state:

Write the symbol 1 on the observed square

Delete whatever symbol appears on the observed square
Move one square to the right of the observed square

. Move one square to the left of the observed square

R
SR

Thus, a complete instruction to the machine consists of a quadruple

(g, S, 0p, q;)
where g; is the current state, Se {0,1} is the current symbol (recall that “0” simply
means the tape is blank), Ope {1, 0, R, L} is one of the operations above, and
q; is the new state. Note that we allow both (g; ,0,0,qj) and (q;, 1,1 ,qj),
understanding by these that the machine only changes states.

To help you visualize the operation of a Turing machine, imagine the tape to be
a railroad track that can be extended at will in either direction, with the squares being
the spaces between the ties. On the track is a boxcar that has an opening in the
bottom just big enough to see one square, and that has a lever which can move it one
square in either direction. Think of a man or a woman in the machine (but not both
together as that will complicate matters) and he or she has n different cards labeled
44> 955 --- » G, Which carry instructions. At every stage just one of these cards is
on a board that he or she is looking at. The instruction has a conditional form:
if you see this, then do that and pick up card number ...

H
A S 7/

We make some conventions about the machines:

1. A Turing machine (TM) always starts in its lowest numbered state, which for
convenience we require to be q;.

2. If there is no possible instruction to follow, the machine stops (halts).

3. The quadruples in a program for a TM never present conflict in instructions:
in any one program there are no quadruples that have the same first two
coordinates and disagree on one of the last two.

A program for a Turing machine is a finite collection of quadruples subject to these
conventions.

There is no difference (in the theory) if we think of a unique TM running all
different programs or if we have a TM dedicated to each program, and we will
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indifferently refer to a set of quadruples as a program or a machine.
We call a configuration of a TM an ordered triple:

(contents of the tape, scanned square, state)

The quadruples, then, can be seen as functions that transform configurations into new
configurations. Parentheses and commas are omitted in the quadruples below. The
sequence of 0’s and 1’s on the left represents the contents of the machine, and a
number below that indicates the position of the head in that state of the machine.

Example1 Write n 1’s in a row on a blank tape of a TM and have the head return to
the starting point.

The number of 1’s that the machine writes will be controlled by the number of
quadruples that write 1’s. The figures below denote configurations, and numbers
under the squares denote the states.

(a 0000 - Recall that the machine starts in state q,. We give
1 . . .
instruction g, 0 1 g, to make the head write on the
square it is now scanning. This produces (b).

() 0100 --- We now have to move the head: g, 1 R g, produces (c).
1
(¢) 0100 - Now we write the next (n-1) 1’s by repeating the
2 instructions above using different states,
9,01q,, ¢1Rq;, ..., q,01¢q, .,
which produces (d).
dott--1 10 To return to the starting position we don’t have to count:
n+

we merely move left until we find a blank, and then move
one square to the right.

(e) 0n-}2110 qn+11an+1’ qn+10an+2
The whole program then consists of 2n +1 quadruples using n +2 states:
q,01q, 91 Rq,, q,014q,, @l1Rq, ...,

anan+1’ qn+11an+1’ qn+10an+2‘

Example 2 Write a TM which when started with its head at the leftmost 1 of a
sequence of 1’s on a tape that contains nothing else, duplicates the number of 1’s
and stops with its head at the leftmost 1.

We will make a machine that begins at the leftmost 1 and (i) erases the 1, (ii) moves
right to the end of the string of 1’s, (iii) skips over the first blank there, (iv) if it
finds a blank, goes to the next step; if it finds a 1, goes to the rightmost 1 of that
string, (v) writes two new 1’s, (vi) returns to the leftmost 1 of the original string and
repeats, until (vii) it finds a blank when looking for that 1, then moves to the right
and stops on the leftmost 1 of the new string.

q,10q, Sees a | of the input and deletes it.
3, 0R q;
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g3 1R g4 Moves one square beyond the blank to the right of the input string.

% O0R g,

q,004; Either that square is blank, or it moves right to the first blank.

qlRaq,

g5014qs Writes two 1’s to the right.

gs L R gg

gs01gq,

qg; 1Lgg Moves to the leftmost 1 of the original input string.

4, OL qg

gg 1 L gq

g3 O R gq

gy 11g Repeats the entire procedure if there are any 1’s remaining from

3, 0R g, the input; otherwise goes to the leftmost 1 of the new string of 1’s
and stops.

Let’s see how this TM works on a concrete example, duplicating three 1’s.
Successive configurations of the machine are

(1)011110 (2)09110 (3)003110 (4)001310
(5)0011(3) (6)001109 (7)001109 (8)00110%
(9)0011012 (10)00110171

You should now write out for yourself all the remaining configurations of the
machine until it halts.

Example 3 Write 2n 1’s on a blank tape, stopping at the leftmost 1.

This problem can be solved in the same way as Example 1, using 2n + 2 states.
But there is a more economical way (in terms of the number of states): we can use
the machine of Example 1 to write n 1’s using n + 2 states, then connect the
machine of Example 2 to duplicate that sequence. The only question is how do we
“connect” two machines? Here we can rename the states of the second machine so
that the first state isnow q, , ,, thelastis g, . ,,and the ith is Qip + 1)+ -

We thus use n + 11 instead of 2n + 2 states.

Turing Machines and Functions

We need to make some conventions in order to be able to interpret a TM as
calculating a function. To represent numbers we will use strings of 1’s, 111...1;
for n > 1 we denote the string of n 1’s by 17. We say that a tape is in standard
configuration if it is either blank or contains only one string of the form 17,
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We will say that a Turing machine M calculates output m on input n if:
i. M starts by scanning the leftmost 1 of a string 17 *! on an otherwise blank tape,
ii. M begins in its lowest numbered state,
iii. M stops in its highest numbered state and
a. m =0 and the tape is blank
or
b. m #0 and M is scanning the leftmost 1 of 1™ on an otherwise blank tape.

Note that we use 17 +! to represent input n but 1" to represent output m.
For functions of several variables, we say that M calculates output m on
input n, ,n,,...,n if
i. M starts by scanning the leftmost 1 of a string
1M*o1" o 01" T!
on an otherwise blank tape,
ii. and iii. as before.

We say that a Turing machine M calculates the function f of k variables if
forevery (n;,n,,...,ny), f(n,n,,..,n)=m iff Mcalculates output
moninput (n;, 0y, ..., n) .

Finally, we say a function is Turing machine computable (TM computable) if
there is a Turing machine that calculates it. This is an extensional definition. We
ask you to show in Exercise 5 that if there is one machine that calculates a function
f, then there are arbitrarily many others that also calculate f. Nonetheless, when
we are discussing a particular machine that calculates f it is sometimes convenient
to refer to it as Ty.

Here are some examples of TM computable functions.

The successor function S(n)=n+1

All we need to do is start the machine on 17 *! and stop. The machine
Tg=1{ g 11q,} does justthat.

Butif Ty is started on a tape in nonstandard configuration, it also does
nothing. So functions of more than one variable are not computed by Ty.

The zero function Z(n)=0

We need to erase all the 1’s on the tape. We take T, to be:

) q10q, 2)qO0Rgq; 3)qO0Rgq 4 qyllgq
In this case, however, the machine also calculates the constant zero-valued function
for any number of inputs.

Addition Add(n, m)=n + m

We define a machine that starting from 17 *101™*? fills the blank between the
blocks, goes to the left and deletes the first three 1’s, and then stops (in a standard
configuration). This is done by the machine T,qq :
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q lRgq Fill the blank between the input strings.
q,01q,

g 1Lq, Look for the leftmost 1.

9, 0R g4

g 10gq, Delete the leftmost 1 and go right.

4, 0R g5

gs 10 g4 Delete the next 1 and go right.

gsOR g,

g; 10¢gq Delete the third 1, go right, and stop.

gy OR gy

Multiplication Mult(m,n)=m - n

Presented with a string 1™ *1017 * !, we use the first string as a counter device to
control the number of repetitions of the second string: we delete a 1 from the string
17* and repeat the resulting string m times. The difficulty here is that the value of
m has to be read from the input, in contrast to being controlled by the number of
states as in Example 3. Here is a description of how our machine Tp,,; will work.

1. Starting from 1™ *1017 1, Ty, deletes the leftmost 1 from 17 +1;

Subcase i. if there are no more 1’s, it deletes the rest of the ones on the tape
and stops (because m=0)
Subcase ii. if there are 1’s remaining, it deletes the rightmost 1 from 17 * L

2. If there are no 1’s remaining in the second string, Ty, deletes everything and
stops (because in this case n =0).

3. If there are 1’s remaining in both strings, Tpyy starts a shifting subroutine of
moving the string 17 exactly n squares to the right:

..-0011...1011-..1... resultsin
—
m 1’s nl’s
...0011-..1000---011-.-1-..
m 1’s n blanks n 1’s
Then Ty deletes the leftmost 1 from 1™ and repeats this process of shifting
the block of n 1’s so long as there are 1’s to be deleted in 17.

4. When Ty finds the last 1 in the counter block, it deletes it, moves two squares
to the right, and changes all 0’s to 1’s (going right), until the first 1 is found. At
that point we have m successive blocks of n 1’s, and the machine goes to the
leftmost 1 and stops.

The machine Ty

q,10¢q Starting at the leftmost 1 of 17 +1017 +!, delete the leftmost 1
q,0Rgq, and go right.

¢, 0R q, If m =0, delete the rest of the tape and stop.
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q;10¢q,
q,0R g,
q; 00 g9

g, 11g;s If m#0, go to the second 1 of 17+1
gs 1 R g5
gs OR 03
g6 1 Rqyy

g7 0L qy If this square has a 0, then delete everything and stop
d19 10 gss (the product is 0 because n =0).

s 9L 95

936 0 L g3

936 1 1 q37

43710 gsg

G330 L g3

G370L gag

q,11q If this square has a 1, thenn # 0, so delete the rightmost 1
;1R ¢q, of 17+1,

g; 0L gq

g 10¢q

4@ O0Lqy, Return to the leftmost 1 of 17.
Qa1 L gy
9140 L g5
qis 1L g5
q;5 0 R gy

9l 1 qg Delete the leftmost 1 from 1™ and move right.

915 104qy3

q30R q If there are no more 1’s in 1™, fill the blanks with 1’s while
490 R g3, moving right and return to a standard configuration.
93,0143

43 L R a3

G 1L g3,

Gaq 1 L G3y

934 O R g3

q19 L R gy While there are 1°’s in 1™, enter into a shifting subroutine:
&G L R gy go to the leftmost 1 of 1” and delete it.

4 OR gy Then go right one square.

%1 OR gy

%1104y,

9 0 R gy
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G301 gy If this square is empty, then the whole block 17 has been shifted.
Gy L L gy Go to the beginning of the counter block.

9300 L g5

330 1 L g3

931 1 L gy

31 OR gpe

4 1R gy If this square is not empty, then keep shifting and deleting 1’s
4y 1R gy, from 1.
%4 OR g5

G5 1 R gy

Qs L R gyg

G601 gy

G501 gy

9y 1L gy

9y O L gy

Qs 1 L gyg

93 O R gy,

Composition of functions

If f and g are functions of one variable and T calculates f with highest state
q,, and T, calculates g, then to produce a machine which calculates the
composition g o f we do the following:

i. Add quadruples to convert output to input by writing a 1 to the right and
returning to the leftmost 1:

qanqn’ ananH’ qn+11an+1’ qn+10an+2

ii. Relabel the states of T, from g; to g; ., so thatit will start where we
left off.
iii. Collect these quadruples together as T, gof-

There are many other functions that are TM computable and many ways we can
combine machines to form new functions from those. But if you haven’t already
noticed, Turing machines are an unwieldy way to calculate. It’s difficult to show
that even very simple functions are TM computable: we offer a prize of $4.17 to
anyone who can provide us with a Turing machine which calculates the exponential
function f(x,y)=x7” along with a clear enough explanation we can understand.

The point of Turing machines, at least as far as we’re concerned with them in
this book, is to provide an analysis of computability by breaking that notion into its
smallest components. Rather than dwell on Turing machines now, we are going to
look at computability from the point of view of arithmetic descriptions of functions
and then show in Chapter 18 that the two approaches are equivalent.
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Exercises

1. a. Does the machine of Example 2 calculate a function?
b. Define a TM (i.e., give a collection of quadruples) that for every n
duplicates a string of the form 17, creating 170 17 . Does this machine
calculate any function?

2. a. Define a TM that calculates the projection function on the first coordinate,

P(m’ n)=m.
Tb. Forevery k and i suchthat k >i> 1 define a TM that calculates
the projection on the ith coordinate, P; (n 0y, ....m) =n, .

3. Show that for every n the constant function Ax (n) is TM computable.
(Hint: Modify Example 1. Does your modification also calculate Ax Ay (n) ?)

4. Prove that there are infinitely many distinct TM computable functions.

S. Prove that if a function is TM computable, then there are infinitely many different
Turing machines that calculate it.

6. Show that the equality function

1 ifm =n

E(m,n)= {O

ifm #n

is TM computable.

t7. Give an effective numbering of all Turing machines which satisfies criteria
(1), (2), (3) of Chapter 8.C.

8. The halting problem for Turing machines
From Exercise 7 we can list all Turing machines My, M,.... M, ... (let
the nth one be the machine which has the nth smallest number assigned to it).
Each calculates a function of one variable (although that may be undefined for
every input). Show that the function

1 if M, haltson inputn
0 otherwise

h(m,n)= {

known as the halting problem for Turing machines, is not Turing machine
computable.

(Hint: If there were a machine H that computed h, we could define another
Turing machine that, given input n,

a. writes 1710 17+!
b. implements H on that input, and then
if the result is the blank tape, it writes a 1 and halts
if the result is a single 1 on the tape, it goes into a loop and never halts.

What would the number of that new machine be?)
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19. The Busy Beaver problem
This problem was proposed by T.Rado in 1962 in order to give a concrete

example of a function that is not TM computable.

Given a TM, define its productivity to be the number of 1’s in the tape if it
halts in a standard configuration starting from a blank tape and 0 otherwise.
Foreach n > 1 we define p(n) to be the maximal productivity of any
machine with n states.

a. Show that p(1) 2 1.
b. Show that p(n +11) > 2n. (Hint: See Example 3.)
c. Show that p(n +1) > p(n).

Conclude that for all 1, j, if p(i) = p(j) then i >j.

d. Show that if there exists a TM P with k states that computes the
function p,then p(n +2 + 2k)=2p[p(n)].

(Hint: connect P twice with the machine T, of Example 1, which writes

n 1’s on a blank tape (suggestively) P[P(T,)].)

e. Conclude that p is not TM computable .

(Hint: p(n +13 + 2k) = p[p(n + 11)] and then apply parts (c)

and (b) to get a contradiction.)

Further Reading
For more about Turing machines consult Martin Davis’ Computability and Unsolvability,
Rézsa Péter's Recursive Functions, or Stephen Kleene’s Introduction to Metamathematics.



10 The Most Amazing Fact
and Church’s Thesis

A. The Most Amazing Fact

We have studied one formalization of the notion of computability. In succeeding
chapters we will study two more: recursive functions and functions representable
in a formal system.

The Most Amazing Fact
All the attempts at formalizing the intuitive notion of computable
function yield exactly the same class of functions.

So if a function is Turing machine computable, it can also be computed in any
of the other systems described in Chapter 8.E. This is a mathematical fact which
requires a proof. In Chapters 18 and 22 we do it for the two formalizations
mentioned above; Odifreddi, 1989 establishes all the equivalences. Once you're
quite familiar with one system it’ll be easier to follow such a proof.

The Most Amazing Fact is stated about an extensional class of functions, but it
can be stated constructively: Any computation procedure for any of the attempts at
formalizing the intuitive notion of computable function can be translated into any
other formalization in such a way that the two formalizations have the same outputs
for the same inputs.

In 1936, even before these equivalences were established, Church said,

‘We now define the notion, already discussed, of an effectively calculable
function of positive integers by identifying it with the notion of a recursive
function of positive integers (or of a A-definable function of positive integers).
This definition is thought to be justified by the considerations which follow, so
far as positive justification can ever be obtained for the selection of a formal
definition to correspond to an intuitive notion.

Church, 1936, p. 100

85
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[Note: Church’s definition of “recursive function” is different from the one
commonly used now.]

So we have
Church's Thesis: A function is computable iff it is A-definable .

This is a nonmathematical thesis: it equates an intuitive notion (computability) with a
precise, formal one (A-definability). By our amazing fact this thesis is equivalent to

A function is computable iff itis Turing machine computable.

Turing devised his machines in a conscious attempt to capture in simplest terms
what computability is. That his mode] turned out to give the same class of functions
as Church’s (as established by Turing in the paper cited above) was strong evidence
that it was the “right” class. Later we will consider some criticisms of Church’s
Thesis in that the notion of computability should coincide with either a larger or a
smaller class than the Turing machine computable ones.

Prior to that we are going to study this class from a more purely arithmetical
point of view, not using a machine definition at all. Turing machines break up the
notion of computability into its most basic parts, but at the cost of getting a definition
that is very cumbersome to use. By turning to recursive functions we’ll have an
arithmetical system we can use more easily.

But first let’s look at another formalization of the notion of computability given
by Post, along with his comments on Church’s Thesis.

Emil L. Post on Computability
(Optional)

Post’s analysis of computability was done independently of Turing, though not of
Church. It is therefore surprising how very similar it is to Turing’s analysis in his
paper in Chapter 9 (similarities to our formalization of Turing’s ideas are not so
remarkable since we’ve been influenced by developments since then, including
Post’s paper). Post, too, attempts to justify his formulation in intuitive terms. Note
that, unlike Church, he does not view Church’s Thesis as a definition but claims that
if, as it turned out, the Most Amazing Fact holds, then Church’s Thesis amounts to a
natural law.

“Finite Combinatory Processes —Formulation 1°* *

The present formulation should prove significant in the development of
symbolic logic along the lines of Gédel’s theorem on the incompleteness of

* Received October 7, 1936. The reader should compare an article by A. M. Turing,
“On computable numbers,” shortly forthcoming in the Proceedings of the London
Mathematical Society. The present article, however, although bearing a later date, was
written entirely independently of Turing’s. Editor [of The Journal of Symbolic Logic).
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symbolic logics! and Church’s results concerning absolutely unsolvable
problems.2

We have in mind a general problem consisting of a class of specific
problems. A solution of the general problem will then be one which furnishes
an answer to each specific problem.

In the following formulation of such a solution two concepts are involved:
that of a symbol space in which the work leading from problem to answer is to
be carried out,? and a fixed unalterable set of directions which will both direct
operations in the symbol space and determine the order in which those directions
are to be applied.

In the present formulation the symbol space is to consist of a two way
infinite sequence of spaces or boxes, i.e., ordinally similar to the series of
integers ..., -3,-2,-1,0,1,2,3, ... . The problem solver or worker is to move
and work in this symbol space, being capable of being in, and operating in but
one box at a time. And apart from the presence of the worker, a box is to admit
of but two possible conditions, i.e., being empty or unmarked, and having a
single mark in it, say a vertical stroke.

One box is to be singled out and called the starting point. We now further
assume that a specific problem is to be given in symbolic form by a finite
number of boxes being marked with a stroke. Likewise the answer is to be
given in symbolic form by such a configuration of marked boxes. To be
specific, the answer is to be the configuration of marked boxes left at the
conclusion of the solving process.

The worker is assumed to be capable of performing the following
primitive acts: 4

(a) Marking the box he is in (assumed empty),

(b) Erasing the mark in the box he is in (assumed marked),

(c) Moving to the box on his right,

(d) Moving to the box on his left,

(e) Determining whether the box he Is in, Is or is not marked.

The set of directions which, be it noted, is the same for all specific
problems and thus corresponds to the general problem, is to be of the following
form. It is to be headed:

Start at the starting point and follow direction 1.

It is then to consist of a finite number of directions to be numbered 1, 2, 3, ... n.
The ith direction is then to have one of the following forms:

(A) Perform operation O; [ O; = (a), (b), (c), or (d) ] and then

follow direction jj,

(B) Perform operation (e) and according as the answer is yes or no

correspondingly follow direction j;”or j;”,

(C) Stop.

Clearly but one direction need be of type C. Note also that the state of the
1 Kurt Gadel, [1931].

2 Alonzo Church, [1936].

3 Symbol space, and time.

4 As well as otherwise following the directions described below.
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symbol space directly affects the process only through directions of type B.

A set of directions will be said to be applicable to a given general
problem if in its application to each specific problem it never orders operation
(a) when the box the worker is in is marked, or (b) when it is unmarked.5 A set
of directions applicable to a general problem sets up a deterministic process
when applied to each specific problem. This process will terminate when and
only when it comes to the direction of type (C). The set of directions will then
be said to set up a finite 1-process in connection with the general problem if it
is applicable to the problem and if the process it determines terminates for each
specific problem. A finite 1-process associated with a general problem will be
said to be a I-solution of the problem if the answer it thus yields for each
specific problem is always correct.

We do not concern ourselves here with how the configuration of marked
boxes corresponding to a specific problem, and that corresponding to its answer,
symbolize the meaningful problem and answer. In fact the above assumes the
specific problem to be given in symbolized form by an outside agency and,
presumably, the symbolic answer likewise to be received. A more self-
contained development ensues as follows. The general problem clearly consists
of at most an enumerable infinity of specific problems. We need not consider
the finite case. Imagine then a one-to-one correspondence set up between the
class of positive integers and the class of specific problems. We can, rather
arbitrarily, represent the positive integer n by marking the first n boxes to the
right of the starting point. The general problem will then be said to be 1-given
if a finite 1-process is set up which, when applied to the class of positive
integers as thus symbolized, yields in one-to-one fashion the class of specific
problems constituting the general problem. It is convenient further to assume
that when the general problem is thus 1-given each specific process at its
termination leaves the worker at the starting point. If then a general problem is
1-given and 1-solved, with some obvious changes we can combine the two sets
of directions to yield a finite 1-process which gives the answer to each specific
problem when the latter is merely given by its number in symbolic form.

With some modification the above formulation is also applicable to
symbolic logics. We do not now have a class of specific problems but a single
initial finite marking of the symbol space to symbolize the primitive formal
assertions of the logic. On the other hand, there will now be no direction of
type (C). Consequently, assuming applicability, a deterministic process will be
set up which is unending. We further assume that in the course of this process
certain recognizable symbol groups, i.e., finite sequences of marked and
unmarked boxes, will appear which are not further altered in the course of the
process. These will be the derived assertions of the logic. Of course the set of
directions corresponds to the deductive processes of the logic. The logic may
then be said to be I-generated.

An alternative procedure, less in keeping, however, with the spirit of
5 While our formulation of the set of directions could easily have been so framed that
applicability would immediately be assured it seems undesirable to do so for a variety of
reasons.



SECTION B Emil L. Post on Computability 89

symbolic logic, would be to set up a finite 1-process which would yield the nth
theorem or formal assertion of the logic given n, again symbolized as above.

Our initial concept of a given specific problem involves a difficulty which
should be mentioned. To wit, if an outside agency gives the initial finite
marking of the symbol space there is no way for us to determine, for example,
which is the first and which the last marked box. This difficulty is completely
avoided when the general problem is 1-given. It has also been successfully
avoided whenever a finite 1-process has been set up. In practice the meaningful
specific problems would be so symbolized that the bounds of such a symboli-
zation would be recognizable by characteristic groups of marked and unmarked
boxes.

The root of our difficulty however, probably lies in our assumption of an
infinite symbol space. In the present formulation the boxes are, conceptually at
least, physical entities, e.g., contiguous squares. Our outside agency could no
more give us an infinite number of these boxes than he could mark an infinity of
them assumed given. If then he presents us with the specific problem in a finite
strip of such a symbol space the difficulty vanishes. Of course this would
require an extension of the primitive operations to allow for the necessary
extension of the given finite symbol space as the process proceeds. A final
version of a formulation of the present type would therefore also set up
directions for generating the symbol space.6

The writer expects the present formulation to turn out to be logically
equivalent to recursiveness in the sense of the Godel-Church development.”? Its
purpose, however, is not only to present a system of a certain logical potency but
also, in its restricted field, of psychological fidelity. In the latter sense wider and
wider formulations are contemplated. On the other hand, our aim will be to
show that all such are logically reducible to formulation 1. We offer this
conclusion at the present moment as a working hypothesis. And to our mind
such is Church’s identification of effective calculability with recursiveness.8

6 The development of formulation 1 tends in its initial stages to be rather tricky. As this
is not in keeping with the spirit of such a formulation the definitive form of this formula-
tion may relinquish some of its present simplicity to achieve greater flexibility. Having
more than one way of marking a box is one possibility. The desired naturalness of
development may perhaps better be achieved by allowing a finite number, perhaps two,
of physical objects to serve as pointers, which the worker can identify and move from
box to box.

7 The comparison can perhaps most easily be made by defining a 1-function and proving
the definition equivalent to that of recursive function. (See Church, loc. cit., p. 350.) A
1-function £(n) in the field of positive integers would be one for which a finite 1-
process can be set up which for each positive integer n as problem would yield f(n)

as answer, n and f(n) symbolized as above.

8 Cf. Church, loc. cit., pp. 346, 356-58. Actually the work already done by Church and
others carries this identification considerably beyond the working hypothesis stage. But
to mask this identification under a definition hides the fact that a fundamental discovery
in the limitations of the mathematicizing power of Homo Sapiens has been made and
blinds us to the need of its continual verification.
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Out of this hypothesis, and because of it apparent contradiction to all mathema-
tical development starting with Cantor’s proof of the non-enumerability of the
points of a line, independently flows a Gédel-Church development. The success
of the above program would, for us, change this hypothesis not so much to a
definition or to an axiom but to a natural Iaw. Only so, it seems to the writer,
can Gédel’s theorem concerning the incompleteness of symbolic logics of a
certain general type and Church’s results on the recursive unsolvability of
certain problems be transformed into conclusions concerning all symbolic logics
and all methods of solvability.

Post, 1936



1 1 Primitive Recursive Functions

While the most convincing definition of mechanical procedures is by means of
Turing’s concept of abstract machines, the equivalent concept of recursive
functions first appeared historically as more or less a culmination of extensions
of the simple recursive definitions of addition and multiplication.

Wang, p. 87

A. Definition by Induction

When you first learned about exponentiation you probably were told that
n

X =X -X - X
——— s
n times

That was suggestive and probably convinced you that you could compute the
function. Later you learned a proper definition by induction: x9=1 and
xhtl=xn . x.

Similarly, the factorial function is usually introduced as n!= n- (n-1) -
-+ -2 -1. An inductive definition of it would be: 0!=1 and (n + )! =
(n+1)-(n").

In its simplest general form, a definition of a function f by induction from
another function g looks like f(0) = mand f(n + 1) = g(f(n)). We have
confidence that this method of definition really gives us a function because we can
convince ourselves that the generation of values of f can be matched to the
generation of natural numbers and is completely determined at each stage:

To 0 1 2 3
Assign  f(O)=m f()=g(m) f(2Q)=g(f(1)) [(3)=g(f(2))
This convincing ourselves cannot be reduced to a proof by induction, for to apply
that method here we’d already need to have f in hand.

Moreover, since generating the natural number series is effective (computable),
if g is computable then without doubt f will also be computable. So let’s
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consider the functions we can obtain using induction and composition, starting with a
few simple indisputably computable functions.

The Definition of the Primitive Recursive Functions

The class of functions we described in intuitive terms in Section A is composed
entirely of computable functions. But for a function to be computable, there must be
an algorithm or procedure for computing it. So in our formal definition of this class
of functions we must replace the intuitive, semantic ideas of Section A with precise
descriptions of the functions, exactly as we did in Chapter 9.

To begin, we take as variables the letters n, x,, X, , ... though we will
continue to use x, y, and z informally. We’ll write X for (Xpsoor s X )

Next we list the basic, incontrovertibly computable functions that we will use
as building blocks for all others.

1. Basic (initial) functions

zero Z(nm)=0 foralln
that number which follows n

successor S(n)y=-<. .
in the natural number series

projections PI’(- Xy x ) =x; for 1€i<k

We sometimes call the projections the pick-out functions, a.ndPl1 the identity
function, written id(x) = x. We don’t say that S(x) = x + 1 because addition
is a more complicated function which we intend to define.

Next, we specify the ways we allow new functions to be defined from ones we
already have.

2. Basic operations

Composition

If g is a function of m-variables and h,, ... , b are functions of k variables,

which are already defined, then composition yields the function
f(X)=g(h(X),...,h (X))

Primitive recursion
For functions of one variable the schema is:
fO)=d
f(n+1) = h(f(n), n)
where d is anumber and h is a function already defined.

For functions of two or more variables, if g and h are already defined then
f is given by primitive recursion on h with basis g as:
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£(0,%) = g(¥)
f(n+1,X)=h(f(n,xX),n,X)
[The reason we allow n and X as well as f(n,X) to appear in h is that we may

wish to keep track of both the stage we’re at and the input, so that we can have, for
example, £(5,47) = £(10,47), but £(6,47) = £(11,47).]

3. An inductive definition of the class of functions

Finally, we complete the definition by stipulating that the primitive recursive
functions are exactly those which are either basic or can be obtained from the basic
ones by a finite number of applications of the basic operations. This is an inductive
definition of the class of functions. To see that, think of assigning:

0 to all the basic functions

1 to all those functions which can be obtained by one or no application of
a basic operation to functions which have been assigned 0 (so the basic
functions are also assigned 1)

n+1 to all those functions which can be obtained by at most one application
of a basic operation to functions which have been assigned a number
less than n + 1.

Then a function is primitive recursive if and only if it is assigned some number n.

Another way the class of primitive recursive functions is sometimes described
is by saying that it is the smallest class containing the basic functions and closed
under the basic operations, where “smallest” is understood to mean the set-theoretic
intersection and “closed under” means that whenever one of the operations is applied
to elements of the set, the resulting object is also in the set. That way of talking
presupposes that the entire completed infinity of the class of functions exists as an
intersection of other infinite classes of functions, whereas the inductive definition is
nothing more than a constructive way of handing out the label “primitive recursive”
to various functions. Since we wish to avoid the use of infinities in our analysis of
computability, when we speak sometimes of a class closed under an operation we
will understand that as shorthand for an inductive definition.

Thus, to demonstrate that a function is primitive recursive we need to show that
it has a description, a definition that precisely fits the criteria above. Though here, as
for Turing machine computable functions, if a function has one definition then it will
have arbitrarily many others (Exercise 9).

Examples
1. The constants

For any natural number n, the function Ax f(x) = n can be defined as
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Ax S(S(C..SZ(x))..))
n S's
But the use of “...” is precisely what we are trying to avoid. We define inductively a
sequence of functions: Cy=2Z; C,, ;=8 C,_,sothatAx; C,(x)=n.
Here again we have defined the natural numbers by a unary representation,
reflecting that “zero and the idea of one more”, rather than “whole number and zero”,
is our primitive concept.

2. Addition
We can define x + n by viewing it as a function of one variable, n, with the other
variable held fixed as parameter. That is, we define addition by x, An (x + n), as:
x+0=x
x+(n+D)=(x+n)+1
But that’s not a proper definition according to our description of primitive
recursive functions. So let’s try again:
+(0,x)=x
+(n+1,x)=SH(@m,x))

This seems like a careful formal definition, but it still doesn’t have the required form.
A definition that exactly fits the criteria given in Section B for a function to be

classified as primitive recursive begins by first defining S(P31( X1y X X3) ),
which is primitive recursive since it’s a composition of initial functions. Then,
1
+(O’X1) =P1 (Xl)
1
+(H+1,X1) = S(P3(+(H,X1),H,X1))

3. Multiplication

Now that we have addition, we can give an inductive definition of multiplication.
We use x as a parameter to define x - n as multiplication by x, so x - 0 =0 and
x-(n+1)=(x-n)+x. Or, to write it in functional notation,

-(0,x)=0 and -(n+1,x) = +(x,-(n,x))

This definition looks formal enough, but again it isn’t in a form specified in Section
B necessary to justify that multiplication is primitive recursive. The first homework
exercise below is for you to give such a definition.

4. Exponentiation

Formally in our system of primitive recursive functions we define:
Exp(0,x)) =1
Exp(n +1,x) = h(Exp(n,x;),n,x,)
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where . ,
h(Xl,X2,X3) = (P3(X15X29X3),P3 (XI,XZ,X3))

5. Signature and zero test

The signature function is:

sg(0)=0

sgn +1)=1
The zero test function is:

sEO)=1

g(n+1)=0
Exercise 2 asks for definitions of these functions that fulfill the criteria of Section B.
6. Half

We can’t divide odd numbers by 2, but we can find the largest natural number less
than or equal to one-half of n:

% if niseven

el = {ig—l if n is odd

To give a primitive recursive definition of this function, we first need to be able
to separate out the case where n is odd:

1 if nisodd

0 if niseven

Odd(n) = {

We ask you to show that Odd is primitive recursive in Exercise 3. Then
half(0)=0 and half(n + 1)=h (half(n),n)

where
h(xy xp) =+ (P) (X}, x,), 0dd (P(x,,X,)))

7. Predecessor and limited subtraction

In order to define addition, we started with the successor function which adds 1. To
define subtraction, we start with the predecessor function which subtracts 1, namely,
P(0)=0; P(n +1)=n. Exercise 4 below asks you to show that this function is
primitive recursive.

Since we can’t define subtraction on the natural numbers, we define
limited subtraction:

x—n fnsx
x<n =
0 ifn>x

Keeping x fixed, as n increases the value of x ~ n goes down until O is reached.
So we can define: x ~0 = x ; x=(n + 1)=P(x =~ n), which you can
convert into a correct formal definition (Exercise 4).
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Exercises Part 1

1. Give a definition of multiplication as a primitive recursive function that
precisely fits the specifications of Section B. Compare that definition to the
Turing machine definition in Chapter 9.C.

2. Demonstrate that §g and sg are primitive recursive.
3. Show that Odd is primitive recursive.

4. Show that the predecessor and limited subtraction functions are primitive
recursive.

5. Give a primitive recursive definition of the factorial function of Section A.

6. Demonstrate that the following functions are primitive recursive:

1 fx<y 1 fx=y
<(xy)= . E(x,y)= ,
0 ifx=y 0 ifx#y
7. Show that the function f “defined” by f(n)=0 + 1+ --- + n is primitive
recursive.
8. Denote the maximum of x, ..., x, by max (x, ..., X, ). Show that this

is primitive recursive. (Hint: See Section C.1; there is one function for each n.)
9. Show that if f has a primitive recursive definition, then there are arbitrarily
(countably) many other primitive recursive definitions that give rise to f.
110. A famous function defined by induction is the Fibonacci series:
1,1,2,3,5,8,13, ..., u,,,=
To calculate u,, we need to know what’s been calculated in the previous two

steps, which, backtracking, we can do once we get to the first two terms.
Devise a definition of f(n)=u,, as a primitive recursive function.

un+1+ u,

D. Other Operations That Are Primitive Recursive

We wouldn’t be surprised if you had difficulty showing that the Fibonacci series
(Exercise 10) is primitive recursive. It’s clearly computable, but primitive recursion
allows us to use only the last value of the function at the induction stage, not the
previous two values. Rather than tackle that function, it would be much more useful
to show that any definition that begins with primitive recursive functions and uses
any of the previous values of the function at the induction step in a primitive
recursive fashion always results in a primitive recursive function.

We call an operation primitive recursive if whenever it is applied to primitive
recursive functions it yields a primitive recursive function. In that case it can be
simulated by using composition, primitive recursion, and auxiliary primitive
recursive functions. In this section we’re going to show that the operation described
above, and others, are legitimate ways to form primitive recursive functions from
primitive recursive functions.
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1. Addition and multiplication of functions

If f and g are primitive recursive, then f + g is primitive recursive, where
(f +g)(x)=f(x)+ g(x) (composition of primitive recursive functions).
Similarly (f- g)(x)=f(x) - g(x) is primitive recursive if fand g are.
Generally, we define

n

2 (X)) mpgg H(X)+ + + ()

i=1

n
Il £,(®) =p £(R)- -  £,(B)
i=1
In Exercise 11 we ask you to give a correct inductive definition of these that does not
use “...” and to show that for each n, if £, ..., f are primitive recursive, so are

Y @) and [ 1000

i=1 i=1
2. Functions defined according to conditions

As an example consider

2n if n iseven
f(n)=
3n if n isodd

Here we are thinking of all numbers as divided into two sets: A =evens, and B =
odds. We need only an informal notion of set here, for we don’t need to be given all
numbers at once to divide them up. All we need is that the following functions are
primitive recursive:

1 if n isodd

0 if n iseven

Odd(n):{

and .
_ 0 if n isodd
Even(n)=sg [0Odd(n)]= ) .
1 if n iseven

(See Exercises 2 and 3).
The characteristic function of a condition (or, informally, of a set) A is:

1 if x satisfies the condition
CA( ) =

0 if x does not satisfy the condition

We say a condition (set) is primitive recursive if its characteristic function is
primitive recursive.

Suppose we have n primitive recursive conditions 4, ... , A  such that
every number x satisfies one and only one of these (e.g., odd/even). (Informally,
we have a disjoint (nonoverlap) partition (dividing up) of all natural numbers into
sets A, ..., A,.) Suppose further that we have n primitive recursive functions
hy, ..., h,. We may define:
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h(x) if x satisfies A
f(x)= :

h, (x) if x satisfies A,

n
which is then primitive recursive: f is z h, -C,
i=1 i

Often we need nonconstructive proofs to demonstrate that every x satisfies
exactly one of A, ..., A,. But that’s outside the system and does not affect
whether a function is primitive recursive or not. Remember, we are viewing
functions extensionally.

As an example, we can show that given a primitive recursive function g, the
following function is primitive recursive:

f(0)=x,
f(1)=x,
f(n.) =X,

and for x > n, f(x)=g(x).

We may always specify the value of a function at some arbitrary number of places
before we give a general procedure: That’s like providing an accompanying table of
values. From our extensional point of view:

FINITE = TRIVIAL
GENERAL METHOD = for all but finitely many

3. Predicates and logical operations

We can have conditions involving more than one number; for instance “x < y” or
“max (x,y) is divisible by z”. We call a condition which is either satisfied or
is not satisfied by every k-tuple of numbers a predicate or relation of k variables.
For instance R(x, y) defined as x < y is satisfied by (2,5) and is not satisfied
by (5,2). We say that R(2,5) holds (or is true), or we simply write “R(2,5)",
and “not R(5,2)”. Another example is the predicate Q(x,y,z) defined as
x + y =z. Then Q(2,3,5) but not Q(5,2,3). We usually let capital letters
stand for predicates.

As for sets, we define the characteristic function of predicate R as:

Cr(®) ={ ! i.f R -
0 if not R(X)

W say that a predicate is primitive recursive if its characteristic function is. We can
view sets as predicates of one variable.

Given two predicates we can form new ones; for example, from “x is odd”
and “x is divisible by 7” we can form:
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“x isodd and x is divisible by 7”
“x isodd or x isdivisible by 7”
“x is not divisible by 7”

Given two predicates P, Q we write
P(X)A Q(X) =py

X
P(X)v Q(X) =p, X satisfies P or X satisfies Q,
or X satisfies both P and Q

satisfies P and X satisfies Q

1 P(X) =p, X does not satisfy P
P(X) = Q(X) =pg X doesnot satisfy P or X satisfies Q

(In Chapter 19.C we will suggest that we canread P — Q as “if P, then Q™))
We needn’t require that P and Q use the same number of variables. For example,
“x isodd and x < y” will be viewed as a predicate of 2 variables: (x, y) will
be said to satisfy “x is odd” if x does.

In Exercise 14 we ask you to show that if P, Q are primitive recursive then so
are all the above.

We may recast these ideas in terms of sets. Given A and B, define

ANB={x:xeAAx€eB}
AUB={x:xeAvxeB}
A ={({x:xeA}

If A and B are primitive recursive, so are these sets.

4. Bounded minimization

If we have a computable function, we ought to be able to check what we know about
it up to some given bound. We say that f is obtained from h by the operation of
bounded minimization if

f(X)=miny<n[h(X,y)=0]
where this means:
the least y < n such that h(X,y)=0 if there is one; n otherwise

Note that n is fixed for all X’; that is, we have a different function for each n.
There are two ways we can show that this is a primitive recursive operation.
We could define a different function for each n, and then show by induction on n
that each is primitive recursive. But in general we want to show something more,
namely that there is one primitive recursive function which calculates them all.
We say that the functions h, , ... , h,, ... are uniformly primitive recursive if there
is a primitive recursive function g such that forall n, h (X)=AXq(n,X)
(cf. Exercise 12a).
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In this case we define miny <n[h(X,y)=0] as q(n, X) where

q(0,X)=0

g(n+1,X) = q(n,X)+ sgh(X, q(n, X)))

Although the bound needs to be fixed for each X, it needn’t be the same
forall X¥: if h and g are primitive recursive, then so is f where f(X) =
min y< g(X) [ h(X, y)=01. Moreover, we can check more than just
whether an output of i equals 0. If the function g and the predicate Q are
primitive recursive, then so is f, where f(X')=miny < g (X) [Q(X, y)],
usually written as f(X')=miny y < g(R) [Q(X, y)] (Exercise 15). We also
ask you to show the same when “<” isreplaced by “<”.

5. Existence and universality below a bound

We can view bounded minimization as a way to deal with questions of existence
below a bound. For a predicate P we define:

Ay <n P(X,y) =pe thereisa y <n such that P(X, y)
and
Vy <n P(X,y) =pe forall y<n, P(X,y)

In Exercise 15 you’re asked to show that these are primitive recursive predicates
if P is.

6. Iteration

Iteration is the simplest form of definition by induction. Informally, the iteration of
the function h is

f(n,x) = h™(x)=h(h(..h(x)..))
—_——
n times

This way of describing fis only suggestive. Including n = 0, we define:

h (0)(x) =X

B "D (x)=h(h M (x)
Then. we say that f arises by iteration from h if f(0,x )=1d(x) and
fa+1,x)=h"D00) = h@(f (0, x),0,x))
which is in a correct form to demonstrate that it is primitive recursive.

7. Simultaneously defined functions

Sometimes we define two functions f and g together, so that at stage n + 1 the
value of each depends on the previous values of both of them (cf. the prices on the
stock exchanges in Chicago and New York). More precisely, let k, q, h, and ¢
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be primitive recursive. We define:

f(0,X) = k(X)
f(n+1,X)=h(f(n,xX),g(n,xX),n,%X)
g(0,X) = q(x)
gm+1,X)=t(f(n,X)g(n,x),n,x)

We ask you to show that these are primitive recursive in Exercise 18.

8. Course-of-values induction

Up to this point we have only used the single previously calculated value f(n) in
calculating f(n +1). This corresponds to simple induction. Using any of the
previously calculated values corresponds to a proof by course-of-values induction:
Given a statement A (n),

if A(0), andforalln,ifall y <n A(y), thenA(n +1);
then for all n, A(n)

Course-of-values induction can be reduced to simple induction by applying simple
inductionto Vy<n A(y).

Similarly, we wish to show that a definition of a function that can use all of its
previously calculated values, which we call a course-of-values recursion, can be
reduced to primitive recursion. To do that we code up the previous values of the
function into one function, since we can’t have a varying number of variables in the
inductive step. Let p be the nth prime: Po=2,p,=3,p,=5,... . Let f be
the function that has a course-of-values definition. Define f* by:

*(0,X) =1

Pr(n+l, By = pf @B L pfaH ‘pg(o,xm

n 1
f(n,Xx)+1 -
n : f*(nsx)

Any definition of f(n + 1, X’) that uses the values (0, X¥'), f(1, X), ..., f(n, X)
in some primitive recursive auxiliary function can be defined by extracting those
values from f*(n + 1, ¥ ). And we can simultaneously define f and *, so long
as our coding and uncoding procedure on the primes is primitive recursive (see
Exercise 18).

Prime Numbers for Codings

1. We first want to show that the function p (n) =the nth prime p, is primitive
recursive. We begin by noting that

m divides n (written “mIn”) iff 3i <n (m -i =n)

is a primitive recursive predicate by Section D.5; we denote its characteristic
function as d(m,n) . Then
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n isaprime iff (1< n)A[Vx <n(x =1v(x]|n))]
is a primitive recursive predicate (via Section D.5). Denote its characteristic function:
1 if n is prime
prime (n) =

0 if n is not prime

By Euclid’s theorem (Exercise 6 of Chapter 5) we know that if p is prime
then there is another prime between p and p! + 1. We define the auxiliary
function h(z) =miny y<z+1[2<y A prime(y) = 1]. Then we can
define the function p by p(0) =2, p(n+ D = h(p(n)).

2. If we code along primes and are given a number, say 270, we need to know
the exponents of the primes in its decomposition: 270 = 21.3% .51 Let
[ x],, = the exponent of the nth prime in the prime decomposition of x

That this is a well-defined function depends on the fact that every natural number has
a unique decomposition into primes (Exercise 4 of Chapter 5). To show that
Ax [x], is primitive recursive we note that p,Ex]" divides x, but p,EX]" +

doesnot. So [x],= miny<x [d(P(H)YH,x):O],

3. We define the length of x to be
Ih(x) = miny<x ([X]y=0)

This measures the number of different primes in a row beginning with 2 that have
non-zero exponents in the prime decomposition of x. For example,

Ih(6) = Ih(2-3) = Ih(py-py) =2

Ih(21) = 1h(3-7) = Ih(p;-p;) =0

1h(42) = 1h(2-3-7) = 1h(py-py-p;) =2
4. We need to be able to code 0, but p0 =1 and we can’t tell if p n 18 “there” or
not. So we code y into a number via p;/ *1 To uncode we then need the function
1 less than the exponent of the n th prime
in the prime decomposition of x

(x), = [x], ~1 ={

Note that for x > 0, (x),< x. We write (x), ., for ((x))p-

5. Now we have a way to code finite sequences of numbers into single
numbers. We code (a,, 4, ..., a,) by:

a +l a +1 +1
_ %0 5]
Cayap, ..., 8> =P -pll e oo

For each n this is primitive recursive (Exercise 19).
With the convention that every number codes only up to its length, we also
have a unique sequence assigned to each natural number:
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x codes the sequence ((x)q,(X);, ... » (X)Ih(x)- L
where if 1h (x) =0, x codes the empty sequence

This is the coding we will use throughout this text.

We needn thave that x = ((x)g, (X);, - (X)Ih(x) 1> » for example,
756 = 2 3 - 7 which codes the sequence (1, 2) but <1,2) =108. Different
numbers can code the same sequence.

6. We can, if we wish, give a 1-1 coding, though it’s harder to construct and
use. Recall the pairing function J(x,y) =5 [(x + y)(x + y + )] +x of
Chapter 6.B.2, which you were asked to show is 1-1 and onto (Exercise 4 of
Chapter 6). We can code (ay,a,, ..., a,) as J(ag, J(ay, ..., J(a,_|,a,))...).
That is, given the coding of n-tuples, J, , the coding of n + 1-tuples is
J,1Cag,a, ..o ,a,)=J(ay, J (a, ... ,a,)). Touncode we define
the unpairing functions

K(z)=min x<z [TyLz (J(x,y)=2)]
L(z)=min y<z [3xLz (J(x,y)=2)]

These are primitive recursive by Sections D.4 and D.5.
K(J(x,y)=x, LUx.y)=y, J(K@,L(2)=z2
Uncoding longer sequences is left for you as Exercise 21.

F. Numbering the Primitive Recursive Functions

Here is a sketch of how we can computably number the primitive recursive
functions.

First we give every initial function a number: #(Z) =11, #(S) =
#(Pni )=, , S)j *1 . Then to each operation under which the class is closed we
will associate an arithmetical operation. If #(g) =a and #(h) = b, then the
composition g o h will have number 22- 3 b Andif #(h)=a,,#(h)=a,,

, #(h) = a, and each is a function of k variables and g is a function of m
varlab]es and #(g) =b, then the function g(h,(X), ..., h, (X)) will have
number #(f) = 20 .39 +%m > Lastly, if #(g)=a and #(h) = b, and these
are functions of the appropriate number of variables, then f defined by primitive
recursion on h with basis g will have number 52 70,

Given any primitive recursive definition, we can follow the steps above and
obtain a number for the function, which we call an index. And given any number,
we can decompose it into primes, further decompose the exponents into primes, and
so on, until we have an expression consisting only of primes; then we can determine
if it corresponds to a definition of a primitive recursive function. Thus, the condi-
tions for a Godel numbering are satisfied (Chapter 8.C). Moreover, we can check if
the definition corresponds to a function of one variable. So we can make a comput-

able list of the primitive recursive functions of one variable: fy fis e By
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where £, is the function which has the nth index. Our list will have repetitions
since every primitive recursive function has arbitrarily many different definitions
(Exercise 9), and we are really numbering definitions.

Why Primitive Recursive # Computable

Consider the function g(x)=1,(x)+1.

This is computable since our numbering is. Yet it can’t be primitive recursive:
if it were it would be f; for some n, and then we would have g(n)=
f,(n)+1=1 (n). We have diagonalized .

fo(0)+ 1 fo 1) £,(2) £,(3)

£,(0) f, ( £,(2) £, (3)
(O LD LT LG)
f,,kO) £, 1) £,(2) +1

We’ve made g disagree with every primitive recursive function of one variable
by making g disagreée with each £, on the diagonal. Hence, we have found a
computable function which is not primitive recursive.

Here is another way to produce a computable function that isn’t primitive
recursive. Define

h(0) = f,(0) +1
h(l) = fo(l) + fl(l) +1
h(n) = fy(n) + £(n) +- + £,(n) + 1

Again, h is computable since our numbering is. Yet i dominates all primitive
recursive functions of one variable; that is, if fis a primitive recursive function
of one variable, then f = f, for some n, so for all x > n, h(x) > f(x).
Thus h cannot be primitive recursive.

If we do not yet have all the computable functions, how can we obtain all of
them? What further operations or initial functions do we need?

11. Forevery n 22 give proper primitive recursive definitions of
n

D L(R) =p fi(R)+ - +£,(¥) and

i=1
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n
IT 6@y =p (B - £,(R)
i=1
(Hint: 1t’s easy for n =2 ; then proceed by induction.)
a. Show that by holding one variable fixed in a primitive recursive function we
obtain a primitive recursive function. That is, given that AnAx f(n, X)
is primitive recursive, show that for every n, AX f(n, X’) is primitive
recursive. (Hint: Use Section C.1.)
b. Use part (a) and Exercise 11 to show that if f is primitive recursive, so are

AT D, F(i,%) and AR L1 £(i,©)
i=1 i=1

Suppose we have countably many primitive recursive conditions 4,, ...,
A_, ... such that every x satisfies exactly one of these. And suppose we
also have countably many primitive recursive functions b, ... , h
Let f be defined by f(x) = h, (x)if A, is satisfied by x .

Is f necessarily primitive recursive? Give a proof or a counterexample
with appropriate restrictions.

po oo

Show thatif P and Q are primitive recursive conditions, then so are
PAQ, PvQ, 1P, and P—Q.

a. Show thatif h and g are primitive recursive, then so is f, where
f()?)=miﬂy ySg()?’)[h(i), »)=01.

b. Show that if the function g and predicate Q are primitive recursive, then
sois f, where f(X)=miny y<qx)[Q(X, y)].

c. Show that if the predicate P and function g are primitive recursive, then so
are the predicates Iy < g(X") [P(X, y)] and Vy< g(X) [P(X, y)].

d. Repeat parts (a)-(c) with “<” replaced by “<”.

Give one application of definition by conditions and one by bounded
minimization which show the utility of knowing that these operations
are primitive recursive.

Show that the function e(x) = x* is primitive recursive. Describe the
function f(n, x) obtained by iteration of e. Calculate f(3, 2), f(3, 3),
£(10, 10). Try to describe in informal mathematical notation the function
g that arises by iteration of Ax f(x, x). Calculate g(3).

a. Show that if h, g, and ¢t are primitive recursive then so is f defined by
(0, X)=g(x)
f(1, X)=t(xX)
andforn>1, f(n+1,X) = h(f(n-1,%X),n, %)
Use our codings, not simultaneous recursion.
b. Show that simultaneous definition by recursion (Section D.7) is a primitive
recursive operation.
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f (%,55) if niseven
Hint: Set up a new function j(n,x) =

g("z'l,f) if n is odd

19. Show that for each n, <agy,a,, ..., a > is primitive recursive.

20. Using our code (Section E.5), find <3,1,0, <0,0,2>, and ¢2,1,0,2,2> .
What sequences are coded by 900 and by 19,6007 By 2147 _17

21. Interms of K and L (Section E.6), give a function which outputs the ith
element in the sequence represented by J,, ,(ay,a;, ..., a,) .

+22. Let f(n) = the nt® digit in the decimal expansion of & ; that is, f(0) =3,

f()=1, f(2)=4,... . Show that f is primitive recursive.

23. Compare the proof that there is a computable function which is not primitive
recursive with:
a. The proof that the reals are not countable.
b. The proof that there is no set of all sets.
c. The Liar paradox.

Further Reading

“Mathematical induction and recursive definitions” by R.C. Buck has a good discussion of
definition by induction with lots of examples.
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(Optional)

Though we’ve seen that the primitive recursive functions are not all the computable
functions, they are nonetheless a very important class. Almost all the functions we
normally study in number theory and all the usual approximations to real-valued
functions (cf. Exercise 11.22) are primitive recursive. In this chapter we will study
more deeply the nature of primitive recursion and induction and, in doing so, will
develop an idea for how to define larger classes of computable functions. Except
for Section B neither this material nor Chapter 13 is essential to our goal of
investigating Hilbert’s program.

Hierarchies and Bounded Recursion

We propose to analyze the primitive recursive functions by breaking them down into
a hierarchy. What is a hierarchy? It’s a classification system: of less important to
more important; of more complex to less complex; or of any quality we believe can
be stratified. The Elizabethans stratified all of existence into a hierarchy.

The Elizabethan Chain of Being

First there is mere existence, the inanimate class: the elements, liquids and
metals. But in spite of the common lack of life there is a vast difference in
virtue; water is nobler than earth, the ruby than the topaz, gold than brass: the
links in the chain are there. Next there is existence and life, the vegetative class,
where again oak is nobler than bramble. Next there is existence, life and feeling,
the sensitive class. In it there are three grades. First the creatures having touch
but not hearing, memory or movement. Such are shellfish and parasites on the
base of trees. Then there are animals having touch, memory and movement but
not hearing, for instance ants. And finally there are the higher animals, horses
and dogs etc., that have all these faculties. The three classes lead up to man,
who has not only existence, life and feeling, but understanding,.

Tillyard, 1943, pp. 25-26
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Amongst the primitive recursive functions we can easily recognize varying
levels of complexity, say,

of definition: for instance, how many recursions are used

or
of calculation: surely adding is “simpler” than multiplying, and x - y is
“simpler” to calculate than x 7, which is “simpler” still than
x } ,
n times
f(n,x) =x%
or

of rate of growth: the values of the exponential function grow much more
rapidly than do those of multiplication, which in turn grow more rapidly
than those of addition.

How might we try to build classes of functions that reflect these intuitions?

We can base our first class, call it £9, on the simplest functions we have:
Z (zero), S (successor), and P; (the projection functions). What operations should
we close it under? Composition doesn’t seem to add to the complexity of the
functions, at least compared to recursion. But if we allow recursion we can get
addition, and indeed, all of the primitive recursive functions. So let’s allow the use
of recursion if we don’t get a function that is more complicated, say, one that doesn’t
grow any faster than one we already have. This is what we call bounded recursion.
Formally, the function f is defined by recursion on h with basis g bounded by k if

£(0,X) = g(X)
f(n+1,xX)=h(f(n,X),n,X)
f(n,x) < k(n,X)

Bounded recursion is ordinary recursion with an extra clause added that requires the
function being defined to be smaller than one already obtained.

One full unbounded application of recursion (iteration) to the successor
function yields addition. So we can let our second class, ', be what we get when
we add Axy (x + y) to the stock of initial functions of £, closing under the
same operations.

And Z£? can be the class we get when we add Axy (x - y) to the stock of
initial functions, since multiplication is the result of one unbounded application of
recursion (iteration) to addition.

And Z3 can be the class we get when we add Axy (xY) to the stock of
initial functions, since exponentiation is the result of one unbounded application of
recursion (iteration) to multiplication. This last class, defined originally by Kalmar,
is important in its own right so we’ll look at it first.
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B. The Elementary Functions

We define the class of elementary functions as:

E = the smallest class of functions containing Z, S, the projection
functions, Axy (x¥), and which is closed under composition
and bounded recursion.

We remind you that this is shorthand for an inductive definition of the label
“elementary function” (see the end of Chapter 11.B).

This isn’t a very happy way to define the class because to apply bounded
recursion we need to know ahead of time whether the function we shall get is going
to be smaller than one we already have. The computation procedure would require
an accompanying proof. Whenever we use recursion we need to know something
about the functions, namely, that they have the right number of variables. But here
we need to know in advance something about the calculations. We can show,
however, that the operation of bounded recursion can be replaced by bounded
minimization. Recall that a function f is defined by bounded minimization
on functions g and hif f(X)=miny y<,z) [ h(X, y)=01.

THEOREM 1 a. Addition and the coding and uncoding functions are in E.

b. In the definition of Z the operation of bounded recursion
can be replaced by bounded minimization.

Proof: a. The definition of addition in Chapter 11.C.2 is acceptable here:

Axy(x + 2)Y*2 isin Casitisa composition of functions in Z, and (x +y) <

(x +2)”*2. Now it is simply a matter of tracing through our definitions of the
coding and uncoding functions (Chapter 11.E) and all the functions those depend on
to see that they can be bounded by functions in £. We leave that to you.

b. To see that Z is closed under bounded minimization refer to Chapter 11.D.4.
All the recursions used there can be bounded by functions in Z, which you can
check.

Now define the class of functions C by the same definition as £ except replace
the operation of bounded recursion by the operation of bounded minimization. We
already have that Cc £. We need to show that Ec C.

So suppose we are given a function f defined by recursion on g and h
bounded by k, where g, h, k € C. Then note that

f(m,X)= (minz [(2)y=g(X) AVi<m, (2);,,=h((2);,i,X)]),
We leave to you to show that the characteristic function for the part in square
brackets is in C. So to show that f € C, it only remains to show that the
minimization operator in this definition can be bounded by some function in C.

We know that f is bounded by Am X k(m, X) € C. We may assume

that k is increasing in m because each time we use bounded recursion we can
choose such a function, beginning with Axy (x¥) . So the least z in the
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definition above has the form:
<f(0,X),...,f(m, X))
<k(0,%),...,k(m,X)>

<k(m, %), ..., k(m, X))

m k(m,%)
m

z

I IN

A
=]

where p_ is the mth prime. Multiplication is in C because all the recursions
needed to define it can be bounded by Axy (x¥). So we need only show that the
function p(m)=p, isin C. For that we use the definition of p from Chapter

X

m
11.E.1 and the inequality p_ < 2° (Exercise 1) ; the function Ax (2° )isinC
because it is the composition of functions in C. ]

In the proof of Theorem 1.b we see how important it is to have the coding and
uncoding functions available to us. Of the classes described in the previous section,
E is the smallest which contains the coding and uncoding functions and in which we
can replace bounded recursion by bounded minimization. For this reason it’s taken
as the minimum base for investigating the primitive recursive functions. Yet at the
same time it marks the limit of what many believe to be the “feasibly” computable
functions since it contains exponentiation.

Iterating Iteration: The Ackermann-Péter Function

It should seem clear how to continue the classes £°, £, 22, £°, ... . But can we
come up with a general way to describe all these classes? And by iterating often
enough will we get all the primitive recursive functions? To answer these questions
we look at what we get by successive iteration starting with the successor function.

1. The functions V,, and proof by double induction
Define the functions ¥, ¥, , ... , ¥, ... by:

Yo(n)=n+1
and

Vo 1(0) =y, (1)

Voo @+ D=y, (v, (1)

We can prove by induction on m that each v, is primitive recursive: y, is,
and y,_, , arises by recursion on . Indeed, ¥, is a pure iteration of y:

Wm+1(n)=wm(n+l) (1)

as you can check (Exercise 2) .
We are going to get functions that grow very fast (cf. Exercise 11.17). So fast,
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indeed, that given any primitive recursive function there will be some y,_, which
bounds it. In order to show that, we first need to establish various ways in which
the v’ s grow.

THEOREM 2 a. y_(n) > n
b. y,(a+1) > vy (n)
e V. (m2y (n+1)
d. vy, (@)>Vy, (n)

We need a new proof technique for this theorem. A proof by double induction
of a statement P(m, n) has the following steps:

1. We prove P(0, n) for all n by induction on n: first we prove P(0,0), and
then assuming P(0, n) we show that P(0, n + 1) follows.

2. We assume that P(m, n) holds for all n (the induction step for m ).
Then we prove P(m + 1, n) by induction on n: first we prove P(m + 1, 0),
and then assuming P(m + 1, n) (the induction step for n), we prove
P(m+1,n +1).

This is repeated use of single induction, so it should be acceptable. And in a sense
that can be made precise (see Chapter 13.B) it can be reduced to single induction.
Note that at the induction step for m we can equally assume that P(i, n) holds

for all 1 < m, and at the induction step for n we can assume that P(m + 1, 1)
holds for all / £ n (cf. course-of-values induction in Chapter 11.D.8) . We'll
prove part (a) of the theorem by double induction and leave the rest of the proof
as Exercise 3.

Proof:  a. We can do the basis level all at one go, for yy(n)=n+1>n.
For the induction step for m, suppose that for all n, ¥, (n)> n. Then
Vo 1(0O=y ()>1>0.
For the sub-induction step for n, suppose thaty_ . ,(n)>n. Then
Ve 1@+ D=v,(v, 1 (0))
>V, . (n) by induction on m

>n by inductionon n. =

2. Dominating the primitive recursive functions

To establish our claim, we first have to make it precise. We say that g strictly
dominates f if for all x, g(x) > f(x). That definition only works for functions
of one variable; so, more generally, we say that a function of one variable, Ax g(x)
strictly dominates AX f(X) if for all X', g(max X) > f(X).
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THEOREM 3 .

a. Each of the initial functions Z, S, P ; is strictly dominated by v, .

b. If g is strictly dominated by y, and h, ..., h, are strictly dominated by,
respectively, /P then f(x)=g(h(X), ... ,h (X)) is
strictly dominated by v, , , where m = max (a, a,, ..., a,) .

c. If g is strictly dominated by y,, h is strictly dominated by ¥, and f is
obtained by primitive recursion on h with basis g, then f is strictly dominated
by vy, , where m = max (a,b,1) .

d. If fis primitive recursive, then for some r, f is strictly dominated by v, .

Proof: We leave parts (a), (b), and (c) as good (hard) exercises in proof by
induction (Exercise 4) .

For part (d) we’re going to use induction, but in a new way. Recall our
explanation of the inductive character of the definition of the label “primitive
recursive” in Chapter 11.B. A function f gets the label primitive recursive if it has
a definition starting with the initial functions using composition and primitive
recursions. So we can induct on the number of operations used in a definition to
prove a constructive version of part (d): if f has a definition that uses at most m
applications of composition and primitive recursion starting with the initial
functions, then f is strictly dominated by ¥, . ;-

It is true for 0 operations, for in that case we have the initial functions which
by part (a) are bounded by V, . Therefore, suppose it is true for functions which use
at most m operations. Suppose that f can be defined by recursion on g and h,
where the latter use at most m applications of the operations and hence are strictly
dominated by , ., ;. Then by part (c), f is strictly dominated by Yomel)+2 =
Va(ms1)+1+ Thesame argument works if £ is defined by composition. =

3. The Ackermann-Péter function and nested double recursion

In working with the collection of y_’s you may have found that you could think of
the whole sequence of functions as a description of how to compute y_(n) for any
m, n. Thatis, you could think of y_(n) as a single function of two variables
defined by

y(0,n)=n+1
y(m+1,0) = y(m, 1)
y(m+1,n+1) = y(m,y(m+1,n))

W. Ackermann first defined a function in 1928 to show that there is a computable
procedure which is not primitive recursive. The function v is a variation on that, in
its essentials due to Rézsa Péter in 1935.

But why are we justified in saying that y is a function, much less a compu-
table one? It has the flavor of an inductive definition, but there seems to be too



SECTION C The Ackermann-Péter Function 113

much going on. That’s because it’s a definition by induction on 2 variables.
" Consider all pairs of natural numbers arranged as follows:

(0,0) ©1) .. ©n) ©,n +1)

rows— (1,0) @1 (l,n) (1,n +1)

@0  (m1) .. @)  (@.n+1)
m+1,0) (m+1,1) ... (m+1,n) Mm+1Ln+1)

In ordinary (primitive) recursion, to determine the value of f at
(m+1,n+1),thatis, f(m +1,n + 1), we allow ourselves to look at values of
f at places in preceding rows only, f(x, y) such that x < m. This seems an
arbitrary restriction: why shouldn’t we allow ourselves to look at values of f at
places preceding (m + 1, n + 1) on the same row, that is, f(m + 1, x) for
x<n+1?

0,0
0.9 we get to look up here
in primitive recursion
(m,0)
| (m+1,00 - - - - | m+10+1)

. we should also get to look up here

Moreover, nesting causes no problems; that is, we can apply f to itself, for
example, f(m+1,n +1) = f(m, f(m + 1, n)), for we are again only
thrown back to previous calculations of f. To calculate any such fat

(m + 1, n + 1) we need only a finite number of values of f at places that
precede(m +1,n +1):

when we start at (m + 1, n + 1) there are only finitely many

places to go on the same row before (m + 1, n + 1) . Then we may go
to an arbitrarily distant place on a preceding row, say (m, n +400) .
But then again there are only finitely many places on that row to which
we can be thrown back, ... continuing we must eventually reach (0, 0)
for which a value is given.

(0,0 r\r'k—”‘ > L.
L F~ o (mtlat])

For example, for our function y how do we compute y(2,1)? Well,
y(2,1)=wy(1,y(2,0)). Soweneed y(2,0), which equals y(1,1) and y(1,1)=
y(0,¥(1,0)). And y(1,0)=wy(0,1)=2. Now trace the steps backwards.

So we conclude that nested double recursion (definition by induction on two

variables) is an appropriate operation to define a computable function. But it can’t
be reduced to primitive recursion.
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THEOREM 4 v is not primitive recursive.

Proof: Suppose Wy were primitive recursive. Then the diagonal f(m)=y(m, m)
would be primitive recursive, too. But by Theorem 3.d, for some r, f(m) <

y(r, m) for all m. In particular, we would have f(r) < y(r, r) = f(1),

which is a contradiction.

D. The Grzegorczyk Hierarchy

Now we can use the y_’ s to build the hierarchy we began in Section A.
Andrzej Grzegorczyk [pronounced G’-zhuh-gore’-chick], 1953, was the first
to build a hierarchy based on successive recursions, and ours will be a variation
on his, starting with the elementary functions.

Definition For m > 3 define the inductive class :
£, = Ev,)

= the smallest class of functions containing Z, S, the projection

functions, and ¥, and which is closed under composition and
bounded recursion.

Thus the definition of £ is the same as for £ except that y_ replaces Axy (x7).

THEOREM 5 a. = .

b. In the definition of Z_ the operation of bounded recursion can be
replaced by bounded minimization.

Proof: a. Tt's enough to show that y; € £ and Axy x)e E(y;)- Since
yi(n) = 21+3 _ 3 (Exercise 2) , ;€ E. FromExercise 5, x-y <2**7, s0
x-y < 23*+¥ %3 _3 and hence is in E(y;). And similarly, x¥ < 2*'7 so
(with the details left to you) Axy (x¥)e E(y;) .

b. Since Axy (x¥)e & , Axy (x”) € £, for all m (via Theorem 2.d),
so we can use the same proof as for Theorem 1.

Now we can establish that the £ _’s give a hierarchy.

THEOREM 6 a. %, C £,

+1°
b. If f is primitive recursive then for some m, f e E_,.
¢ V... € Z, andhence £_# el

Proof: a. This part follows from Theorem 2.d .
b. This part follows from Theorem 3.d , since given a definition of a primitive

recursive function, there is some m such that v dominates all the recursions
used in that definition.
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c. To establish this part we use the fact that if f € £, is a function of one
variable, then for some a, for all x, f(x)< \um (x ) (Exer01sc 6). So, for some a

f(x) < v 1) by Exercise 2

@), (x+l)
< W (W

(a+x +1)

= H=vy,_ @ +x)

Now suppose that . ;€ £ . Then vy _,(x+ x) would be too. But

(D) by Theorem 2

then for some a and all x, (X + x) <y, ,(a+ x). Butthis is
impossible for x=a. So y_, & Z_,and we have found a functionin £__,
that dominates all functions in E_, . [ ]

We have the following picture:

. ¥ The Ackermann-Péter function

Em Vm
. A7
] 3
Y,
£
Yy
Z = Z3

Note that we have built a cumulative hierarchy: Each class contains the
preceding one, extending it with new elements. This is more common in mathe-
matics (and usually easier) than making each class completely distinct from the
preceding ones.

Every new class allows for one unbounded recursion (iteration) from the pre-
vious class. This yields a function that grows faster than any in the previous class
and can be used to raise the bound for bounded minimization. The Ackermann-Péter
function ties together these countably many new recursions into one function which
grows faster than any primitive recursive function. The operation of nested double
induction which we used to define the Ackermann-Péter function is computable, and
that gives us our first clue for how to extend the primitive recursive functions in
Chapter 13.

Exercises

Warning: Not every statement involving two variables requires a proof by double
induction.
1. a. Prove by induction: 20+21 + ... +27 <2n+1 ;
b. Let p, be the nt prime (pg=2). Prove by induction on n that p, < 2%,
(Hint: Replace n! by a product of primes in Euclid’s proof and use part (a).)
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. Prove that ., (n) =y (D).

. Calculate W, (3) , (1), ¥,(2) , W5(2) , and W5, (7).

. Express ¥, , ¥, , Y3, and y, as arithmetical functions using familiar
operations, such as addition, multiplication, and exponentiation. In
particular, show that W, (n)=2"+3 - 3 . Try to devise a notation to
describe y/ ;.

o o

3. Complete the proof of Theorem 2 .

T4, Complete the proof of Theorem 3.
(Hint: For part (c) show that f (n, X' )<V, , (max (X' )+ n). Then use
the fact that max (X' )+ n < W, (max (X, n)) and Theorem 2.c. We have not
tried to get the best possible bounds and if you can’t get ours, try to show that
there are at least some bounds, for example, m+ 3 instead of m+ 2 )

5. a. Prove by induction that for all x, x<2*.
b. Prove by induction on y that forall x, y, x-y <2%%Y,
¢. Prove by induction on y that forall x, y, x¥< 2%7,

t6. Prove that if fe £, and f has a definition which uses at most r

compositiong beginning with the initial functions of £, then for all X',

f(xX) < ql(nz, +l)(max (X)) . (Hint: See the proof of Theorem 3.

Remember that bounded recursion does not increase the value of the
function beyond one we already have.)

7. Tteration is just as strong as primitive recursion once we have the coding
functions. Prove that the smallest class of functions which contains the initial
functions S, Z, PHIT for all mand 1< i £ m, the coding functions
Ax (x), and <Xy, X;,...,x, > forall m,and which is closed under
composition and iteration is the class of primitive recursive functions.

(Hint: If f is defined by recursion on h define s(n, X )=<f(n,X),n, x>
and show that s can be defined by iteration of a function t which gives
tika,n, X>)=<h(a,n, X ), n+1,%>.)

8. Show that we can’t get all the primitive recursive functions by starting with some
finite number of initial primitive recursive functions and closing under
composition and bounded recursion.

Further Reading

Grzegorczyk’s original paper, “Some Classes of Recursive Functions”, is an excellent place
to read more about his hierarchy. Rézsa Péter, in her book Recursive Functions , also
develops the hierarchy and gives a good exposition of the Ackermann-Péter function.
Odifreddi, in Classical Recursion Theory Volume 2, develops this material too, along

with other hierarchies of the primitive recursive functions.
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>

(Optional)

In this chapter we will sketch how to extend the Grzegorczyk hierarchy in our quest
for more computable functions and operations. This is only for motivation and is not
needed later.

The Multiply Recursive Functions
1. Double recursion

In Chapter 12.C.3 we justified nested recursion on two variables as a computable
operation. In its general form we define a function f of two variables from g, h,
and k by the equations (highlighting the occurrences of f in bold)

£(0,y) = g(y)
f(x +1,0) = j(x, f(x,a)) fora fixed number a
fx+1, y+1) =h(x,y, f(x+ 1L, y), f(x, k(x, y, f(x + L, y))))

This is not really as complicated as it looks: for the lowest level we set f equal
to another function. At a successor level we first define f for y =0 using some
earlier value of f. Then for successor stages of y it’s almost as for primitive
recursion, the main difference being that we now allow f to be applied to itself on
an earlier value (nesting). To define a function f( x, y, Z') of more than 2
variables, simply insert the sequence z” in all the “obvious” places.

By choosing h appropriately we can show that primitive recursion is a special
form of double recursion. So we define inductively a new class of computable
functions, the doubly recursive functions:

117
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M, = the smallest class containing the initial primitive recursive
functions Z, S , P, and closed under composition and nested
double recursion

Calling the class of primitive recursive functions 2, we have M2 2 P. Since the
Ackermann-Péter function is not primitive recursive, M, # P .
Now do we have all the computable functions?

2. n-fold recursion

No, for we can computably number the doubly recursive functions just as we did 2
(Chapter 11.F), and then diagonalize or equally well define a function that dominates
them (Chapter 11.G).

With the primitive recursive functions, we turned that informal description into
a formal definition of a function y which uses nested recursion on one more variable
to dominate the primitive recursive functions (Chapter 12.C). We can do the same
here: We can define a function p that uses nested recursion on 3 variables and
dominates all the doubly recursive functions. Using p we can divide up the doubly
recursive functions into a hierarchy based on raising the bound in bounded minimi-
zation at each level. As you can well imagine after Chapter 12, the definition and
proofs that establish this are quite involved, although the ideas should be clear.

So we refer you to Péter’s book, 1967, for the details.

Using a general form of nested recursion on 3 variables, we can define the class
of triply recursive functions M, . Then we can diagonalize with a function defined
by nested recursion on 4 variables, which establishes a hierarchy in .‘M3 based on
raising the bound in bounded minimization. Generally, for every n we can define
the class of n-fold recursive functions, M, , with nested recursion on n variables
as a basic operation. And then we can diagonalize those functions with an n + 1-
fold recursive function, establishing a hierarchy in M, based on raising the bound
in bounded minimization.

Mﬂ
M
P
>£I71
__—Z_S_—
___£_4__
£=£3

By extending the bound under which we can do bounded
minimization we get larger and larger classes of computable functions.
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3. Diagonalizing the multiply recursive functions

Once we’ve designated a general form of n-fold recursion for every n we’ve run
out of variables to induct on. So now we’ve surely got all the computable functions.
No again, and for the same reason. We can give an inductive definition of the
class M of all multiply recursive functions as the smallest class containing the
initial functions Z, S , P, and closed under the operations of composition and
nested recursion on n variables for every n. Then it’s only marginally more
difficult to give a computable numbering of these functions and diagonalize,
or equally well derive a computable function which dominates all of them.
How are we then to proceed?

Recursion on Order Types
Recall that we explained computing by double induction by referring to this picture:
(0,0) ©,1 ... (©n 0,n +1)
rows—  (1,0) a1 .. (L) 1,0 +1)
(m,0) (m,1) wee.  (m,n) (m,n +1)
(m+1,0) (m+1,1) ... (m+1l,n) (m+1,n+1)

To calculate f(m + 1, n + 1) we could backtrack along the m + 15t row, then

be thrown back to some place on an earlier row, say to f(m - 16, 158107654 ),
which, though a long way out on that row, would eventually lead us to a still earlier
row since there are only 158107654 places preceding that one on that row; and that
would lead to an earlier row still; and finally to the Oth row and to f0, 0). Since we
knew that value, we could calculate f(m + 1, n + 1).

In essence what we were doing was putting an ordering on pairs of numbers :
(m,n)<(x,y) iff m< x,orelse m=x and n < y. If we think of the natural
numbers with their usual ordering, which we refer to as ®, then what we have here
is a picture of ®%. We can mock this ordering of pairs with a new ordering of the
natural numbers.

For the Oth row put the 0dds : 1,3,5,7, ...

For the first row put the numbers divisible by 2 but not by 4:

2,6, 10, 14, ...

For the next row put the numbers divisible by 4 but not by 8:

4,12,20,28, ...

For the nth row put the numbers divisible by 27 but not by 27+1
But we’ve left out 0. So subtract 1 from every entry above. More formally, first note

that every natural number can be represented in the form 2™(2n + 1) - 1 for some
m and n. Then the ordering that mocks our square of pairs of natural numbers is:
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a<g2b iff a =2"2n+1)-1and b=2*Qy+1D-1
and m<x,orm=xand n<y
Double recursion thus reduces to primitive recursion respecting this ordering instead
of the usual ordering of the natural numbers. That is, the operation of double
recursion can be replaced by the operation of recursion on < @2 Where we define
f from g, h, and q by

f0,X) = g(x)

&) fr+1,) = h(f(q(r+1,X),%),r,%)
where
g(0,x)=0
and

g(r+1,x) <2 r+1

In a similar way, proof by double induction can be reduced to proof by induction on
this ordering.

For triple recursion what picture do we have? We need to use triples of natural
numbers arranged in a cube, ®3.

you are here
0,00 ... (0,n+1) ...

(m,0) ... (mn+l) .. y +1st plane

0,0) ... O,n+1) ...

(m,0) ... (mn+l) ... Lst plane
g
©,0) ... On +1) ...
(m,O) .. (myn+l) ... Oth plane

To calculate f(y + 1, m + 1, n + 1) we begin at that place in the mth row
of the y + 1st plane. Now you describe how we backtrack to eventually reach
(0, 0, 0) . Triple recursion can then be reduced to single recursion on an ordering of
the natural numbers that mocks this ordering of triples.

For induction on 4 variables, we use quadruples of natural numbers arranged in
a line of cubes that look like @3, which altogether we call ®*. Then for 5-fold
recursion, we use quintuples of natural numbers arranged in a square of cubes like
®3, which we call ®5. Then for 6-fold recursion we use sextuples of natural
numbers arranged in a cube of cubes like @3, which we call ®°. And generally we
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can reduce recursion on n variables to recursion on an ordering < on asin(®
above, which mocks the arrangement on n-tuples of natural numbers. Nested
recursion on n variables can also be reduced to recursion on a single variable
respecting the ordering ®”, though its form is more complicated (see Odifreddi,
volume 2).

These @" are examples of Cantor’s “transfinite numbers” that Hilbert referred
to in his paper (Chapter 7). But for our purposes they are simply ways to arrange the
natural numbers in more complicated orderings. What is important about these
orderings is that they are well-orderings: Every nonempty collection of natural
numbers has a least element in the ordering. And they are computable, indeed
primitive recursive. That’s what we need to be certain that we have a computation
procedure for a function defined by recursion on the ordering since we can always
backtrack as we described above.

To continue beyond recursion on these order types, we concoct an ordering that
corresponds to the collection of all n-tuples for all n (the n + 1st-tuples following
the n-tuples) followed by one more copy of the natural numbers, which together we
denote @@+ . Then we can define the class of functions which use the operation of
nested recursion on <M 4 ¢ ; using that operation we can diagonalize the multiply
recursive functions. But even then we won’t have all computable functions, for we
can number these and diagonalize or create a function which dominates them and
raises still higher the bound on bounded minimization.

No matter how far we go along this route, as long as we use well-orderings that
we’ve previously justified as computable and are a “natural extension” of the
previous ones, we can always computably diagonalize and raise the bound for
bounded minimization.

Further Reading

For the multiply recursive functions consult Péter's book Recursive Functions. Hausdorff
in Set Theory gives a basic exposition of the order types we have discussed, and Rogers in
Theory of Recursive Functions and Effective Computability, pp. 219-222, presents the
theory of computable order types as a series of good but hard homework exercises.
Odifreddi, Classical Recursion Theory Volume 2, covers recursion on order types and
relates it to various hierarchies of the computable functions.
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What happens if we eliminate the bound in bounded minimization? Would that be a
computable operation?

A. The p-Operator
Eliminating the bound leads to a problem of undefined points. Consider
f(x) = the least y such that y + x =10

Foreach x > 10, f(x)is undefined. Yet f is still computable: for £(12), for
instance, we can check each y in turn to see that y + 12 # 10.

You might say that it’s obvious that there is no such y that makes f(12)
defined. So why can’t we use that fact to make a better function which is defined
everywhere? That would be stepping outside the system. We’d need not only a
program, an instruction for f that would tell us to calculate y + x and verify
whether it equals 10 or not, but also a proof that there is no such y if x > 10.

In this case that would be easy. But consider the function

h(0)=h(1)=0, andforw > 1,

h(w) =the least <x,y> suchthat x and y are primeand x+y =2-w
At present no one knows for which w this function is defined (the claim that it
is defined for all w is called “Goldbach’s Conjecture™). Yet for, say, w = 4318
we can constructively check in turn each pair ¢x, y» to see whether x and y are
prime and x +y =2-4318.

We define the least search operator, also called the p-operator, as:

SN f(x,z)=0 and
wy[f(X.y)=0] =z iff { forevery y < z, f(x,y) is defined and > 0

B. The min-Operator

A comparison: Denote by “ min y [f(X,y)=0]" the smallest solution to the
equation f(X', y) =0 if such exists, and undefined otherwise.

122
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The following example shows that the min-operator is not the same as the
p-operator. Define the primitive recursive function:

A y) z{x 1y ify <x

Now define:

g(x) = pyl[2+h(x,y)=0]

£*(x) = miny[2 = h(x,y)=0]
Then

£(0), g(1) are undefined, g(2)=0

£*(0), g*(1) are undefined, g*(2)=0
But now define:

f(x)=pylg(y) - x+1)=0]

f*(x):miny[g*(y) (x+1)=0]
Then f(x) is undefined for all x; but for all x, f*(x)=2.

otherwise

C. The p-Operator Is a Computable Operation

Why do we choose the pL-operator rather than the min-operator? We might
not be able to predict for which x, f(x, y) =0 has a solution. To say that
min y [f(x,y)=0] =1 when f(x, 0) is undefined due to an infinite search
entails the completion of an infinite task.

But with the p-operator if f(x, 0) is undefined (that is, we’re put into a search
that never ends) then py[f(x, ¥)=0] is undefined too, for we never get a shot
at trying f(x, 1)=0.

To calculate g(x)=py[f(x,y)=0] we proceed in steps:

Step O: calculate f(x,0)

if defined =0 output the number of this step;

if defined > O we continue the search at the next step;

if we never get an answer for f(x,0) then g(x) will be undefined,
for it is in an unending search

Step 1: calculate f(x,1) —proceed as in step O

Step 2: calculate f(x,2) —proceed as in step 0

This is a well-defined computable procedure for calculating g(x), though it may
not always give a result.
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A.
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The Partial Recursive Functions
1. Our investigations have led us to make the following definition:

The partial recursive functions are the smallest class containing the zero,
successor, and projection functions and closed under composition, primitive
recursion, and the [L-operator.

Again, we remind you that even though phrased in terms of classes, this is really
an inductive definition of the label “partial recursive” (see Chapter 11.B). We
sometimes abbreviate “partial recursive” as p. r.

Since our functions may not be defined on all inputs, we will say that a func-
tion that is defined for all inputs is total and will continue to use lowercase Roman
letters, £, g, h, etc. for total functions. Note that any total function we have so far
investigated is partial recursive: We can define it just as before simply deleting any
reference to a bound. The term recursive is reserved for total p. r. functions.

We call functions which may (for all we know) be undefined for some inputs
partial functions and use lowercase Greek letters @ , ¥, p and so on, to denote them.
We write, for example, ¢(x) to mean the function (thought of as a procedure)
applied to x. We do not necessarily mean by this that there is an object called
@(x), for @ applied to x may be undefined. We write

o(x)! for “@ applied to x is defined”
@(x)¢ for “@ applied to x is not defined”

When are two partial functions (extensionally) the same? First, ¢ and
agree on input x if both @(x)! and y(x)! and these are equal, or both @(x)
and y(x) are undefined. In that case, we write:

o(x) = y(x)

We say that @ and W are the same function if they agree on all inputs; that is,
for all x, @(x)=wy(x). Inthat case, we write:

¢ =y
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These conventions also apply to functions of several variables.

We say that a set A or relation R is recursive if its characteristic function,
C, or Cg, is recursive (see Chapter 11.D.2 and D.3). Note that every characteristic
function is total (that’s the law of excluded middle).

When we use the p-operator we need to reverse the roles of O and 1 in the
characteristic function, so we define the representing function for a relation R
to be 5g o C.

2. Ttis not as restrictive as it may appear that the pt-operator requires us to search for
a y such that (X, y) =0 . Given arelation R, we write:

By<gxy[R(X,y)] tomean py[y<g(X’) A R(X,y].

Lemmal If g and R are recursive, then the following functions are partial

recursive.
UX) = py[o(X, y)=a]
p(X) = py [R(X, y)]
Y(X) = Ly<g) [R(X, 1]
Y(X) = Wy <gx) [R(X, )]

We leave the proof as Exercise 1.

B. Diagonalization and the Halting Problem

Why can’t we diagonalize out of this class?

Assume for the moment that we can effectively number all the partial recursive
functions of one variable as @, , @, , ..., @, , ... (we’ll indicate how in the next
chapter, but from our previous experience with numbering this should be plausible).
We can then define y(x)=¢, (x)+ 1. But it won’t diagonalize, because some
¢, (x) are not defined.

Can we avoid this and hence diagonalize by deciding if @, (x) is defined?

THEOREM 2 There is no recursive function which can tell us whether ¢, (x)
is defined.
Proof: Suppose such a recursive function, f, exists:
1 if o, (x)
F(x)= . Px
0 if Oy (x )J'
Then )
$if @, ()
p(x)= .
0 if o, (x)}

is partial recursive. For the first and last time we will formally define such a
function: p(x) = py[y +f(x)=0]. Sop mustbe ¢ for some y. But
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( ¢ if @y (¥ N
PY2%10 it o, ()t
This is a contradiction. So no such f exists. =
Diagonalization bites the dust—but at the cost of introducing partial functions!

We’ve shown that K =p ¢ {x: ¢, (x)|} isnot recursive. More generally,
define Kj=p;{<x,y>: ¢,(¥) 4 }. The characteristic function of K, is called
the halting problem for the partial recursive functions since <x, y» is in K iff the
xth algorithm applied to y halts. We leave the proof of the following as Exercise 4.

COROLLARY 3 (The Halting Problem Is Unsolvable) K, is not recursive.

C.

D.

The General Recursive Functions

Remember when you were asked to say what you thought the criteria should be for a
procedure to be computable (Chapter 8)? If you said it should terminate, you must
be very dissatisfied with our introduction of partial functions.

Let’s say a function g(X’, y) is regular if it is total and for every X there
is some y such that g(x,y) =0. The class of general recursive functions is
defined exactly as the partial recursive ones except that the pl-operator may be
applied only to regular functions. Clearly, every general recursive function is a
total function, indeed, a total partial recursive function.

Church’s Thesis (in one of its equivalent forms) asserts:
A function is computable iff it is general recursive.

But it is a false pleasure we get from creating a class all of whose functions
are total. The operation of p-operator applied to regular functions is “ill-defined”
because for arbitrary x we cannot decide if g(x, y) = 0 has a solution. That
might require calculating each of g(x,0), g(x,1), g(x,2), ... none of which
may equal O (and, note, it would entail solving the halting problem). So we cannot
effectively number the general recursive functions (and hence can’t computably
diagonalize them either). The ambiguity of partial functions is essential in order to
obtain a class of computable functions we can computably number and yet not
computably diagonalize. In Chapter 16 we’ll show:

the general recursive functions = the total partial recursive functions

Godel on Partial Functions

Gaodel points out that the precise notion of mechanical procedures is brought out
clearly by Turing machines producing partial rather than general recursive
functions. In other words, the intuitive notion does not require that a mechanical
procedure should always terminate or succeed. A sometimes unsuccessful
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procedure, if sharply defined, still is a procedure, i.e. a well determined manner
of proceeding. Hence we have an excellent example here of a concept which
did not appear sharp to us but has become so as a result of a careful reflection.
The resulting definition of the concept of mechanical by the sharp concept of
‘performable by a Turing machine’ is both correct and unique. Unlike the more
complex concept of always-terminating mechanical procedures, the unqualified
concept, seen clearly now, has the same meaning for the intuitionists [a brand of
constructive mathematicians, see Chapter 26] as for the classicists. Moreover it
is absolutely impossible that anybody who understands the question and knows
Turing’s definition should decide for a different concept.

Wang, p. 84

Exercises
1. Prove Lemma 1 (cf. Exercise 11.15).
2. Show that the function defined by

g(x)={

0 if x iseven
¢ if x isodd

is partial recursive by giving a [L-operator definition of it using functions which
we’ve already shown are partial recursive.

3. a. Applied to regular functions the min-operator and the p-operator are the same.
Suppose that ¢ is partial recursive and f is defined by
f(xX) = py[o(X, y)=0]. If fis total, show that for all X,
f(X')=miny [¢(X, y) =0].
b. Show that the partial recursive functions are not closed under the min-operator.
(Hint: Define y(x, y) =l if either y =1, orboth y =0 and ¢, (x){ .)

4. Prove that K, is not recursive.

5. We say that a function  extends a function ¢ if whenever @(x){ ,
w(x)! =@(x). Show that there is a partial recursive function @
which cannot be extended to a total recursive function.

(Hint: Consider ¢ =Ax(¢, (x)+1).)

6. We said that we can’t diagonalize out of the class of partial recursive functions.
But doesn’t the function f defined by

Oy (x)+1 if @, (x)N
f(x)= .
0 otherwise
diagonalize the class of partial recursive functions? Explain.

7. Explain why you do or do not agree that partial functions are computable.
Are Godel’s remarks (via Wang) a convincing argument for accepting
partial procedures as computable ?
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Recursive Functions

Why and How: The Idea

We want to number the partial recursive functions for two reasons. First, we want to
justify and make precise the comments we made in Chapter 15 about the halting
problem and diagonalization. Second, as we number the functions we will code how
each is built up, so that given the number of a function we can uncode it to compute
the function on any input. In this way we will have a partial recursive procedure
which simulates all partial recursive functions, what we call a “universal function”
for the partial recursive functions.

The idea of the numbering isn’t hard; it’s no harder than the sketch we made of
numbering the primitive recursive functions in Chapter 11.F. But writing it down
gets a bit complicated, so we’ll give the idea in rough form first. We’re going to use
the coding of sequences of numbers we presented in Chapter 11.E.5 with which you
should be familiar.

The numbering is an inductive procedure. As basis, we number the initial
functions, say Z gets number 0, S gets number <1>, and Pki gets number <1,1>
(the number of variables will determine k). At the induction stage we assume that
we have already numbered various functions, say ¢,, @, Pbp> Poys oo s @ by -

Then corresponding to each operation we can use to produce new functions, we will
associate an arithmetical operation:

for composition, (pa((pbl, Ppys s P k) will get number

<a,<b), by, ., b, 0>

for primitive recursion, the function defined by recursion on @, with basis ¢,

will get number <a, b,0,0>

for the least search operator, Ly (@ a(? ,¥)=0) will get number

<a,0,0,0,0,

There are two complications, however, that make the numbering harder than

this sketch. First, we will want every number to be the number of some function,
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so we will build in a lot of redundancy. For example, rather than assigning just
<a,0,0,0,0> to the function that arises by an application of the pt-operator to @,
we’ll assign every n with Ih(n) > 5 such that (n), = a. Second, we need to
number all functions of every possible number of variables at one go. Thus, when
we come to the number n we will have to stipulate for every k what the nth
function of k variables is. This is analogous to defining a Turing machine that
works for inputs of any number of variables.

Now, given any number we can unpack it to see what function it corresponds
to. For example, if we have n = ¢a,0,0,0,0> then we know that it’s the number of
a function which arises by least search operator applied to @,, where a <n. We
can continue to unpack, say a = <4796521, 814, 0, 0). In this case, we know that
@, is obtained by primitive recursion on @, With basis ¢,,4¢s,; . By unpacking
n until we arrive at a complete description of it using only primes, 0, and 1, we can
get a description of the function it indexes in terms of initial functions and operations
on them. Hence, given any x we can describe how to calculate ¢ (x). The
formal description of that process amounts to a universal function for the partial
recursive functions.

Indices for the Partial Recursive Functions

Recall that ¢ =~y means that for all x, @(x){ iff w(x)! , and they are equal if
both are defined.

We shall index all partial recursive functions of every number of variables at
once. The nth function of k variables for k > 1 will be denoted (pﬁ , though we
will drop the k if it’s clear. The variables will always be labeled x,, x,, ..., x .
We will give a definition by inducting on n for all k at once.

By induction, we define (p]; (X1 Xgsees X ).

Case 1 (zero, successor) lh(n)=0or1
n codes the empty sequence or (n),
If Ih(n)=0, then ¢ = the constant function Z

n

If Ih(n)=1, then (pﬁ = the successor function, x,+ 1

Case 2 (projections) Ih(n)=2
n codes the sequence ((n),, (n),)
If (n), =0 or (n); =0, then (pﬁ =~ the constant function Z
If ()21 and 1< (n); Sk, then of = P (1, Xy, Xy )
If (n)g>1 and k<(n), then ¢f =P (x;, x5, ... %)

Case 3 (composition of functions) Ilh(n)=3
n codes the sequence ((n),, (n);, (n),)
If Ih((n);)=0, then ¢} = ¢%
0
If Ih((n);)21, then ¢f = (p’f‘n()(")l)(
0

k k
(0] y s @ )
(@), (@), )Jh((n)l)AI
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Case 4 (primitive recursion) /h(n)=4

n codes the sequence ((m)g,(n), (m),, (1)3)
If k=1, then

¢,0) = (n), ,

0, (X +1) = (p(n) (0, (x), xp)

1
If k>1, then
k k-1
(pn (01X2’---7Xk) = (P(n)o(x2""’xk)

(pﬁ (x+ 1, Xp5 s X ) =
(p’iﬂ‘;: ( (pﬁ (Xps Xy s X )5 Xpy Xy ooy Xp )
Case 5 (p-operator) Ih(n)=S5
n codes the sequence ((m)g, ..., (M, ) 1)
1

k k +1
(0 (Xps Xy o s Xy ) = P«Xkﬂ[(P(n";o(Xl,Xw-.- s Xy » X 1) =0]

This completes the numbering. If y = (pﬁ , wecall n an index of y .

Note that we have numbered programs, descriptions of functions. In Exercise °
you’re asked to prove that every partial recursive function has arbitrarily many
different indices. This is not an accidental feature of the numbering: In Exercise 9
you’re asked to show that there is no recursive way to determine whether two
programs give the same function.

THEOREM 1 ¢ is partial recursive iff forsomen, ¢ = @, .

Proof: We leave to you to show by induction on n that for every n, @, is
partial recursive.
To show that if @ is partial recursive there is some n such that ¢ = @,, we use
induction on the number of applications of the basic operations in a definition of ¢ .
If no operations are used in the definition then ¢ is an initial function: if @ is
Zthen@=@,; if @ isS thengp=¢, ; andif @is Pkl then @ =@, 3i+1.
Suppose now that the theorem is true for every function which has a definition
using at most m applications of the basic operations and ¢ has a definition which
uses m+ 1 applications. If @ is defined by an application of the pt-operator applied
to p, and p has a definition with at most m applications of the basic operations, then
forsomer, p =@, and @ ~ Q,r+1 3 5., 1; . The other cases are similar and
we leave them to you as Exercise 1. |

C. Algorithmic Classes
(Optional)
Generally, we call any class of functions of natural numbers algorithmic if it

contains the zero, successor, and projection functions, and is closed under the
operations of composition, primitive recursion, and pl-operator.
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The class of partial recursive functions is the smallest algorithmic class. In set
theoretic terminology, it is the intersection of all algorithmic classes, which is to say
that every partial recursive function is contained in every algorithmic class. Thus,
the difference between a general algorithmic class and the partial recursive functions
is what additional nonrecursive initial functions are chosen.

If f, f,, ..., f , are total functions of the natural numbers, then we say that
¢ is partial recursive in {f}, f,, ..., f |} iff @ can be obtained from the initial
functions zero and successor, the projections, and f|, f,, ..., f , by the operations
of composition, primitive recursion, and p-operator.

For Exercise 11 we ask you to give a numbering of the functions partial
recursive in {f}, f,, ..., f }.

The Universal Computation Predicate

Using our numbering, we’d like to check whether ¢, (b){ = r. But we can’t
because the halting problem is unsolvable (Corollary 15.3) . However, if
0, (b)) =r, we can tell that: since n codes the definition of the function, we
can actually do the computation. But ¢, (b) might be undefined due to an infinite
search. We will get a recursive predicate by limiting the searches we can do to
check whether @ (b)\ =r. So“C(n, b, r, q)” will mean that ¢, (b){=r
and g bounds the largest number used in that computation. Thus if C(n, b, r, q)
holds, so will C(n, b, r, w) for any w > g (intuitively, if you can compute in
time g and g < w, then you can compute in time w). Moreover, because all the
searches are bounded by g, the predicate that checks the computation will actually
be primitive recursive. This is an important point: there is no effective procedure
for determining whether @, (b){ = r, but given a purported computation,
“@, (b)! =rintime g”, we can check it primitive recursively. Indeed, the
checking process is elementary (Corollary 3).

When we write “C(n, b, r, q)” we mean to assert that C(n, b, r,q) holds.

THEOREM 2 (The Universal Computation Predicate)

There is a primitive recursive predicate C such that
X (b, ... b )=r iff 3gC(n, by, .., b, 51, q)
Moreover, if C(n, b, r, q) and g < w, then C(n, b, r, w).

Proof: We are going to define C by induction on n (the number of the function)
by stipulating those cases in which it holds (and thus by implication in all others it
fails). Thus, when we define C(n,b,r,q) we may assume that we have already
defined C(m,x, y,z) forany m < n and all x, y, z. We can do this because

the only functions which are referred to in the definition of ¢, are ¢ form < n.
Also note that if C(n,b,r,v)and Ih(b)=k >1, then b will code

(b}, - » by ) so that k is the number of variables involved (the variables are
numbered starting with 1, the primes starting with p, = 2).
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Case 1 Ih(n)=0 and r=0
or Ih(n)=1 and r =(b)y+ 1

Case 2 Ih(n)=2 and
(n)y=0 or (n);=0, and r=0
or (n)y21 and 1<(n), < Ih(b) and r—(b)(n)
or (n), 21 and k<(n); and r—(b)]h(b) .
Note that q is irrelevant in cases 1 and 2 .

Case 3 Ih(n)=3 and
1h((n))=0 and C((n)y,b,r,q)
or Jh((n);)=1 and
dd < q with Ih(d)=1h((n);) and
C(((m)));,b,(d);,q) for 0<j <Ih((n))+1
and C((n),,d,r,q)

Case 4 lh(n)=4 and
Ih(b)=1 and (b)y =0 and r=(n),
or Ih(b)-l and (b); 21 andde<q,
C(n,2 ,e,q) and C((n),, <e, (b)g= 1>,r,q)
or Ja(b)>1 and (b); =0 and
C( (n)o s <(b)1! wos ( b)]h(b)= 1>,I,Q)
or Ja(b)>1 and (b); =1 and Je<q,
such that C(n,bz, e,q) and
C((n);,<ce,(b)g =1, (D)5 ... ( b)]h(b)‘p .1, q)

Case 5 lh(n)2>35 and
C((n)y, b-p(Ih(b))1*7,0, q) [recall that p(x)=the xth prime]
and Vi<r, Je, 0<e< g, such that
C((n)y, b-pUR(bY !+, e,q)

This completes the description of C.

Now we must prove that C does what we claim. First, note that C is
primitive recursive since every condition is obtained by bounded existence on
some primitive recursive condition.

To show that @, (b;, ..., b )=r iff 3q C(n,<b,.., b, > r,q)
we induct on n and subinduct on b=<¢b,, ..., b, >. For the basis, we note that
for Ih(n) <2 it’s clear.

Suppose now it is true for all a <n and for n for all x < b. We’ll do only
one direction of one case, and leave the rest to you. Suppose ¢, (b, ..., b, )=r
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and Jh(n)=35. Then (p(n)o( b,,..., by ,r)=0 and hence, since (n), < n, by

induction there is some v such that C((n)y,¢by, ..., b, ,r>,0, v). Moreover,
foreach i <r, (p(n)o( by, ... b 1) 1 > 0. So by induction we know that there
are Uy, ..., U,y and vy, ..., v,_; suchthatforall i< r-1, u;>0 and

C((n)y,¢ by, .oy by >, u;,v;). Take
q = max ( Ugy ooe s Up ] 5V ooe s Vo1 Vs r)y+1
Then C(n,<by,.... b, »,1,9). ]

We only claimed in Theorem 2 that C is primitive recursive, but actually
we’ve proved more. Recall that a function is elementary if it is in £ (Chapter 12.B).

COROLLARY 3 The universal computation predicate is elementary.

Proof: This is just a matter of tracing through the definition of C to see that
every condition is obtained by bounded existence on some elementary condition. m

Since the representing function (total) for the universal computation predicate
is partial recursive it must have an index. We call the least one c, so that

0 if C(n,m, r, q)

4 —_—
(pc(n,m,f,Q)-{l if not C(n, m, r, q)

The Normal Form Theorem

What we have done so far in this chapter may seem merely a tedious exercise in
labeling and reading labels, But the names we have given code a lot of information.
Using the numbering we can define a universal partial recursive function, one which
calculates all others, analogous to one Turing machine which simulates all others.

THEOREM 4 For X = (X, Xy, ..., X; ) the function

An,x (Lq[C(n,<X>,(9)y,9)1),

is partial recursive and is universal for the partial recursive functions of k variables.
That is, if @ is a partial recursive function of k variables, then for some n, all X,

gL C(n,<X>,(q)5,9) 1)
(Hq[ ¢ (n,¢X>,(q)y, 9)=01),

]

o(x)

]

Proof: By Theorem 1, if @ is partial recursive then for some n, @ is @,. So by
Theorem 2, if @(X )| =r, then there is some s such that C(n,<X>, r, s).
Hence C(n,<X>, r,<r, s>) and the theorem follows. n
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We know that every general recursive function is partial recursive, but in
Chapter 15 we said that we could prove the converse. Using the Normal Form
Theorem that’s now easy.

COROLLARY 5 a. Every partial recursive function may be defined with at most
one use of the [l-operator.
b. A total function is partial recursive iff it is general recursive.

Proof: a. This part follows from Theorem 4 since % is primitive recursive.

b. Given any total partial recursive function, by Theorem 4 there is a definition
of it that uses only one application of the pL-operator applied to a primitive recursive
function. Hence that primitive recursive function must be regular. =

F. The s-m-n Theorem
Consider the partial recursive function
O(x,y)=x7+ [y ¢k ()]
(Exercise 4). Suppose we take y as a parameter and consider, for example,
Ax(x3+ 3 9k(3)])
Then that’s partial recursive too. Generally, by using the Normal Form Theorem we
can show that if we start with a partial recursive function and hold one or several

variables fixed, we get another partial recursive function. More importantly, though,
we can find an index for the new function effectively in the index of the given one.

THEOREM 6 (The s-m-n Theorem) Forevery n, m > 1 there is a recursive
function S such that if we hold the first m variables fixed in
0,(a,... 58, Y155 Yy)
then an index for the resulting partial recursive function is S,'," (x,a),..,a,).
Ay Yo log(ay, o sap, vy, y,)]
=Q m am)(Y11""yn)

SH (x, ap, o,
Proof: The left-hand side of the eqﬁation is

(Mg lQc O, < ap oy, ¥y ¥y 25 @)y 9) =00,

/v ‘\
view these as constants view these as projections

To begin, the number 36 is an index for the identity function. In Exercise 5 we
ask you to define a primitive recursive function h such that for all n, ¢ h(n 18 the
constant function Ax (n). As before, p(m) = the mth prime. We’ll let you
calculate an index d for the function Ax ( (x); ) . Using these we can define
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ST (X, ay, ... ,a,)=29"".32%1.5
where a=2271.3.5.7.11 and b=2°%1.3°*1.5 where
e = p(O)h(x)"’l . p(l)h(a1)+1. e p (m) hap) +1.
p(m+ 1)1+ @2 31D pmy p1) 14 @237FD

To see that this is correct requires going back to the numbering in Section B to
check each part. That’s a good way to get a grip on how the numbering works, and
so we’ll leave it to you,

Note that each Sy function is elementary since it involves only addition,
multiplication, and composition on the functions p and h, all of which are
elementary. ]

G. The Fixed Point Theorem

Self-reference can be a problem, as we know from the liar paradox and our many
uses of diagonalization. But it has also been a useful tool for us, since that is exactly
what primitive recursion is based on: A function is defined in terms of itself. And
we have seen other forms of recursion in which a function could be defined in terms
of itself in Chapters 11-13. Here we will show that the immunity to diagonalization
that the partial recursive functions enjoy can be put to good use to find fixed points
and hence very general ways to define a function in terms of itself.

THEOREM 7 (The Fixed Point Theorem)

If f is recursive then there is an e such that ¢ = @ @

Proof: Consider the function
¢ ) ifo,(x)
}\’Xy (P (X)(y)= (PX(X) X
Px 4 otherwise

This is partial recursive since it can be defined as

\II(X’ .y) = (Uq C((PX (X)a Yy, (q)O’ Q) )0

So by the s-m-n theorem there is a function g such that Py = Ay w(x,y).
Now consider f o g, which is recursive. For some d we have f o g = ¢.
Hence by the definition of g,

Pe(a) = P )
and by the definition of d,

Prigan = Po )
Thus we may take e= g(d). =

The Fixed Point Theorem is sometimes called the Recursion Theorem. Here is
an example of its use, which we will need later. Although there are other ways to
obtain the same result, this proof illustrates a typical application.
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COROLLARY 8 If A is an infinite recursive set, then its elements can be enumerated
in increasing order by a recursive function.

Proof: Let a be the least element of A. First note that the function we want is
defined by the equations:

f(0) = a

f(x+)=pyly > f(x) A y € A]
Define a function of two variables p by:

p(i,0)=a

pUi, x+ D) =pyly >¢;(x) A y e Al
We leave to you to show that p is partial recursive. The collection of functions
Ax p (4, x) gives us a matrix for which (instead of diagonalizing) we can find
a fixed point. First, by the s-m-n theorem there is some recursive s such that
D5 = Ax p (4, x) . Then by the Fixed Point Theorem there is some e such
that @)= @,. Hence

9, (0)=a

Q(x+1) = Uy [y >0 (x) A y e A] L

Exercises
1. Complete the proof of Theorem 1.

2. Prove:
a. There are exactly countably many different partial recursive functions.
b. Every partial recursive function has arbitrarily many different indices.

3. We now have a universal partial recursive function. So from now on you don’t
have to write any more programs, just hand in an index. Right?

4. Show that the example we gave in Section F, @(x,y)=x"+ [y-¢\ ()1,
is partial recursive. (Hint: Use the Normal Form Theorem.)

5. Define a primitive recursive function h such that for all n, ¢ h(n) is the
constant function Ax (n).

6. a. Give an index for addition.
b. Give an index for multiplication.
Express your answers in decimal notation.

T7. a. Show that there is a primitive recursive predicate Prim such that f is
primitive recursive iff for some n, f = (plf, and Prim(n).
(Note: There may be some indices of addition, for example, which do not
satisfy Prim, but at least one will.)
b. Using part (a) show that there is a total recursive function which is not
primitive recursive (cf. Chapter 11.G).
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10.

11.

T12.

13.

T14.

Exercises 137

The graph of a function @is { z: z=¢x,@(x)> }. Show that there is a
function with primitive recursive graph that is not primitive recursive.

. Show that there is no recursive function which can identify whether two programs

compute the same function. That is, show that no recursive function f satisfies
L if Py = (py

. 9 ={0 if gy 20,

(Hint; Show that g such that

Ax (D) if o, (x)
Pow 4 onallinputs if @, (x)4

is recursive, and look for a solution to the halting problem.)

Let A={x: ¢, istotal}.

a. Show that there is no recursive f such that A =range of f.
(Hint: Diagonalize.)

b. Show that A is not recursive. (Hint: Reduce this to part (a).)

Number the functions partial recursive in {f}, ..., f , }. Using that,

produce a universal computation predicate for the functions partial recursive in
{f}, ..., f ,} which is also partial recursive in {f;, ..., f ;}. What is the
significance of this if £, ..., f  are recursive?

Give an index for the universal partial recursive function of k varlables
defined in Theorem 4 in terms of the indices c, d, and e, where (pc is the
representing function for the universal computation predicate, d is an index
for An (n),, and e is an index for L X’ ¢X’> .

We may delete primitive recursion as a basic operation in defining the partial
recursive functions if we expand the class of initial functions. Show that the
partial recursive functions are the smallest class containing the zero,
successor, projection, and exponentiation functions and which is closed
under composition and pt-operator.

(Hint: Use Corollary 3, Theorem 4, and Theorem 12.1.)

Rice’s Theorem
Prove: If Cis a collection of partial recursive functions, then
{x:0,isin C} isarecursive set iff C=& or C=allp. r. functions.
(Hint: Assume the contrary and ¢, € C, @, ¢ C. Define a recursive
function f such that

¢, if o, ¢ C
Prxy) = 9, if gyecC
Then use the Fixed Point Theorem.)
Why doesn’t this contradict Exercise 7?
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Further Reading

Virtually all the theorems in this chapter were originally proved by Kleene, the Normal Form
Theorem in particular in 1936; see his Introduction to Metamathematics for details of the
history. Kleene’s original computation predicate is called the “Kleene T-predicate”; our
version of the Normal Form Theorem is based on one from G. Sacks via Robert W.
Robinson.

The theorems in this chapter don’t depend on the particular numbering we gave but
only that there is some effective numbering of the partial recursive functions. The criteria
for an acceptable numbering are discussed by Rogers in his book Theory of Recursive
Functions and Effective Computability (exercises 2-10, 2-11, and 11-10) and by Odifreddi
in Classical Recursion Theory, Chapter ILS.

For a more general discussion of the Fixed Point Theorem and extensions of it, see
Odifreddi, especially Chapter I1.2.

For the study of algorithmic classes, see Odifreddi, Chapter II.3 and Chapter V,
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A. Listability and Recursively Enumerable Sets

Complementary to the notion of computability is the idea of effectively listing the
elements of a set. Starting with computability, we take a set to be effectively
enumerable if it is the output of some computable function: { f(0), (1), f(2), ... }.
But, equally, starting with the idea of effectively making a list, we can take a set
A to be computable if both it and its complement are effectively enumerable:

In that case to decide if x is in A list the elements of A: ay, a), dy, e
simultaneously list the elements of the complement of A: by, b;, b,, ...,

until x appears on one of the lists.

Since we have identified the notion of computable function with that of total
recursive function (Church’s Thesis), we will identify the notion of a collection
being effectively enumerable with the collection being the output of some total
recursive function. However, we have to take the list with no elements on itas a
separate case, since that isn’t the output of any recursive function.

Definition A set is recursively enumerable (r.e.) iff itisempty or it is the range of
some total recursive function of one variable.

We may relax the condition that f be total, which in applications is very
convenient.

THEOREM 1 B isre. iff there is some partial recursive function W such that
B={y:Ixyx)l=y}.

Proof: = In this direction it’s immediate, since every recursive function is p. r.
<= Suppose we are given such a y. If B=(J then we are done. So suppose
B is nonempty.

In intuitive terms we think of our universal function as a machine. We crank it
up on an index for y . Then we do one step of the calculation for y(0). Of course,
that might not halt. So we do another step of y(0) and the first step of y(1). Then
we do another step of y(0), another of y(1), and the first step of y(2), ..., then
another step of y(0) (if it hasn’t yet halted), another of y(1) (if it hasn’t yet

139
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halted) , ... , another of y(n -1) , and the first step of y(n). This process is called
dovetailing the computations.

Step 1 Step 2 Step 3 Step 4
y(0) X X
w) | x ‘%/
w(2) X / X ‘/
v0) x/

Dovetailing Computations

The first time we get some y such that y(y)l, we label that output f(0) ; the
second time we get some y such that y(y) !, we label that output f(1); ... ; the
nth time in this process we get some y such that y(y) |, we label that output
f(n -1). If B is infinite, this will result in f being total. And if y(y)| , then
eventually that value will show up as f(n) for some n. However, B may be
finite, so instead of f “searching” for new outputs, we will have it output its
previous value if nothing new has been defined at a stage.

Formally, there is some m such that y = @, . So

ye B iff 3x3q[e,(m,<x>,y,q)=0]

where @, is the representing function of the universal computation predicate
(Chapter 16.D). Give the name h to the function defined by h(x,y, q)=
¢ (m,<x>,y,q). Thenthisis O iff ¢,,(x){ =y “intime g”; otherwise
itis 1. Let £(0) =the least element in B. Then
fx +1) = [h((x)g, ()1, (X)) - £(x) ] + SZLA((X)g,(x)1, (X)) ]+ (0
You can check that this does what we claim. ]

COROLLARY 2 B isr.e. iff B isthe range of some elementary function.

Proof: Because @, is elementary (Corollary 16.3), the function h in the proof
of Theorem 1 is elementary. =

The following theorem is the formal version of our description that a set is
computable iff it and its complement are both effectively listable.

THEOREM 3 A is recursive iff both A and A are re.
Proof: = This direction is Exercise 1.
<= Suppose both are r.e. Then there are recursive f and g such that A =
the range of f,and A = the range of g. Define a recursive function h by h(x)
=py [f(y)=x v g(y)=x]. Then the characteristic function of A can be ex-
pressed as E[f(h(x)), x] where E is the equality function of Exercise 11.6. [ ]
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Thus, we have an equivalent form of Church’s Thesis:

A set is effectively listable iff it is recursively enumerable.

B. Domains of Partial Recursive Functions

We can also characterize r.e. sets as domains of partial recursive functions. More-
over, we can go effectively from a description of an r.e. set as the range of a p.r.
function @ to a description of it as a domain of another p.r. function y . But what is
a description? It’s nothing more than an index. So to go effectively from one
description to another means we have a recursive function that transforms indices.

THEOREM 4 There are recursive functions f and g such that
domain ¢, = range @ g,

range @, = domain ¢ 200
Thus, a set A is r.e. iff there is some partial recursive ¥ such that A= {x: y(x){| }.
Proof:  First we will exhibit an f. Given any x we define:

y ifey(y)
4 otherwise

y(y) ={

Then the range of W = the domain of ¢, . This procedure is effective in x, by
which we mean that there is a recursive procedure to derive an index for y solely in
terms of x. To demonstrate this we first define y formally via t(x, y) =
(hg C(x,<y>(q)g,9))- 0 + y, and then y = Ay 7(x,y) . Since T isp.r.,
there is some d (which you can evaluate if you wish) such that T = @ ;; that 1s
Y = Ay @,(x,y). Anindex for \|1 is then given by the s-m-n theorem asS (d, x).
Thus we may take f to be 7\.XS (d, x).

For g, suppose we are glven x. In a dovetailing procedure, run ¢, for more
and more inputs, and define

1 if y showsup onthe list of outputs
p(y) =

¢ otherwise

Then the domain of p = the range of @, . Again, this procedure is effective in x.
That is, define Y by y(x, y) = sg(ptq C(x,<(q)y>, ¥, q)) and then
p = Ayy(x,y). Smce for some €, Y = ¢, by the s-m-n theorem we may
take gtobe Ax S ! L (e.x). =
The usual naming of r.e. sets in the literature is:
W, = the domain of ¢,

We call x an r.e. index for W, .
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Now we can restate the halting problem (Theorem 15.2) in terms of r.e. sets.
Define:

K={x:9 )l }={x:xeW}

We know that K is not recursive. However, it isr.e.: It is the domain of v,
where Y(x) = pg C(x,<x>,(q)g, q). Thus, K is r.e. but not recursive.
Moreover, K is not r.e. (and hence not recursive), for if it were, then by
Theorem 3, K would be recursive. If, further, we are willing to countenance
nonconstructive methods of proof, we can show that there are infinitely many r.e.
sets which are not recursive: “Choose” any element a of K and KuU{a} will

be r.e. but not recursive (Exercise 2); now choose any element of K U {a} and
repeat the process, ... . Exercise 5 has examples of r.e. and non-r.e. sets that arise
more naturally.

C. The Projection Theorem

Our final characterization of recursive enumerability links it to expressibility in
terms of arithmetic conditions.

THEOREM 5 Aset A isr.e. iff there is some recursive predicate R such that
A={x:3yR(x,y)}.
Proof: = This direction is easy via the universal computation predicate.
& Given R, define a p.r. function y by y(x) = py[R(x, y)]. Then

y(x) | iff for some y, R(x, y) holds. So A =the domain of y, and by
Theorem 4 we are done. .

Exercises

For some of the exercises here you will need the new techniques of dovetailing or
obtaining a function effectively in the indices of others (see the proof of Theorem 4)

1. Prove that if A is recursive then both A and A arer.e.

2. a. Show thatifa € K, then K U {a} is r.e. but not recursive.
tb. Show that there is a set which is not r.e. and whose complement is also not
r.e., but don’t use simply a counting argument.

3. Show that if A is r.e. and can be enumerated in increasing order, then
A is recursive.

4. A is recursively enumerable without repetitions if there is some recursive
function f which is 1-1 and A =range of f. Prove thatif A isr.e. and
infinite then it can be recursively enumerated without repetitions.
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t5. Classify, where possible, the following sets as (i) recursive, (ii) recursively
enumerable, and /or (iii) having recursively enumerable complement.

{x: xiseven}

{ x: there is a run of exactly x 5’s in a row in the decimal expansion of 7 }

{ x: there is a run of at least x 5’s in a row in the decimal expansion of 7t }

{x: W, =0}

{ x: @ istotal } (Hint: See Exercise 16.10.)

Forafixedn, { x: W,= W _}

{ x: W, is infinite }

For arbitrary z € [0,1), {x: x=¢n, y> where y is the nth digit in

the decimal expansion of z}

50 o a0 o

6. Show that the r.e. sets are effectively closed under union and intersection. That is,
there are recursive functions f and g such that W, U W= Wi ) and

(X ’y
w,n Wy = Wg Are they effectively closed under complementation?

x.y°
Further Reading

An especially good development of computability based on the notion of an effective
enumeration is “Diophantine decision problems” by Julia Robinson. You might also enjoy
the seminal paper Post wrote on this subject, “Recursively enumerable sets of positive
integers and their decision problems”. For a further development of the subject see
Odifreddi’s Classical Recursion Theory and Soare’s Recursively Enumerable Sets and
Degrees.



18 Turing Machine Computable

= Partial Recursive
(Optional)

In Chapter 10 we referred to the Most Amazing Fact that all systems which have
been proposed as formalizations of the notion of computability have been shown
to be equivalent. In this chapter we will prove the equivalence of two of them.
Moreover, we will do it constructively: Given a definition of a partial recursive
function ¢, we will produce a Turing machine which calculates that function; and
given a Turing machine which calculates a function ¢, we will produce a partial
recursive definition of ¢. Nothing later in this text depends on this chapter.

A. Partial Recursive Implies Turing Machine Computable

In order to make the proof in this section go more smoothly we are going to show
something a bit stronger than the title of this section. We say that a Turing machine
that computes a function uses a one-way tape if at no point in any of its computa-
tions on any input does it go to the left of the first blank at the left of the input.

That is, the initial configuration for input (ny, ... , n) is

never goes to the left of here blank squares can be added here

{ {
+1 +1
Olnl 0...01nk
1

THEOREM 1 Every definition of a partial recursive function can be effectively
converted into a Turing machine that computes that function and which uses a one-
way tape and never halts in a nonstandard configuration on an input of the correct
number of variables.
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Proof:  First note that all the machines of Chapter 9.C use one-way tapes, and the
machines you defined as answers to the exercises in Chapter 9 can be modified to
run on a one-way tape if they don’t already.

Hence, we can conclude that the initial partial recursive functions (successor,
the projections (Exercise 9.2), zero) as well as the equality function (Exercise 9.6),
addition, and multiplication can all be computed on TM’s that use a one-way tape.
Moreover, for these total functions the machines always halt in standard configura-
tion. We now need to show that the class of functions computed by TM’ s that use
one-way tapes and never halt in a nonstandard configuration is closed under compo-
sition, fL-operator, and primitive recursion.

Composition = We showed this for functions of one variable in Chapter 9.C. Now
suppose that ¢, , ..., @ are functions of k variables, \ is a function of m
variables, and we have a machine for each which computes it using a one-way tape
and which never halts in a nonstandard configuration. We will describe the opera-
tion of a machine that computes the composition of these, y(¢;, ... , @,), and
leave to you the actual definition of the machine as a set of quadruples (no, we
don’t think it’s easy to do that, but it’s not very instructive either).

For input X = (n,, ..., n,), we begin with the tape configuration

p 1 k g
Oln1 *+1 0...0 1k 1, which we’ll call 1** 1. Here are the successive contents
of the tape.

L 0 1)?+1

2. 01" o000 1!

3. 015 00 0101®
We aren’t operating the machine Ty, on a badly configured tape here. What we are
doing is adding quadruples that allow for the simulation of the machine at the appro-
priate stage in the computation, and we know that the machine will be simulated
correctly because it never goes to the left of the first blank to the left of its input.

Similarly, we continue,
01"+ 000 191X +!
011000191+ 901
01" 000191 +1 g P2 +!

X+1

X+1 X+1

01"+ 0001117 1901925 * 001
015" 000191F +1 90 1%2F*1gg ... 00 19mD¥!

(X)+1

R A

0191 +1 501220+ g0 90 19m
10. 1Y[OIF) +1, 92+ 1, 0 () +1]

Note that if for some i the machine that calculates ¢,(X") does not halt,
then the composition machine does not halt on x’.
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The p-operator  Suppose we have a machine that computes a function ¢ that uses
a one-way tape and never halts in a nonstandard configuration. We will describe the
operation of a machine that computes [y [ @(X, y) = 0], the p-operator applied to
@, and leave to you to define the machine as a set of quadruples. Here are the
successive contents of the tape.

1 01F!
0" o1
01" 01019% 0o

Rl

Use the equality machine, Ty, to determine if ©(x,0) =0 by applying it to
the string beginning to the right of 1* *To10 (i.e., insert the appropriately
relabeled quadruples of T).

5. If equal, erase the tape and stop.

6. If not equal, erase the tape back to O 1"*101 andadd a1 to the right,
X+1

01 011.

7.0 1x+1 01n+1
8. 0 1;?+1 01n+1 Ol(p(;‘:’,n)ﬂ

9. 015 101" 0 19% W+ g
10. Use the equality machine, Ty, to determine if ¢(X,n)=0 by applying it to

X+1, n+l

the string beginning to the right of 0 1 01 0.

11. If equal, erase all but 1" and stop.
X+1, n+l

12. If not equal, erase the tape back to 0 1 01 and add a 1 to the right,
01° 71012, and repeat the process.

Primitive recursion This is difficult, so difficult that we’re tempted to leave it to
you. But there’s a way out. In Chapter 22.A we prove that the partial recursive
functions comprise the smallest class containing the zero function, the successor
function, the projections, addition, multiplication, and the characteristic function for
equality and which is closed under composition and the jt-operator. That’s just what
we need to complete the proof here. You can read that section with the background
you already have. n

Turing Machine Computable Implies Partial Recursive

THEOREM 2 If a Turing machine calculates a function ¢ then the set of quadruples

of the machine can be effectively converted into a partial recursive definition of ¢ .



SECTION B Turing Machine Computable Implies Partial Recursive 147

Proof: Let M be a Turing machine that calculates the function ¢. By coding
what the machine does at each step of its computation, we will be able to derive a
partial recursive definition of @.

First we assign the following numbers to the operations:

Delete the current symbol, if any 0
Write the symbol 1 1
Move one square to the right 2
Move one square to the left 3

Let the highest numbered state of M be n. The quadruples of M can be
seen as a function g from (states, symbols) to (operations, states). For example,
q,0 Rq, canbe written as g[(q;;0)]1=(R,q,) . If we assign the number j
to state q;, we can express this function numerically as

gl(x)g,(x)] if g is defined for this input
d(x) = .
47 otherwise

We’ll let you make this more formal, but it should be clear that d is (primitive)
recursive since it’s a finite table.

To code the tape descriptions, suppose that after ¢ steps in the computation on
input X" the machine M is in state g(t) and the symbol being observed is

0 if blank
0= 1 if the symbol is 1

And suppose that we have the following configuration:

blank from this point on blank from this point on

1 {
b | by ] By Bl s Ol egfe | ey |e,

q(t)

We should indicate that both s and ¢ depend on x’, but for the sake of legibility
we will suppress that until the end of the proof. And, as usual, we will notate that
b; or c; is blank with a 0. (Note that neither ¢, nor b can be 0 since they mark
the point beyond which the tape becomes blank.)

We may describe this configuration by coding up the contents of the tape to the
left and the right of the square being observed

b(t) = ¢bgsbys s byd

c(t) = Cegs Cpseevs Cp?
where these are O if the tape is blank in that direction.

On input X', the machine begins on a tape containing only 1 (see the
proof of Theorem 1 for notation). So (0)=0,s(0)=1, q(0)=1; we'll let
you write down what c¢(0) is. Thenatstept + 1, call a =d(<q(¢), s(£)>),
and we have gq(t +1)= (a); and one of the following cases:
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i. The machine moves right at this step, that is, (a)y =2

s(t+1)=(c(t),
b(t +1) = ¢s(t),by, by, ..., b
c(t+1)=<cy,..oscp

ii. The machine moves left, that is, (a), =3

s(t+1) = (b(t)),
b(t +1)=<by,....be
c(t+1)=<c¢s(t), ¢y, Csees €

iii. The machine writes or deletes, that s, (a), =0or 1

s(t+1)=(a)
b(t +1)=b(t)
c(t+1)=c(t)

We leave to you to confirm that b, ¢, q, and s are primitive recursive
functions (see Chapter 11.D.2 and D.7). Indeed, they are elementary.

To determine at stage t whether the machine has halted in a standard configur-
ation we need to know at most how many squares of tape have been used up to that
stage. Since at each stage the machine can add no more than one new square, an
upper bound is ¢(0) + t. Then at stage t the machine has halted in standard
configuration iff

d(<q(t),s(t)>) =47
b(t)=0
and
Vi< e+t [10(p)* 1 e(D] = 1Py, )1 e(D]]

This is a primitive recursive condition, indeed elementary; call its characteristic
function h. If the machine does halt in standard configuration then the output is
Ih(c(t)) . Remembering now that each of the functions we have defined depends
on X, we have

o(X)= Ih(c(X, ut [A(X,0)=1]))
Combining Theorems 1 and 2 we have the following.

COROLLARY 3 A function is TM computable
iff it is partial recursive
iff it is computable on a TM that uses a one-way tape and never halts in a
nonstandard configuration.

These computable correspondences allow us to translate facts about partial
recursive functions into facts about Turing machines. For example, from
Theorem 16.4 we can derive the following.
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COROLLARY 4 There is a universal Turing machine.

In Exercise 9.8 we defined the halting problem for Turing machines and
sketched a proof that it was not Turing machine computable. Now we can
conclude that directly from Corollary 15.3.

COROLLARY 5 (The Halting Problem for Turing Machines)
The halting problem for Turing machines is not Turing machine computable.
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19 Propositional Logic

A. Hilbert’s Program Revisited

Now that we have a better idea of what we might mean by “computable” or
“constructive”, let’s return to Hilbert’s ideas (Chapter 7).

Recall that Hilbert believed that completed infinities were not real in the sense
of a table or chair being real: they corresponded to nothing “in the world”. Infinite
collections, according to him, were ideal elements comparable to the square root
of —1 in algebra, and like the square root of —1 they could be employed to obtain
finitistic facts.

Of course, we can’t add just any fictions to our mathematics. Hilbert’s criteria
for adding ideal elements to a mathematical system were, in short, (1) they must not
lead to any contradictions, and (2) they must be fruitful. Clearly, infinite collections
were fruitful in providing foundations for analysis. Fruitful, that is, so long as they
didn’t lead to contradictions.

Hilbert believed that infinite collections were justified in mathematics and led
to no contradictions, but he didn’t want to build his mathematics on faith. He sought
to justify the use of infinite collections by proving they were consistent with finitistic
mathematics. And he realized that for such a proof to remove doubt about the suita-
bility of infinite collections, it should not use any infinitistic reasoning. His program
to justify his views, as distinct from his views about the nature of the finite and the
infinite, was to formalize mathematics as a logical system and, by constructive,
finitistic methods, show that no contradiction lay therein. He proposed to begin with
arithmetic, the natural numbers, for once he could axiomatize that subject he felt
confident about the rest.

In the following chapters we will present one particular axiomatization of
arithmetic. Perhaps contrary to your expectations, we won’t try to formalize all of
arithmetic but rather only a small part of it. Once we have studied the properties of
that formal system (as opposed to the properties of the natural numbers themselves),
we will find we have answers for Hilbert for any formalization of arithmetic that
contains even that small fragment.
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CHAPTER 19 Propositional Logic

Formal Systems

Perhaps you recall proving theorems in geometry in high school. You started with
some undefined notions, such as “line” and “point” and “lies on”. Then you had
some axioms such as, “Given any two points there is one and only one line on which
they both lie.” The axioms were all taken to be “intuitively obvious”, acceptable anc
unchallengeable. They were the first “truths” from which you were to derive all
others as theorems.

Here we will do the same, only our subject matter is arithmetic and we will be
much more careful. For example, in high school geometry you were probably not
told explicitly what methods of proof you were allowed to use.

We will choose a formal language for arithmetic, pick certain axioms, and
make explicit what constitutes a proof. The methods of proof, the formal language,
and certain of the axioms will be the logical part of the system, whereas the other
axioms will be specific to the subject matter of arithmetic. The Iogic we will
present will, we hope, be agreed to be suitable for studying arithmetic. We won’t
make any claims about its suitability for any other discipline.

In this chapter we begin by investigating the simplest part of the logic.

Propositional Logic
1. The formal language

Here we will formalize reasoning about mathematical statements as wholes: We will
not be concerned with the internal structure of such statements. For instance, we
might call p the statement “All numbers are even or odd” and q the statement
“Every number is either 0, or is 1 greater than some other number.” In this first
analysis p and q are simple: Their internal form won’t matter to us.

We may begin with whatever statements we choose, and then we may combine
them to form new statements using words such as “and”, “‘or”, “not”, “if...then...”.
For instance, “All numbers are even or odd and every number is either 0 or is 1
greater than some other number” ; or another example, “Not all numbers are even
or odd.” These words used to join statements are called connectives: They create
new statements from given ones. The English connectives are too vague and
informal for our purposes, so we will replace them by formal counterparts:

A will replace “and”, v replaces “or”, 1 replaces “not”, and — replaces

“if... then...” . Thus corresponding to our two examples we have pAq and p .
In a sense which we’ll make precise below, these four connectives will be the only
ones we’ll need.

Now we’re ready to define a formal language. In this definition and in the rest
of this chapter we will use unsubscripted, boldface capital Roman letters such as A
and B as metavariables to range over words in the language.
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The formal language of propositional logic

Variables: py,pys-.-sPps -
Connectives: A, V,17, =
Parentheses: (,)
Inductive definition of a well-formed-formula (wff) :
i. (py) is a wff.
ii. If A and B are wffs then so are (AAB), (AvB),(0A),and (A-B).
ili. A string of symbols is a wff iff it arises via applications of (i) and (ii).

It may seem obvious that this is a proper inductive definition and that there is
only one way to read each wff, but that requires a proof, which we give in the
appendix to this chapter.

Sometimes when we are discussing a wff we might informally use other kinds
of brackets or delete the outermost parentheses or parentheses around variables to
make it more readable. For example, we might informally write (((pl) —=(py)) >

Qlpp =@ as (p;—p,) = [N(; = p,)]. Remember that the latter is only
shorthand for the former.

A wff is a formal object and doesn’t assert anything until we say what state-
ments the variables in it stand for. For example, we might let p; stand for “2+2
=4” and p, stand for 2 divides 9”. Then p; = p, stands for “2+2 =4 —

2 divides 9”. We may read this colloquially as “If 2+2 =4, then 2 divides 9”, but
our goal is to replace the words “if...then...” by a formal connective in order to
avoid the imprecision of English. What we must do now is say exactly how we are
going to understand the formal connectives.

2. Truth and falsity: truth-tables for the connectives

What properties of statements will matter to us as mathematicians? Certainly their
most important property is that they are true or false, though not both. They have
many other properties: their subject matter, how they can be verified, and so on. But
as mathematicians let us agree that the only property we’ll concern ourselves with is
their truth or falsity—no more. So a proposition will be a mathematical statement
which we take to be true or false, but not both.

From simple propositions about arithmetic we may create compound ones
using our connectives. Then the only properties of these with which we’ll be
concerned are their truth-values and the connectives appearing in them. So to
formalize our understanding of the connectives we only need to decide under
what conditions a compound proposition will be true or false.

The formalization of “not”, called negation, is easy. If A is true, then TA
should be false; if A is false, then 1A should be true. In tabular form, letting “T”
stand for “true”, and “F” stand for “false”, we have the truth-table for negation :

A | 1A
T F
F T
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Similarly, the formalization of “and”, which we call conjunction, is easy to
agree on. When is A AB true? Exactly when both A and B are true. So its truth-

table is:
A | B | AAB
T T T
T F F
F T F
F F F

For the formalization of “or”, which we call disjunction, we have two choices.
We can say that A vB is true if either is true, including the possibility that both are
true, called inclusive or. Or we can say that A v B is true if either, but not both, is
true, called exclusive or. It’s the former that is generally agreed upon in
mathematics, and it has the truth-table:

A | B | AVB
T T T
T F T
F LT T
F | F F

The connective that arouses most debate is “if...then...”, the formalization of
which is called the conditional. Given A— B, if the antecedent, A, is true, then the
conditional should be true if and only if the consequent, B, is true, for from truths
we can only conclude truths, not falsehoods. (If that seems puzzling in an example
such as “If dogs are mammals, then 2+2 = 4,” remember that we are concerned only
with the truth or falsity of the antecedent and consequent, not their subject matter. In
any case, we said we are designing this logic to reason about mathematics, not dogs.)

But what if the antecedent is false? For example, consider “If m and n are
odd natural numbers, then m + n is an even number.” We're sure you’ll agree this
is true. In that case, any time we substitute numbers for the variables it must come
out true. In particular, both “If 4 and 8 are odd natural numbers, then 4+8 is an even
number” and “If 4 and 7 are odd natural numbers, then 4+7 is an even number”
must be true. In both of these the antecedent is false: in the first the consequent is
true; in the second the consequent is false. So our truth-table must be:

A | B | ASB
T[T T
T | F F
F LT T
F | F T

Our formalization of “if...then...” allows us to deal with cases in which the
“antecedent does not apply” by treating them as vacuously true.
We said earlier that these four connectives suffice to do logic, at least on the
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assumption that the only properties of propositions that are of interest to us are their
truth-values. The reason is that any other connective that depends only on the truth-
values of the constituent propositions can be defined in terms of these connectives.
For example, suppose we want to formalize exclusive “or”. We can do that with

(A vB)A1(A AB) since that is true iff exactly one of A, B is true. A more
important connective which we can define is the formalization of “if and only if”:
(A—=B)AB—A), which we abbreviate as A«<»B . A fuller discussion of defina-
bility of connectives and the entire subject of propositional logic can be found in
Epstein, 1990.

3. Validity

Consider the wff 1(p; Ap;). No matter what proposition we let p; stand for, this is
going to be evaluated as true, as you can check. And there are many other such wifs
that are always evaluated as true, for example, 17p; =p; , P,vIp,. Wecalla
formal wff valid or a tautology if it is always evaluated as true regardless of which
propositions the variables stand for: Any proposition of that form will be evaluated
as true due only to its form. Not all wffs are valid; for example, p; = p, is not

valid because p; may be a true proposition and p, a false one, yielding p; = p,
false. We are especially interested in valid propositions because they are the ones
we are justified in using to derive theorems.

Decidability of Validity
1. Checking for validity

After you check a few wffs for validity (Exercise 1) it may seem obvious that we can
effectively decide whether any given wif is valid or not. Let’s investigate that more
carefully.

What does the procedure involve? We have to check that no matter what
propositions are assigned to the variables the evaluation is always T. But in
propositional logic a proposition is reduced to just its truth-value. Thus, all we have
to do is look at all the ways to assign T or F to the variables appearing in the wff and
check that each assignment yields T. In other words, we make up a table. For
example, consider the wif 1(p; = p,) = (p; = p,). We have the following table:

P, | P, | ®2Py) | 7@,5py) | P, 20 ,—p))

T T T F T
T F F T F
F T T F T
F F T F T

Just one line of the table, one assignment of truth-values, is evaluated as F. But thus
ifp; is“4+4=8" and p, is “2 +2 =15, then V(p; =p,) = (p; = p,) is false.
Hence that wff is not valid: It’s not always true due only to its form.



158

CHAPTER 19 Propositional Logic

Here is another way to check validity that is often easier for conditionals. We
attempt to falsify the wff; that is, we try to come up with an assignment of truth-
values that makes the evaluation come out F. If we can, it’s not valid; otherwise it is.
For instance, A — B can be falsified iff there is an assignment that makes both A true
and B false. For example,

PAp,) = (0,0p)

is false iff T F
which is iff Pli\pz p 2 p1
are F T F
and that is the falsifying assignment. Hence the wif is not valid.
Similarly,
((pyAP,)=Py) = (0,—2@,—p;)
is false iff T F
are T F
iff Py P
are T F

Butif p, is T, p, is T, and p, is F, then (p; Ap,) —>p; is F, so there is no way to
falsify the wff; hence it is valid.

2. Decidability

If the procedure for checking validity of wffs is entirely mechanical, as it appears to
be, then we ought to be able to express it as a recursive function.

We say that a class C of questions each of which can be answered as “yes” or
“no” is decidable if we can number C (see pp. 67-68) and the resulting set of Godel
numbers representing problems for which the answer is “yes” is computable; that is,
there is a computable procedure to determine whether a number representing a
question has answer “yes”. (If the problems have three or more possible answers, we
have to decide how to reduce them to yes-no questions.) According to Church’s
Thesis, then, a class of questions is decidable if the set of Godel numbers of the
problems with answer “yes” is recursive. The decision problem for the class Cis
the problem whether C is decidable or not. We say that the decision problem is
solvable if C is decidable. In that case, a representation of C via G6del numbering
and the recursive presentation of the set of problems with answer “yes” are together a
decision procedure for C, though often an informal description of how to do that is
called the decision procedure. If we want to stress that we’ve identified decidable
with presentation as a recursive set , we say the problem is recursively decidable
and we have a recursive decision procedure. Informally, we sometimes say a
decision problem is recursive when we mean recursively decidable.
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We gave an informal decision procedure for the class of questions “Is the wff
A of our formal language for propositional logic valid?”, so we should be able to
produce a formal decision procedure. We will do that now, though it would be better
for you to do it yourself, since you already know how to do Gédel numberings and
derive information recursively from them: That was what Chapter 16 and the
universal computation predicate was all about. If possible, you should read only the
outline of this, come up with your own numbering, and fill in the details yourself.

Gddel numbering of wifs

We present a function from wffs to natural numbers, notated [A], read
“the G6del number of A”.
First, [(pp] = <i>
If [A]l=a and [B] =b,then: [(1A)] =<¢a,0>
[(AAB)=<a,b,0»
[(AvB)]=<a,b,0,0>
[(A-B)]=<¢a,b,0,0,0>

You can show that this numbering fulfills the conditions for a G6del number-
ing, (1)—=(3) of Chapter 8.C (p. 68). For our induction procedures, we need to note
that if [A] = a, then the G6del number of any wff that is a part of A is less than a.

We could if we wish give a numbering such that every natural number is
the G6del number of some wff, but that complicates matters and isn’t necessary:
We can identify which numbers are Gédel numbers of wffs.

a. The set of Godel numbers of wffs is decidable. That is, there is a recursive
function h such that

1 if for some A, [A]=n
h(n)= .
0 otherwise

Proof: We define h by induction on n.
First, h(0)=0.
Now given any n > 0, it falls into one of the following cases:
Ih(n)=1 and so n codes (i); then
if n=<iy,set h(n)=1;
if n#<iy,set h(n)=0.
Ih(n)=2 and so n codes (i,j); then
ifn=<i,j> and h(i)=1and j =0, set h(n)=1(since i< n,
h(i) is defined);
otherwise, set h(n)=0.
Ih(n)=3 andso n codes (i,j,k); then
ifn=<i,j,ky and h(i)=h(j)=1landk =0, set h(n)=1;
otherwise, set h(n)=0.
You should be able to complete the definition. =
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Now we’ll set out the decision procedure, which is just the truth-table method
described above translated into arithmetic functions on the Gédel numbers of wifs.

b. First we show that we can list the indices of the propositional variables
appearing in a wff.

There is a recursive function f such that if n = [A] and Py Py
are the propositional variables appearing in A, then f(n)=<1j, ..., 1>}
otherwise f(n)=0.

Proof: Here is a recursive definition of f.
If Ih(n)<1
and n =<i> then f(n)=<iy;
otherwise f(n)=0.
If Ih(n)=2
and h(n)=h((n)))=1 [i.e., n and (n); are G6del numbers of wifs]
then f(n)=1f((n)y);
otherwise f(n)=0.
If 1h(n)=3
and n, (1), and (1), are Godel numbers of wffs, then f(n) =<1, ..., i),
where
I =WZ<f(n)y) - f((n)y) [(ImS IA(f((n)y)) -1 and
2= (FI(MyD),,) or Gm<IA(F(n)) -1 and z=(F[(m), 1))
(the bounds are there just to convince you that an infinite search isn’t
necessary), and for j > 1 = as for 1| except z> 11,
otherwise f(n)=0.

» Jii

¢. Now we identify F with O, and T with 1 and show that we can list all
possible assignments of truth-values to the variables appearing in a wff.

There is a recursive function g such that if n = [A] and Pij s Py are
the propositional variables appearing in A, then g(n)=<x,, ..., X,r>, Where
x; = (the sequence of 0’s and 1’s of length r representing i in binary notation).

You can make this more explicit if you wish.

d. There is a recursive function a(n, m) such that if n=[A] and m
represents an assignment of T’ s and F’s to those variables appearing in A in terms
of 0’sand I’s, then a(n, m)=1 iff A is evaluated T by the truth-tables for that
assignment.

Proof: We give arecursive definition of a(n, m).

If n is not the Gddel number of some wff, that is h(n) =0, or if
m# (g(n)), for some k < Ih(g(n)), then a(n, m)=0.

Otherwise, for some A, [Al=n and f(n)=<b,, ..., by =the list of
indices of variablesin A , and m=¢ Ji» -+ + Jp>» where each j,_isOor 1.

If Ih(n)< 1, thenn =¢p>, and p = j, some k, so a(n, m)=ji.
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If Ih(n) =2, then a((n),, m) =i is already defined, so a(n,m)=1 = .

If In(n) =3, 4, or 5, then a((n)y, m) =1 and a((n), m)=j are already
defined, so if Ih(n)=3, a(n, m)=1i-j; if Ih(n)=4, a(n, m)=max(i,j);
if In(n)=5, a(n, m)=sg((1 -1)+j). =

e. Finally to check whether n is the number of a valid wff we need to know if
there is an evaluation that comes out false. So we check whether a(n, m)=0
for some m=(g(n)),, where k < 2M(g(mM) -1 The recursive function that
will do that is:
Ih(gn)-1)

k=2
e(n)= I‘[k=l a(n, (g(n))y)

And A is valid iff [A]=n and e(n)=1.

This decision procedure for validity though effective is practically unusable for
wifs containing, say, 40 or more propositional variables, for we would have to check
some 24 assignments of 0’s and 1’s. There are many shortcuts we can take, but to
date no one has come up with a method of checking validity that is substantially
faster and could be run on a computer in less than (roughly) exponential time relative
to the number of propositional variables appearing in the wff. It has been conjec-
tured that it is not possible to find a faster decision method. This is of significance
because many combinatorial problems can be shown to have the same complexity
as the decision procedure for validity of the classical propositional calculus (see
Further Reading at the end of the chapter).

Axiomatizing Propositional Logic

There is another way we can approach the valid wffs: We can axiomatize them.
Axiomatize logic? If we can try to axiomatize the “truths” of geometry or of
arithmetic, why can’t we try to axiomatize the “truths” of logic?

We would like to find some small number of valid wffs that we can take as our
basic logical principles and then prove all the other valid wffs. This we can do. But
instead of taking specific wifs as axioms we will use forms of wffs. A scheme
(plural schema) is a wff with the variables replaced by our metavariables, A, B, C,
... . For example, (p; Ap,) = Py is a valid wff; (AAB) = A is a valid scheme:
every instance of this is valid, no matter what wffs A and B stand for. Schema are
the skeletal forms of wffs, as wffs are the skeletal forms of propositions. When we
write down a scheme as an axiom we are to be understood as taking every instance of
that scheme, that is, every wff which has that form.

The only rule that we will use is modus ponens: from A and A— B conclude
B. This is a valid method of proof, for whenever both A and A — B are true, so
then is B; and thus whenever both A and A— B are valid, sois B.

Our axiom system for propositional logic is the following, where we delete the
outermost parentheses for legibility.
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The Classical Propositional Logic (PC)

Every instance of each of the following schema is an axiom:
1. TA->(A—>B)

.B>(A-B

. (A-=>B)=>((WA—>B)-B)

L. (A->B-20))2>((A=B)>A-0)

A->B->(AAB))

(AAB)—> A

(AAB)—B

A->(AvB)

B—>(AVvB)

10. ((WAvB)A7A)—>B

Rule: From A and A—B conclude B (modus ponens) .

R R S

A proof of B in this axiom system is a sequence By, ... , B, = B , where each
B, is either an axiom or is derived from two earlier wifs in the sequence, B, and B,
with j, k < i, by the rule of modus ponens, that is B_is Bj —B,; (here the B,’s are
metavariables ranging over wffs). This corresponds to how we would prove some-
thing informally using just this one rule of proof. We say that A is a theorem of this
axiom system if it has a proof. In that case we write “FA”. Classical propositional
logic is also called the classical propositional calculus, abbreviated PC .

Let’s see how this system works by proving two theorems. The sequence of
wffs constitute the proof; the comments to the right are there to help you see why
we’re justified in taking each wff in the sequence.

Fpi—py

Proof:

L. Fp;—=>{(p—= ppP— py) an instance of axiom 2
2. Fp;—=(p—2pp an instance of axiom 2

3. F(p;=>Up;= P2 P2 (P2 (P~ P)2(P 2 Py
an instance of axiom 4
4. =(p;=>(p;—= p)—>(p;—> py) by modus ponens using wifs 1 and 3
5. Fpi—py by modus ponens using wffs 2 and 4 "

F(piATP)D,

Proof:

L (p;ATPP— Py : axiom 6

2. (pyATPY Yy axiom 7

3. Op;2(p—2 p)) =2 [(pAPY =2 (0P (p— Py)) ] axiom2

4. 17p;=>(p;—py) axiom 1

5. (p1APP=20p; =2 (P2 py) modus ponens using wffs 3 and 4
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6. [((pyATp)=2C P2 (P P =
[((pyATP)—=>71pY = (P AT P> (P = Py))] axiom 4
7. [((pyATppP—1py) = (py AP (P DY)
modus ponens using wffs 5 and 6

8. (p; AT pl)—)( pP1— Dy) modus ponens using wffs 2 and 7
9. [(p1 AP =2(p; = P 2 [{(pATPY = P = (P AT P D]
axiom 4
10. ((pyATpy)— pyp) = ((pyA P> P,)  modus ponens, wffs 8 and 9
11. (p;AP)— P, modus ponens, wffs l and 10 m

The last example is important. If we could prove a proposition and its
negation, then by using Axiom 5 we could prove their conjunction. Hence, by this
example, we could prove any proposition, for p, can stand for any one we like (in
terms of schema, we can establish that every instance of (A A7A) =B is a theorem).
That is, in classical propositional logic, if we have a contradiction in our system
then we can prove all other propositions.

Now try your hand at proving some formal theorems in Exercise 4.

Each of the axiom schema is valid, and since the rule is valid, every theorem
must be valid (Exercise 3). But why choose these and not other axiom schema?
One reason is that each is “intuitively obvious”. But more, with these we can give
a conceptually clear proof that every valid wif is a theorem and hence establish the
following.

THEOREM 1 (Completeness of Classical Propositional Logic)
A is avalid wff iff FA.

That conceptually clear proof can be found in Chapter II of Epstein, 1990.
But it has a drawback: It is nonconstructive. In an appendix to this chapter we’ve
included a more complicated constructive proof.

Now we can see why our one rule of proof is sufficient: We don’t need any
others to get all valid wifs. Moreover, we can simulate other rules. For example,
the rule “from A—B and A — 1B conclude 1A ” always leads from true wffs to
true wffs. And we can derive that via the theorems, for if we have that A—B and
1A — B are theorems, then we can produce the following proof of B:

(A = B) = ((1A = B)—>B) is an axiom;
insert here a proof of A —B;

conclude by modus ponens (1A = B)—B;
insert here a proof of 1A = B;

conclude by modus ponens B.

And to derive the rule of modus tollens,from 1B and A = B conclude 1A , we use
the fact that 1B = ((A = B)—1A) is a theorem.
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Proving As a Computable Procedure

After reading the two proofs we gave in this axiom system and trying to prove some
theorems (Exercise 4), you may have decided that to prove that a particular valid wff
is a theorem takes quite a bit of insight and creativity. But really it’s completely
mechanical. All we have to do is start with our axioms and list all possible proofs
until we get that particular wff as the final one in a proof sequence. Mechanical?
Can we come up with a recursive procedure? Yes, using our Gédel numbering of
wifs, we can show that we can recursively list all the theorems. Here’s how.

a. First we show that we can recognize whether a wff has the schematic form which
makes it an axiom. For instance,

a(n)= 1 if n =[A] and A is an instance of axiom 1
! 0 otherwise
is recursive. And more generally,

al(n) = {

is recursive.

1 if n =[A] and A is an instance of an axiom
0 otherwise

b. Then we note that we can recognize when a number codes a sequence of wffs the
following function is recursive:
1 if n =<(H)0, ,(H)Ih(n)_l) and each (H)i ,i< 1h(n),
s(n) = is the G6del number of a wff

0 otherwise

¢. Then we can determine whether a number codes a sequence of wffs which is a
proof sequence. That is, the following function is recursive:

1 if some n =«(n)g,..., (n)lh(n)_ 1> and for i < Ih(n),
prf (1) = (n), is the Godel number of a wif, say B;, and either B; is
an axiom, or for some j, k< i B; is By & B;
0 otherwise

Thus the set of proofs in our axiom system is recursively decidable.

d. Finally, using part (c), we can define a recursive function t that lists the G&del
numbers of theorems. That is: if t (n) = m, then m=[[A] and - A ; and if FA

and [A] = m, then some n, t(n)=m. All we have to do to calculate ¢ (n) is
search for the n'h largest number a such that prf(a) =1 and take ¢ (n)=(a) 5 _ 1 -
You’re asked to fill in the details in Exercise 6 .

You may well ask why we should go to this trouble since we know that A is
a theorem iff A is valid, so we could list the theorems by listing the valid wffs for
which we already have a recursive decision procedure. The reason is that we wanted
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to demonstrate that proving in a formal system is a computable (recursive) process.
There will be times when there may be no decision procedure, or we may know of
none, and the only way we can approach the “truths” of the subject we’re axioma-
tizing is by proving theorems. In those cases it’s important to know that we can list
the theorems recursively. Note that our recursive procedure for listing theorems is
not a decision procedure for theoremhood. In the language of Chapter 17, it only
establishes that the set of (Gddel numbers of) theorems is recursively enumerable.

Note also that this recursive procedure for listing theorems in terms of their
proofs doesn’t distinguish between “interesting” theorems and uninteresting ones,
nor does it distinguish between especially perspicuous proofs and tediously involved
ones. The theory of mechanical theorem proving is a subject in itself, which you can
read about in Chang and Lee.

Appendix (Optional)
1. The Unique Readability Theorem
THEOREM 2 There is one and only one way to read each wif.

Proof: If A is a wff, then there is at least one way to read it since it has a
definition. To show that there is only one way to read it, we’ll establish that no
initial segment of a wff is a wff.

The idea is that if we begin at the left of a wff and subtract 1 for every left
parenthesis and add 1 for every right parenthesis then we will sum up to O only at
the end of the wff. More precisely, define a function f from any concatenation
of primitive symbols o, ... o, of our formal language to the integers by

f(M)=0; f(A)=0; f(v)=0; f(=)=0; f(p;)=0;

f(O)=-1; f())=+1;

f(o,...0)=1f(c)+ - +f(c,)
To show that for every wff A, f(A) =0 we proceed by induction on the number of
symbols in A. The wffs with fewest symbols are (p;),i=0, 1,2, ..., and for them
it is immediate. So now suppose it is true for all wffs with fewer symbols than A.
We then have four cases, which we cannot yet assume are distinct cases:

Casei. A arises as (1B). Then B has fewer symbols than A, so by induction
f(B)=0, and so f(A)=0.

Case ii. A arises as (BAC). Then B and C have fewer symbols than A, so
f(B)=f(C)=0 and hence f(A)=0.

Case iii. A arisesas (BvC)

imilarly.
Case iv. A arises as (B—C) } are done similarly

Now we show that, if reading from the left . is an initial segment of a wff
other than the entire wif itself, then f(o)) < 0 ; and if a is a final segment other than
the entire wif itself, then f(a) > 0. So no proper initial or final segment of a wif is
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a wff. To establish this we again use induction on the number of occurrences of
connectives in the wff. We’ll let you establish the base case for atomic wffs.

Now suppose the lemma is true for any wif that contains < n occurrences of
the connectives. If A contains n+ 1 occurrences, then it must have (at least) one of
the forms given in the definition of wffs. If A has the form (B AC), then an initial
segment of A must have one of the following forms:

i (
ii. @ where P is an initial segment of B
iii. (BAa

iv. (B Ay where vy is an initial segment of C
For (ii), f(‘()=-1 and by induction f(B) <0, so f(‘(B’)<0. We leave (i), (iii),
and (iv) to you. The other three cases follow similarly.

Now to establish the theorem, we proceed through a number of cases by way
of contradiction. Suppose we have a wff that could be read as both (A A B) and
(C—->D). Then AA B) must be the same as C— D). Hence, either A is an initia
part of C, or C is an initial part of A. Butthen f(A)<O0or f(C)<0, whichis a
contradiction, as we proved above that f(A) = f(C) =0. Hence, A is C. But then
we have that A B) is the same as — D), which is a contradiction.

The other cases are similar, and we leave them to you. |

For the purpose of using induction on wffs, we may now define inductively the
length of a wif.
The length of (p,)is 1.
If the length of A is n, then the length of (MA)isn + 1.
If the maximum of the lengths of A and B is n, then each of
(A AB), (AvB), and (A - B) has length n + 1.

2. The Completeness Theorem for Classical Propositional Logic

To prove the Completeness Theorem we shall have to make some definitions and
prove two lemmas. We will leave many details to you.

We first define A to be a consequence of a finite set of wffs T" if there is a
sequence of wffs B;, ..., B, = A such that each B, is either an axiom, is in I", or is
derived from two earlier wffs in the sequence, B; and By with j, k <i, by the rule
of modus ponens. In that case we write “T' A” .

We leave to you to prove (a) @+ A iff A is atheorem; (b)if A € T then
THA; (c)if AisatheoremthenTHA ; and (d)if THA andT’THA —B , then
I'tB.

Lemma 3 (The Deduction Theorem) TU{A}-B iff TFA—>B.

Proof: The proof from right to left is immediate. So suppose there is a proof of B
from ' U{A} , namely, By, ..., B, = B. We will show by induction on i that for
each i, ' A—B, . Either B, is an axiom, or is in T, or is A itself. In the first two
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cases, the result follows by using axiom scheme 2. For the latter, you can modify
our proof in Section E that =p; — p, to show that FA—>A .

Now suppose that for all kK < i, FA—B, . If B, is an axiom, or is in T, or is
A we are done, as above. The only other case is when B, is a consequence by modus
ponens of B and Bj where Bj ,isB_ — B, and m, j < i. But then by induction
we have 'FA— (B, — B))and ' B, so by axiom scheme 4 we can conclude
that T-A—B; . =

Formally an assignment of truth-values to propositional variables is a function
vi{py>Py:... } = {T,F}. The Unique Readability Theorem justifies that every .
assignment can be extended in a unique way to all wffs via the truth-tables.

We will use the metavariables g, q, , ... to stand for propositional variables.

Lemma 4 (Kalmdr, 1935) Let C be any wif and q,, ..., q,, the propositional
variables appearing in it. Let v be any valuation. Define, for i < n,

q;, if v(g)=T
aq; if v(q;)=F

anddefineI'={Q,, ..., Q,}. Then i If v(C)=T,then I'-C.
ii. If v(C)=F,then THIC.

i =

Proof: In this proof there are several schema which must be shown to be schema
of theorems. We will highlight each by an * and leave them for you to prove from
the axioms with the aid of the Deduction Theorem.

We proceed by induction on the length of C. If C is (p;) , then the proof
devolves into showing that - p;—p; and - Ip;—p;, which follow as in Section
E above. Now suppose the lemma is true for all wffs of length < n and C has
length n + 1. We have four cases:

Case i. Cis 1A . If v(C) =T, then v(A)=F. Hence by induction I -1A as
desired. If v(C)=F, then v(A)=T,soI'FA. But *- A—177A, hence
T'F17A as desired.

Caseii. CisAAB. If v(C)=T,then v(A)=v(B)=T. SoTHFA andT'+ B,
and hence by axiom 5, '+ A AB. If v(C)=F, then either v(A)=F or
v(B) =F. Suppose v(A)=F. ThenT I 1A. Since *I (D —>E)—
(OE—1D), via axiom 6 we have - 1A = 1(AAB)and so TH1(A AB).
If v(B) =F the argument is the same except we use axiom 7.

Caseiii. Cis AvB. If v(C)=T,then v(A)=Torv(B)=T. If v(A)=T then
T'+ A, so by axiom 8 we have I'+ A vB, and similarly if v(B)=T. If
v(C)=F then v(A)=F and v(B)=F,soT'’1A and ' 1B . Since
*F1A—=>(B—>71(AVvB)) wehave I'-11C.

Caseiv.CisA—=B. If v(C)=T,then v(A)=For v(B)=T. If v(A)=F
then I'+ 1A and so by axiom 1 we have THFA—=B. If v(B)=T then use
axiom 2. Finally, if v(C)=F then v(A)=T and v(B)=F. SoTFHA
and T+ 7B and hence since *-FA—->("B—=1(A—B)), wehave I'-1C. =
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THEOREM 5 (Completeness of Classical Propositional Logic) A is a valid wff iff FA .

Proof: We remarked earlier that if A is a theorem then A is valid (see Exercise 3
below). To establish the converse, suppose A is validand g, ... , g, are the
propositional variables appearing in A . For every assignment v, v(A)=T. So by
Lemma 4, for any collection Q;, . . ., Q,, where for each i Q; is either g; or 1g;,
{Qq,...,Q,}FA. Hence by the Deduction Theorem, for any such collection
{Q,..,Qu_1}FQ, = A . Andso {Qq,...,Q,_;}Fg, A and
{Qq....,Q,_1}F7q, = A. Hence via axiom 3, for any Qy, ..., Q, _; we have

{Qq,...,Q,_1}FA. Repeating this argument n— 1 times we get - A (but
notice that the i-th step of the argument really embodies 2/ formal derivations.) ]
Exercises

1. Write out the truth-tables for the following formulas, and check whether each is
valid. You can write boldface letters by putting a squiggle under the letter.

a. p;—>(pP,—py)

[P (@, 2py)] = [(p; 2 p) > (2 py)]
. [ —=p)Ap] = p,

[P AP AP] = D,

. [((P; AP P3) VvV Pyl = (P, VPy)
[(p1APY VP © (P APy V(P ADPY]

2. Prove that if A is a theorem, then A has arbitrarily many proofs.

a0 o

- o

3. a. Prove that each axiom scheme is valid.
b. Prove that if A is a theorem, then A is valid.
(Hint: Induct on the number of steps in a proof.)

T4. Prove the following wffs of propositional logic using our axiom system:
a. (lp; = p1)—=p; (Hint: Use a wif we proved earlier.)
b. 77p;—=p; (Hint: Use part (a). )

5. Explain why the following rules can be replaced by derivations in our axiom
system.
Adjunction: from A and B conclude AAB
Distribution: from (A vB) and (A v C) conclude Av(BAC)

6. Fill in the details in the proof in Section F that we can recursively list all theorems
of propositional logic. That is, give recursive definitions of the functions a,, a,
s, prf,and t.

Further Reading

For a comprehensive introduction to propositional logics, see Epstein’s Propositional
Logics. Garey and Johnson’s Computers and Intractability is a thorough and quite
readable textbook on the question of the complexity of the decision problem for the validity
of propositional wifs. For a short introduction to the subject, see Book’s review of that.



20 An Overview of First-Order
Logic and Godel’s Theorems

Let’s review what we’ve done and see where we’re going. We were concerned
about the use of infinitistic methods in mathematics. We looked at Hilbert’s analysis
and decided that we’d investigate whether the use of infinite sets could be justified
by proving them consistent with ordinary finitistic mathematics. Any such proof,
we agreed, would have to be finitistic itself if it weren’t to beg the question.

So the first thing we did was see what we meant by “finitistic methods”. We
formalized the notion of computable function as being Turing machine computable
and then saw that this notion was equivalent to being partial recursive. After a brief
discussion, we adopted (at least as a working hypothesis) Church’s Thesis that
indeed the formalization was apt.

Then we turned to an analysis of the notion of proof. We presented the idea of
a formal system and developed propositional logic. We explained how to connect
our analysis of computable functions with finitistic methods in non-numerical
situations by using Gédel numberings and the notion of decidability. As an example,
we showed that the propositional logic we adopted was decidable and that we could
view proving theorems in the formal system as a machine represented by a comput-
able function.

Now it’s time to see whether we can construct a formal system which is power-
ful enough to formalize much of arithmetic and yet which we can prove is consistent
by finitistic means. Not to hide anything from you, the answer will be “No.”

The fundamental idea is that for any formal system we may Godel number the
wffs and translate assertions about the system, such as “this wff is a theorem” or
“the system is consistent” into assertions about the natural numbers. Then if our
system can formalize even a small part of arithmetic we will be able to translate
those statements back into the system itself. Thus, via our Godel numberings we
will be able to talk about the system within the system itself. Self-reference and a
variation on the liar paradox will follow.

169
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CHAPTER 20 An Overview of First-Order Logic

This is a long project which takes up the next four chapters. Since it’s easy to
lose your way, we’ll outline the steps here.

1. The first step we need to take is to decide on a formal language for arithmetic.
What will be the form of the propositions about the natural numbers for which the
propositional variables will stand?

To begin, we will certainly want symbols for addition and multiplication: +
and - . And we’ll need symbols for equality, =, and for zero, 0. More, we need
symbols for every natural number. The simplest way to do that is to have a symbol
for the successor function: “. Using that we can write a numeral for any natural
number in unary notation, for example, 0°*"” would be a numeral for 4 . We’ll
abbreviate the numerals in shorthand using boldface italic: thus, 4 means 0”""".

‘What other functions will we want to have special symbols for? One of our
goals is to come up with a system that is as simple as possible so that when we claim
it is consistent we will have some confidence we are right. We don’t want to build
into our system more than we need.

We can already make up polynomials; for example, using x,y , z as
variables for natural numbers, we can write the polynomial x> + y2 + 23 as
(xx)+F-y)+({z-2z)-2z). From our experience with the primitive recursive
functions, we know that starting with these functions and the projections, which
we’ll get for free from the logical notation, we can get much more complicated
functions. All we need is that various operations on the functions are definable.

2. But what do we mean when we say we can “get” other functions from these?
In just the same way as for the formal system of propositional logic, proving will be
a computable procedure for the formal system of arithmetic. Indeed, that is an
essential characteristic of proving. So we can view our formal system as a way to
calculate functions if we know how to interpret the symbols, much as we interpreted
Turing machine calculations as functions.

We will say (roughly) that a total function f(x, ... , X; ) is representable
if there is some expression in the formal language, say A, which uses variables

Xy, ... » Xy » X, 1 Such that for any numbers m, ... , m; and n, we have
f(m,, ..., m)=n iff we can prove in our formal system A(m,, ..., m;,n)
and we can’t prove A(m,, ..., m,,j) for any other number j. Since from a

contradiction we can prove anything, this definition will be useful only if our system
is consistent. In that case, any function that is representable will be computable
(recursive): to find the value on input m,, ... , m,_ start searching through the list of
theorems until you find one of the form A(m,, ..., my,n). Calculation in terms

of proving in a formal system was one of the first analyses put forward to character-
ize computability.

If we take as axioms the inductive definitions of addition and multiplication
and ones that say that successor is a 1-1 function whose range is everything except
zero, which altogether we call axiom system @, then we’ll be able to establish that
all the initial recursive functions are representable and the representable functions are
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closed under composition and the ft-operator. If we can show that they are also
closed under primitive recursion, then we’ll have that all the recursive functions are
representable and thus have more than ample means to translate the numerical
versions of assertions about our system back into the system itself.

In order to show that the representable functions are closed under primitive
recursion, we take a slight detour through number theory to develop new coding and
uncoding functions that don’t depend on exponentiation. Thus we will prove in
Chapter 22 that a function is representable in our formal system iff it is recursive,
another characterization of the class of recursive functions.

3. Before we can even talk about representability of functions, however, we have to
set up the formal language and the axioms and proof methods of our formal system
of arithmetic. That’s what we do in Chapter 21, but doing that will make a lot more
sense if you keep in mind where we’re going: we want to get a system just strong
enough to be able to represent the recursive functions.

The only part of that system we haven’t mentioned is that we need some way to
say “for every” and *there exists”. In Chapter 21 we discuss these quantifiers and
explain that we’ll only quantify over elements; for example, “for every x there is a
y such that x + y = x.” We won’t need to quantify over sets of elements, as in
“Every nonempty set of numbers has a least element.” Quantification over elements
is called first-order quantification, as opposed to quantification over sets, which is
called second-order, and the logical tools we will use are called first-order.

4. Because the recursive functions are representable in the formal system Q,
we will be able to show that the set of theorems of Q is undecidable. Roughly,
here’s how.

We have that the recursive sets are representable. So if we can diagonalize the
representable sets, then we know the resulting set won’t be recursive. To diagonalize
the representable sets we need only to be able to recognize whether a wff has a
particular form, namely, it has to have a variable in it for which we can substitute
numerals. This we can do recursively in terms of the Gddel numbering; say these
formulas are A, A,, ... . Then on the assumption that @ is consistent, if a set is
represented by some formula there must be some m for which itis {n : A () is
a theorem of @ }. The diagonalization of these setsis S = {m: A (m)is not a
theorem of @ }, which is not representable and hence not recursive. But if Sisn’t
recursive, it can only be because the set of theorems of @ (via the Godel numbering)
is not recursive.

Thus, the set of theorems of our formal system is not recursively decidable. And
this will be equally true for any formal axiomatic system that contains Q as long as
it doesn’t contain a contradiction, since all we’re using is that we can get the recur-
sive functions representable in the system. This is what we establish in Chapter 23.
On the assumption of Church’s Thesis and that the formal system we’ve set up
contains no contradiction, there’s no computable procedure for deciding which
propositions are theorems in any “reasonably strong” theory of arithmetic.
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5. But more, consider all the statements in our formal language that are true of the
natural numbers. Suppose we could axiomatize these “truths”. Then to decide
whether a statement is a theorem, since every statement is either true or its negation
is true but not both, we’d only have to set our proof machine going and wait until we
got a proof of either the statement or its negation. That would be a computable pro-
cedure for deciding theoremhood, contrary to what we have just established. So

the statements true about the natural numbers in our formal language are not even
axiomatizable.

6. Finally, we turn to the question whether we can establish the consistency of
infinitistic methods in arithmetic by finitary means.

Since “finitary means” can be converted by Gddel numbering into constructive
procedures on the natural numbers, we look for a formal theory of arithmetic in
which to try to capture all finitistic proof methods. It should extend Q so that we
can talk about recursive sets via their representations. What we need beyond that is
to be able to do proofs by induction. By adding the axiom scheme of induction to Q
we have the theory called (Elementary) Peano Arithmetic (PA ). It will seem
plausible that any finitistic consistency proof could be formalized in this system.
(We will not claim that PA formalizes only finitary proof procedures.)

So we ask, in particular, can we prove in PA that PA is itself consistent?

To make that precise, we pick out a particular wff of the formal language which in
terms of the Goédel numbering is true iff PA is consistent and call it Consis .

Then, finally, we use the power of the self-reference available to us in our
system to construct a variation of the liar paradox: a wff U which in terms of the
Godel numbering expresses that it itself is not provable. If U were provable, then
since it asserts its own unprovability, we’ll find that we could also prove its negation.
So if PA is consistent, then U is not provable and hence must be true. We have
produced a statement which is true but unprovable relative to our formal system.

What we have shown is this: (*) if PA is consistent, then U is not a theorem
of PA . But the proof of (*) is actually finitistic and we can formalize it within PA .
That is, we can prove within PA the formalization of (*) which, since U asserts that
it itself is unprovable, is Consis = U . If we could also prove Consis in PA, then
we could prove U, which we know we can’t. Thus, if PA is consistent then we
cannot prove it is consistent within PA .

We could add Consis as an axiom, but small help that would be. Since the new
system would be axiomatizable we could Godel number everything again, in
particular the new proof mechanism which uses that axiom, and repeat the whole
process. That is, there’s no axiomatizable theory of arithmetic which can prove its
own consistency, at least if the theory is strong enough to allow us to give inductive
definitions of addition and multiplication, characterize the successor function, and do
proofs by induction. Thus, even if we haven’t captured all possible finitistic proof
methods within PA, adding them wouldn’t help.
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Here is how Godel first announced his work in a discussion at a conference in
Konigsberg in 1930:

GODEL: According to the formalist view, one adjoins to the meaningful
statements of mathematics transfinite (pseudo-)assertions which in themselves
have no meaning, but serve only to round out the system, just as in geometry one
rounds out the system by the introduction of infinitely distant points. This view
assumes that if one adjoins to the system S of meaningful statements the system
T of transfinite statements and axioms and then proves a theorem from Sin a
roundabout way via theorems from T, that that theorem is also contentually
correct, and hence that no contentually false theorems become provable through
the adjunction of the transfinite axioms. This demand is customarily replaced by
that of consistency. Now I would like to point out that these two demands may
in no way be regarded as equivalent without further justification. For if in a
consistent system A (perhaps that of classical mathematics) a meaningful
proposition p is provable with the help of transfinite axioms, it only follows
from the consistency of A that not-p is not formally derivable within the

system A. Nonetheless it remains conceivable that one could perceive [the
truth of] not-p through some sort of contentual (intuitionistic) considerations
which themselves can not be formally represented in A. In this case, despite
the consistency of A, a proposition would be provable in A whose falsity one
could perceive through finitary considerations. As soon as one interprets the
concept of “meaningful statement” sufficiently narrowly (e.g., as restricted to
finite numerical equations), something of that kind certainly cannot happen.

On the other hand, it is quite possible that one could prove a statement of the
form (Ex)F(x) where Fis a finitary property of natural numbers (the

negation of Goldbach’s conjecture has this form, for example) by transfinite
methods of classical mathematics, and on the other hand could realize via
contentual considerations that all numbers have the property non-F; indeed,

I would like to point out that this would still remain possible even if one had
demonstrated the consistency of the formal system of classical mathematics.
For of no formal system can one affirm with certainty that all contentual
considerations are representable within it.

[There is a comment by von Neumann, and Godel continues.]

One can (assuming the consistency of classical mathematics) even give
examples of propositions (and indeed, of such type of Goldbach or Fermat)
which are really contentually true but are unprovable in the formal system of
classical mathematics. Therefore if one adjoins the negation of such a proposi-
tion to the axioms of classical mathematics, one obtains a consistent system in
which a contentually false proposition is provable.

from Dawson, 1984, pp. 125-126
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A Formal Language for Arithmetic
1. Variables

We will need variables that we can interpret as standing for numbers. Our formal
variables will be Xy, X, ..., X, ... . Inour schema we willuse x,y,z, w as
metavariables that range over the formal variables.

2. Arithmetic functions and terms

As we discussed in Chapter 20, we choose to use symbols for just three functions:
successor will be formalized with the symbol “; addition will be formalized with
the symbol +; and multiplication will be formalized by - .

We will also take the symbol 0 to be in our formal language, intending to
interpret it as the number zero. Of course, all this talk about how we intend to
interpret our symbols is just by way of guidelines. In the plane geometry you
learned in school you couldn’t assume anything about the undefined words “point”
and “line” except what you officially postulated in the axioms. It’s the same here.
The symbols +, - , and so on, are formal symbols, undefined, primitive. Our goal
is to axiomatize the properties of the natural numbers using them. We always keep
that goal in front of us, but we may not assume anything about our formal symbols
except what we have explicitly postulated.

The first thing we must explicitly state is how we will form expressions for the
result of applying these functions to either variables or to 0. Informally, we might
write (x + ¥ + 0) - z, but that won’t do here because it’s ambiguous as to which
addition is to be done first. Here is the inductive definition of how to form the
compound expressions, which we will call terms. We use the symbols t, u, and v
as metavariables ranging over terms.

Terms
i. Every variable is a term, and 0 is a term.
ii. If t and u are terms, then so are ()", (t +u), and (t- u) .
iii. A string of symbols is a term iff it arises via applications of (i) and (ii).
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3. Numerals in unary notation

One of the simplest arithmetic propositions we can make is “2+2 =4 ”. How can
we say that formally? We will need a symbol for equality: =. But what about
symbols for the numbers 2 and 4 ? We can use unary notation: a formal symbol for
zero is 0, for 1 is (0)”, for 2is ((0)")", for 3 is (((0)")")", and for 4 is ((((0)")")")".
So “2+2 =4” will be formalized as ((0)")"+ ((0)")" = ((((0)")")")". Did we say
that we’re using parentheses to lessen confusion? No, parentheses are there to ensure
that our statements will be precise and unambiguous, though often it would be easier
to read the statement without them. When we are talking informally, we will delete
parentheses whenever it makes the statement more legible; in particular we’ll write
t” for (t)". So informally we have 0" +0""=0"""",

But even that is hard to read, so we’ll adopt the further convention of abbre-
viating the numeral in unary notation that has n occurrences of “ by the decimal
numeral for n in bold italic. For example, our new shorthand for the formalization
of “242=4"is2+2=4.

4. Quantifiers: existence and universality

The point of using variables is to be able to express generality. Informally we
may write X + y =y + x as a statement of the commutative law of addition.
But this statement is ambiguous between the assertion that for every x and y,

x + y =y + x and our having chosen some specific x and y for which

X + y=y + x. It’s much the same problem we resolved for functions by using
the A-notation. Here we can make our meaning explicit by using the universal
quantifier V . Informally, we have VxVy (x + y =y + x); aformal version
could be Vx; (Vx, (¥; + X, =X, +X; )). We’ll informally delete parentheses
between quantifiers when the meaning is clear.

Now consider the formula x + x =4 . This isn’t true for all natural numbers.
However, there are some that make it true. Informally, we write 3x(x+ x =4)
to mean that “there is an x such that x + x =4”. But for our formal language we
want to be as parsimonious as we can, so we’re going to show how to dispense with
the existential quantifier. Consider the (informal) statement 1Vx1 (x+ x =4) .
What does this assert? “It’s not the case that for every x it’s not the case that
x + x =4 Butif it’s not the case that for every x, x + x # 4, then there must
exist some x for which x + x =4, at least on the classical, nonconstructive
understanding of existence. Conversely, if there is some x for which x + x =4,
then it can’t be that for every x we have x + x #4 . So from the classical,
nonconstructive point of view (which after all is what we’re investigating here),
we don’t need a new primitive symbol for existence. Instead, we will take Ix as
a defined symbol that abbreviates 1Vx 7 . We’ll nonetheless mformal]y refer to
such abbreviations as existential quantifiers.

It may seem that we’ve built into our system a highly nonconstructive
assumption. But from a constructive viewpoint we can deny that this is a good
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abbreviation and hold that our formalism only has resources for quantifying
universally.

There are other ways we quantify in mathematics, for instance when we
quantify over sets as in “Every nonempty collection of natural numbers has a least
element.” But remembering that we want to keep things as simple as possible so we
can have confidence in our system, we will take only universal quantifications over
elements as primitive, and thus have no resources for formalizing quantification over
sets or other kinds of quantification. This is what is meant by first-order logic.

A further caution about using quantifiers is necessary. Consider, informally,
Vx3y(x + y=0) and 3yVx (x + y=0). The first is read “For all x there
is a y such that x + y =0”; the second is read “There is a y such that for all x,

x + y=0.” Taken as statements about the integers, the first is true, the second
false. The order of quantification matters and is read from left to right as in English.

5. The formal language

A formal language for arithmetic
Variables: x4, X, ... i R
Constant: 0
Function symbols: “, +, -
Equality: =
Connectives: A, V ,1, =
Quantifier: V
Parentheses: (,)

The definition of term is given above. Here is the inductive definition of wffs
in this language. As for propositional logic, we use A, B, C, ... to stand for wffs.

Well-formed-formula (wif)

i. If t and u are terms, then (t=u) is a wff. Itis an atomic wff .
ii. If A and B are wffs, then so are (AAB), (AvB), (1A), and (A—B).
iii. If A is a wif and x is a variable, then (Vx A) is a wif.
iv. A string of symbols is a wff iff it arises via applications of (i), (ii),
and (iii) .
These are inductive definitions, so you can G6del number the terms, atomic
wifs, and wifs of this language (Exercise 11).

Aside: The unique readability of wffs can be proved much as for propositional
logic, pp. 165-166.

First we must show that each term has a unique reading. Define a function
g(+) ="1a g(') 2-1! g(’) =0 ’ g(o) = 1’ g(xi) = lv g(() =1 ’ g()) :..1’
and extend g to all concatenations of these symbols by setting g(o; - 6,) =
g(c)+ - +g(c,). Then you can show that for every termt, g(t)=1, and if
t* is an initial segment of a term other than the entire term itself, then g(t*) <1,
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and if a final segment then g(t*) > 1. Proceeding as for wffs in propositional logic,
you can show every term has a unique reading.

To show that there is only one way to read each wff, define a function f by:
0 =-1, fO)=1, (V)= -1, f(=) =-2, f(t) = 1 forany term t , and
f(A) =f(v)=f(=) = f(1) = 0. Then proceed as for propositional logic.

Informal conventions: Here are some informal conventions we’ll use to make the
wifs more legible. Anything written using these conventions is to be understood as
an abbreviation of the real wff in the formal language.

1. We abbreviate the numeral in unary notation that has n occurrences of “ by
the decimal numeral for n in bold italic.

. We write Ix for 1Vx1.

. We write (tzu) for 1(t=u).

. We delete the outermost parentheses.

. We sometimes write ] in place of ), and [ in place of (.

wn A~ W

Also, with considerable caution, and only when we’re sure the meaning is
clear, we will delete parentheses between quantifiers or even inner parentheses.

6. The standard interpretation and axiomatizing

As we said before, we can assume nothing about our formalism except what we
explicitly postulate. So far we’re free to interpret the variables as ranging over any
things and the function symbols as functions on those things. For instance, we could
use the wffs in this language to make assertions about the integers modulo 5, or the
integers, or a ring where “ could be the additive inverse. However, we’ve designed
this symbolism to make assertions about the natural numbers where + is interpreted
as addition, - is interpreted as multiplication, ~ is interpreted as the successor
function, and 0 is interpreted as zero. This is the standard interpretation. In the
following discussions whenever we say a wff is true of the natural numbers or
simply true, or we appeal to your intuition about the correctness of some principle,
we have in mind the standard interpretation.

For propositional logic our task in axiomatizing was clear: we wanted axioms
that would yield all valid wffs as theorems. Here we are not going to talk about
validity, and in that sense our task will be easier. All we want are axioms that are
true about the natural numbers and rules of proof that lead from true wffs to true wffs
in order to axiomatize enough of arithmetic to be able to represent the recursive
functions in the system. We first turn to the principles of reasoning that we’ll codify.

Principles of Reasoning and Logical Axioms
1. Closed wffs and the rule of generalization

Informally, consider x + y = z. This is neither true nor false until we specify
which numbers x, y, z are to stand for. For example, 2 + 3 =35 is true, whereas
2+3=7 isfalse.
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Now consider 3y (x + y = z). We’re no longer free to let y be any
number we want: this describes a two-place relation. Since Iy (2+ y =5) is true,
(2, 5) is in the relation, whereas (7, 2) is not. We say that x and z are free in this
formula, whereas y is “bound”. If we bind z by a universal quantifier we get
Vz3dy(x + y=z), which describes a property of the free variable x.

Because Vz Ay (5 + y = z) is false, 5 doesn’t have the property; indeed, 0 is
the only natural number which does.

If we further bind x by the existential quantifier, 3x Vz 3y (x + y = z),
then none of the variables are free: we have a proposition which is either true or
false. In this case it’s true and expresses the idea that there exists a least natural
number.

Only wffs in which every variable is bound can be true or false. To make this
more precise, we first have to say which variables are affected by which quantifiers;
for example,in Vx3y(x + y=0) » Vy(x -y =0) thelast x is not bound
by a quantifier. We define the scope of the quantifier Vx in (VX A) tobe A.
Thus, in Vx;3x, (X; +X, =0) = Vx,(X, - X, =0) the scope of Vx; is
dx, (x;+x,=0).

An occurrence of a variable x is bound in A if it is either the variable
immediately following the symbol V, that is, Vx, or if it is within the scope of a
quantifier Vx in the wff. Otherwise the occurrence is free in A . Thus in our
example, the last occurrence of x, is free, whereas the first two are bound. Some-
times when we want to stress that there’s a free occurrence of x in A we write A(x) .

Finally, we say that a wff is closed if it contains no free variables; otherwise it
is open. Closed wffs are sometimes called sentences. It is closed wffs which we
want as theses of our system.

In informal mathematics we often use open formulas to express laws, such as
the commutative law of addition: x + y =y + x. When we do that we are
implicitly assuming that x and y can be any numbers. That is, we are really saying
VxVy(x + y=y + x). This is a useful convention and by adopting it we’ll
simplify the formal proofs: we can assert any wif on the understanding that all the
variables free in it are to be thought of as universally quantified.

The formal version of this convention is the rule of generalization: from A
conclude Vx A . For example, from ( X; +X, = X, +X; ) asserted as a thesis, we
can conclude Vx,Vx, (x; +X, = X, +X; ) ; we can also conclude Vx,; (x; +x,
=X, + X, ), which isn’t wrong though it may seem odd. We tolerate “superfluous”
quantifiers because to avoid them would make the definition of wffs and many of
our axioms and rules quite complicated.

Note that we can’t replace this rule by the scheme A(x) = VxA(x) because
that can be false; for example, x + x=2 = Vx (x+x=2) is false if we let x
stand for 1. On the other hand, Vx A(x) = A(x) is acceptable: if the antecedent is
true, then every instance of it is true, so in particular it will be true no matter what wi
let x stand for.
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2. The propositional connectives

When we introduced the propositional connectives in Chapter 19 we said they
connect propositions. What then are we to make of AxVz[(x-2=0) A

Jy (x+y=12)] where A joins two formulas that are not closed? Think how we
determine whether this is true about the natural numbers: we ask whether we can find
a number to substitute for x, namely 0, such that no matter what number we let z
stand for, their product is 0, and we can find a number to let y stand for such that

the wif is true; for example, (0-5=0) A (0 + 5=5). When the formulas are fully
interpreted the propositional connectives connect propositions. In this sense we are
justified in using the classical propositional logic of Chapter 19.

3. Substitution for a variable

A variable can stand for anything we are talking about. Suppose A(x) is true of
everything and t is a term. Then t stands for something, so if we put t for x in A,
then that must be true too. The formal version of this is Vx A(x) = A(t) . But we
must be careful how we use it. Consider several schematic examples:

Vx1Vy(x=y) > 1Vy(I4=y)
Vx1Vy(x=y)—> 1Vy(z+z=y)
Vx1Vy(x=y) = 1Vy(x=y)

All these are true about the natural numbers. But we can get in trouble if we
substitute a term that leads to a new variable being bound, as the following is false:

Vx1Vy(y=x) > 1Vy(y=y)

Given a formula A and a variable x, we say that a term t is free for an
occurrence of X in A (meaning free to be substituted) if that occurrence of x is free
in A and does not lic within the scope of any quantifier Vy where y is a variable that
appears in t. That is, by substituting tfor that occurrence of x nothing new
becomes bound. We write A(t) for the result of substituting t for occurrences of x
in A for which it is free, although when we use this notation we must specify which
occurrences of which variable are being substituted for. If we restrict our substitu-
tion scheme to apply only when t replaces all occurrences of x for which it
is free, then we have an axiom scheme every instance of which is true.

Note that to describe what axioms we want we used not a scheme in the sense
of a wff with variables replaced by metavariables (see Chapter 19.E), but rather a
scheme supplemented by a condition in English. From now on we’ll also informally
refer to a description of this sort as a scheme.

4. Distributing the universal quantifier

We need an axiom scheme to govern the relationship between the quantifiers and the
propositional connectives.
If we have that Vx(A —B) is true and A has no free occurrences of x, then



180

C.

CHAPTER 21 First-Order Arithmetic

even though A is in the scope of Vx, the quantifier really only affects the free
occurrences of x in B. So (A— VxB) will be true (and conversely, although we
don’t need to worry about that). Hence we’re justified in taking as an axiom scheme:

Vx(A—B) = (A—>VxB) where A has no free occurrences of x

In Vx(y=z =y +x=2z+Xx) the quantifier ¥x doesn’t affect the antecedent at all,
$0 we can move it across the connective: y=z = Vx(y+x=z+x).

5. Equality

We also need to assume some of the properties of equality for “=". The first is that
everything is equal to itself: Vx(x = x). The other is that we can always substitute
equals for equals: (x=y ) —=>[A(x) = A(y)]. Here, too, we have to restrict y to
being free for each occurrence of x which it replaces, although in this case we
needn’t replace every such occurrence. From these alone we’ll get all the usual
laws of equality (Theorem 2).

6. More principles?

There are many more principles of reasoning we could take as basic, but we’re going
to stop here. With these we can feel confident that we’ve assumed only legitimate
principles of reasoning. And we’ll see in the following chapters that these are
enough to derive the formal theorems we need. But they are also enough in a
stronger sense: any other principle of reasoning which can be formalized in our
language that would hold good for all possible interpretations of our symbols can be
derived from the ones we’ve chosen so far. This can actually be proved (non-
constructively) and is called the completeness theorem for first-order logic (“first-
order” refers to the fact that we only allow quantification over elements and not sets
of elements), although we won’t need it here. See, for example, Epstein, 2006.

The Axiom System Q
1. The axioms

The axioms and rules given so far comprise the logical part of our axiom system.
To these we need to add axioms specific to arithmetic. But which ones? There are
many wffs true about the natural numbers, but which are really basic? We said that
one of our goals was to be able to represent the recursive functions in our system
starting with the functions we already have, namely, successor, addition, and
multiplication. So we need to assume enough about the symbols “, +,and - to
ensure that goal. What we’ll assume are the inductive definitions of addition in
terms of successor, and of multiplication in terms of addition and successor, and
that the successor symbol defines a 1-1 function whose range is everything but zero.
Here is the complete formal system.
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Logical axioms and rules
Every wif in the formal language of arithmetic that is an instance of an axiom
scheme of classical propositional logic (Chapter 19.E) is an axiom. As well, every
instance of the following two schema is an axiom:
L1. Substitution VxA(x) = A(t)
where A(t) arises by substituting t for x in A, when t is free for
every occurrence of x in A
L2. V- distribution Vx(A—>B) = (A—>VxB)
if A contains no free occurrences of x

Every instance of the equality schema is an axiom:
El (x=x)
E2 (x=y) 2 [A® = A ]
where A(y) arises from A(x) by replacing some, but not necessarily
all, free occurrences of x by y, and y is free for the occurrences of
x which it replaces.

The rules of proof are:

Modus ponens: From A and A—=B conclude B.
Generalization: From A conclude VxA.

To the logical axioms and rules we add the following seven arithmetic axioms.

System Q
QL (x"=x%,") 2> x =X,
Q2. 0£x;”
Q3. (x#0) = Ix, (x,=x%x,7)
Q4. x;+0=x,
Qs. xl+(x2)’=(xl+x2)’
Q6. x,-0=0

Q7. x1- (X)) =(x1°%X,) + X4

Note that Q1-Q7 are (abbreviations of) wffs, not schema.

We define a proof of B to be a sequence B , ... , B, =B, where each B, is
either an axiom, or is derived from two earlier wffs in the sequence, Bj and B, with
Jj»k <i by the rule of modus ponens, that is, By is B;—B ; , or is derived by the
rule of generalization, that is, B, is Vx Bj for some j < i.

A wiff A is a theorem of this formal system if there is a proof of A. In that
case we write k-4 A . The subscript is to remind us that the theorem depends on the
arithmetic axioms we assumed. Whenever it is clear that we are referring to system
Q, we will delete the subscript.
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2. On consistency and truth

Our discussion in Section B was intended to convince you that the axioms of our
formal system are true in the standard interpretation and that if the hypotheses of a
rule are true, then so is its conclusion. Thus, all the theorems of Q are, we believe,
true of the natural numbers.

That belief forms part of the motivation for our system, but it is not part of the
system itself. Nor is it an assumption we need or want to make about the system.
Except in one place (Theorem 3), we will use the notion of truth only informally
until Chapter 23.C. As Hilbert enjoined us, we shall withhold judgment about
questions of truth and meaning while we study the syntactic properties of the
formal system.

What we shall assume instead, and state quite explicitly when we use it, is that
Q has the syntactic property of being consistent: there is no wff A such that both
FoA and F57A .

3-Introduction and Properties of = : Some Proofs in Q

To show you what proofs look like in this formal system, let’s prove some theorems.
The first is the formalization of a fundamental fact about existence.

THEOREM 1 (3-Introduction)

a. If tis free for x in A(x), then - A(t)—= AxA(X) .
b. If ~A—>B, then - (3x A) — B whenever x is not free in B.

Proof: In order to prove that every instance of part (a) is a theorem we need to
give a scheme of proofs. For example, in our proof take any wff with a free variable
x, in place of x as A, and any term t free for x; in A and you will have an actual
proofin Q.
a. 1. (Vx(A®X) = 71A(1)) axiomLl1
2. (Vx(A®) = 1AM)) = (A = IV (1A®X))
an instance of the valid propositional wiff (A—7B) = (B—1A)
and hence a theorem, so insert its proof here
3. A(t) 2 1Vx(1A®)) modus ponens on (1) and (2).
And (3), in its abbreviated form, is what we set out to prove.

b. 1. (A—>B)—=> (B—7A) aninstance of a valid propositional wff and hence a
theorem, so insert its proof here

(A—-B) by hypothesis this is a theorem, so insert its proof

(OB—7A) modus ponens on (1) and (2)

Vx (1B—>1A) generalization

Vx (1B—=1A)—> (B> Vx1A) axiomL2

(1B—-Vx1A) modus ponens on (4) and (5)

(B->Vx1A)-> (1Vx1A—>B) as for (1)

IxA - B modus ponens on (6) and (7), and the definition of 3 . ]

P NNk WD
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These proofs are relatively easy because of the completeness theorem for
propositional logic: Any wff which is valid due to its propositional form is also a
theorem, so we can insert its proof. We know it has a proof (Appendix 2 of Chapter
19), though we won’t bother to produce it here, since all we want to do is convince
ourselves that certain wffs have proofs, and for that it’s enough to know that we can
insert the proof if we wanted. From now on when we say by propositional logic
(or propositional calculus, PC) we mean that the wif has a valid propositional form
and that we can insert a proof of it.

Next, we’ll show that the formalizations of the laws of reflexivity, symmetry,
and transitivity of equality are provable.

THEOREM 2 (Properties of =)

a. Foranytermt,t=t.

b. Ft=u)->[At) > AW ]
for any wff A(z) where both t and u are free for z in A, and A(t) arises
from A(z) by replacing all occurrences of z by t, and A(u) by replacing all
occurrences of z by u.

c. Ft=u—=u=t.

d. Ft=u—> (u=v = t=v).

Proof:  Again, we present schema of proofs.
a. 1. Vx,(x;=x,) axiomEl
2. Vx,(x;=x,)—>t=t axiomLl
3. t=t modus ponenson (1) and (2).

b. Let x, y be distinct variables not appearing in A(z) which are free for z in A(z).
Note then that y, t, u are all free for x in A(x) .

x=y = (AX)—=A(y)) axiomE2

Vx(x=y = (AX)2A(y))) rule of generalization

t=y = (At)>A(y)) byaxiomL1 and modus ponens

Vy(t=y = (At)>A(y))) rule of generalization

t=u - (A(t) > A(u)) by axiom L1 and modus ponens, since u is free for y.

RS

c.l. t=u—> (t=t > u=t) bypart(b)

t=t by part (a)

3. (t=t) > ([t=u—>(t=t—=>u=t)] =>(t=u—>u=t))
by propositional logic, since this is an instance of
Bo>[(A->B—->C)) = (A—>C)] which is valid

4. [t=u—=>(t=t > u=t)] > (t=u—>u=t)
modus ponens on (2) and (3)

5. t=u—> u=t modus ponenson (1) and (4).

N

d 1l (=t)—=>(u=v->t=v) bypart(b)
2. t=u—=u=t bypart(c)
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3, t=u=>u=t) >
[(m=t) =2 (u=v=at=v)) = (t=u) D2(u=v>rt=v))]
by PC using(A—=B) > [B>C) - A—>0)]
4, (u=t)=>(u=v=>t=v)) =2 [(t=u) 2>(u=v->t=v)]
modus ponens on (2) and (3)
S. (t=u) = (u=v—=>t=v) modusponenson(l)and(4). [ ]

The same method of substitution we use in the proof of Theorem 2 can be used
to give formal proofs in Q of versions of Q1-Q7 with any variables x, y in place
of x; and x, ; for example, I—Q(x’ =y’) = x=y (Exercise 8).

Weakness of System Q

It may seem that if we’ve assumed enough about the natural numbers to be able to
represent every recursive function in Q, then the system must be strong enough to
prove almost all the basic facts of arithmetic. But as simple a wff as x # x” cannot
be proved in Q. How can we show that? We can show a wff is a theorem by
exhibiting a proof. But how can we show that there is no proof?

Back to plane geometry. Do you remember hearing that there’s no proof of
Euclid’s parallel postulate from his other axioms? Do you know how that was
demonstrated? Beltrami, as well as Klein and Poincaré, exhibited a model of the
other axioms in which the parallel postulate failed. Why was that enough?

Suppose we can exhibit something that satisfies all the axioms of the system
0, that is, a model of Q. The rules of proof never lead us from wffs that are true
about something to ones that are false, so every theorem of @ must also be true in
that model. Thus all we have to do is show something that satisfies all the axioms of

0 and yet x # x” is false in it. Then x # x” cannot be a theorem of 0 .
To present such a model we need two objects that are not natural numbers.

Any two will do; for example, this book and your left ear, or a right angle and an
obtuse angle. You choose, and label them o and B. The model then consists of the
natural numbers supplemented by o and B with the following tables interpreting ~,
+, and - :

4y n o B x | successor of x
m| m+n B «
o o B o
Bl B B «a
0 n#0 o B
0 l0o 0 a B
m#20| 0 m-n o B
a (0 B B B
B 0 a o «

To show that this is really a model of Q we have to assume that the axioms
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and hence theorems of @ are true of the natural numbers. Then it’s easy to verify
that they are also true when we have o and . But the successor of o is o, and
hence x # x” cannot be a theorem of Q .

Here is a further list of simple wffs all of which are true of the natural numbers
but cannot be proved in @, as you can verify using the same model (Exercise 10).

THEOREM 3  If the theorems of Q are true of the natural numbers, then the

following are not theorems of @, where x, y, z are distinct variables (parentheses
deleted for legibility):
a x#X
b. x+(y+z) =(x+y)+z
C. X+y=y+Xx
0+x=x
e. 1[Ix(x+y=2z) Adx(x+z=Yy)]
f. x-(y-z)=(x'y) -z
g X'y=y-x
h, x-y+z) =x-y)+x-2)

Remember, by our conventions these wffs are equivalent to their universally
quantified forms.

Proving As a Computable Procedure

We are eventually going to show that there is no decision procedure for the set of
theorems of Q. So it is even more important here than for propositional logic to
establish that we can computably enumerate the theorems. The method is virtually
the same as for propositional logic except that the structure of the wffs we are
examining is more complicated. We are going to sketch the proof and leave the
details to you, trusting that you understood how to do it for propositional logic.

To begin, we ask you to give a Godel numbering of the terms and wifs
(Exercise 11), since it will be easier for you to use your own numbering than one
we cook up. We will write [t] for the Godel number of a term t and [A] for
the Godel number of a wff A,

1. First we need to show that the set of Godel numbers of terms and the set of Godel
numbers of wffs are recursive.

2. Next we show that we can decide whether a particular occurrence of a variable in
a wif is free. That is, the following set is recursive:

{<n,m, py: for some A and x (n =[A], m =[x], and the pth
occurrence of x in A reading from the left is free in A)}
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Then we need to show that we can decide whether a term t is free for a
particular occurrence of x in a wff. That is, the following set is recursive

{<n, m, q, p>: forsome A, xand t (n =[A], m ={[x], g ={t] and
t is free for the pth occurrence of x in A reading from the left )

3. We can decide if a wff is an instance of one of the axiom schema. It shouldn’t be
too hard to modify your proof of this for propositional logic to take care of the
propositional schema. And it’s pretty straightforward to recognize the arithmetic
axioms and the first equality axiom in terms of your G6del numbering. Virtually

all of the hard work in the whole decision procedure is to establish that we can
recursively recognize whether a number is a G6del number of an instance of one

of the logical axioms or the second equality axiom, and it’s for this that we have

to go to all the trouble to do (2).

4. We establish that we can decide whether a wff is a consequence of two others by
the rule of modus ponens or whether it is a consequence of another by the rule of
generalization. That is, these sets are recursive:

{<n, m, py: there are A and B (n = [[A], m =[A—=B], and p = [B]) }
and

{<n, m>: for some A and i, (n=[A] and m = [VxA]) )

5. Then we can determine whether a number codes a sequence of wffs which is a
proof sequence. That is, the following is recursive:

1 if some n =<«(n),..., (H)]b(n)— p and for i < Ih(n)
(n); is the Godel number of a wif, say B;, and
prf(n) = either B; is an axiom, or for some j, k< i Bj isB, = B;
orsomej <i B, is Vx B; , for some variable x
0 otherwise
6. It is then easy to list the theorems: just search for the next n which codes a proof

sequence, that is, prf(n) = 1, and output the number of the wff which it proves,

namely (n)lh(")_1 .
What we have shown is that we can recognize if a number codes a proof of a
particular wif. That is, the predicate

Prf(x,y) =p, X codes a proof sequence which proves A where y =[A]

is recursive, since Prf(x, y) is [prf(x)=landy = (x)m(x)_1 1.

Exercises

1. Which of the following are terms according to our formal definition? For those
which are not, explain why.



a.
b.
c.
d.
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((xp %) +%,) e (((x3) " x ) +%)+((0)))
(X +y) £ ((x)?%p)
(0”)'(X4+X1) g.((x1+x2)=x3)

(t+u)

2. Give at least five different expressions in English that could be formalized by
Vx and five that could be formalized by Ix.

3. Write a wff or a scheme of wffs which you believe is an accurate formalization of
each of the following informal statements about the natural numbers. You may
use our conventions to make the wff more legible.

@ moe o TR

1+3=5

8=2-5

Every number is the sum of two numbers.

Every even number is the sum of two odd numbers.

0 is the smallest natural number.

Forany n and m, either n=m,or n > m,or m > n.

If an assertion is true for 0 and if whenever it’s true for n it’s also true for

n + 1, then it’s true for all n.

If a set of natural numbers has no even numbers in it, then it must contain only
odd numbers.

4. For each of the following wffs:

ISI

a o

P @ oo

—

—Identify the scope of each quantifier.

—State which occurrences of which variables are free in it.
—Try to reformulate it in English.

—State whether it’s true or false in the standard interpretation.

Vx (%20 = 3x3(x; - %3=07))

Vx; (3x,(% - %, =0) = Vx, (%X, =0))

Vx;3%,(% %, =0) = Vx, (x;-%,=0)

Ax (7 + X =X3) = Xy # Xy

V3%, (x+%,=%") = Vx 3%, [x, + (%, +0) =x;"]

V[ (x,=%X3) = (X, + X = X3+ %) ]

Vx (x,+0=%,) > 2+0=2

Ax, (2+2=4)

[V 3%, (x,=%,") = x,20] = [ Ix, (x,=%,") = Vx;(x,20)]

. In the axiom scheme of substitution why don’t we allow t to replace some but

not all occurrences of x for which it is free?

. Give an inductive definition of t is free for x in A..

(Hint: Induct on the structure of A using the inductive definition of wff: if A is
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atomic, then t is free for x in A; if A is of the form 7B, then tis free for x
inAiff... )

6. Give an informal justification of the schema involving the existential quantifier
which were proved in Q in Theorem 1 .

7. Give an informal justification that the following are true of the natural numbers
and then prove each using only the logical axioms and rules.

a. 13xARX) & Vx1A®RX)
th. Ix1A®X) < TVXA®X)
¢. 13x1ARX) € VxA(x) (Hint: Use part (b).)

8. Show that every instance of the schematic forms of axioms Q1-Q7 is a theorem
of O . For example, show that for any x, y we have l—Q( X'=y)>x=y.
(Hint: cf. the proof of Theorem 2.)

9. Show that the following wffs are theorems of Q by exhibiting proofs of them:
a3=4->2=3
b. 024
c.4#0
d. 34
e.2+3 =5
f. 3% (2+(x)"=5)

10. Complete the proof of Theorem 3 by verifying that all the axioms of Q are
true for the system described there and that each of (a)-(h) fails to be true.
Intuitively, what does (e) say?

11. a. Give a G6del numbering of the terms of the formal language.
b. Give a Godel numbering of the atomic wffs of the language.
c. Give a Godel numbering of the wffs of the language.
d. Using your numberings, show that the set of terms, the set of atomic wffs,
and the set of wffs of the language are recursively decidable.

12. Fill in the details of the proof in Section F that we can recursively enumerate the
set of Godel numbers of theorems of @, and that Prf(x,y) is recursive.
(You will need to use Exercises 5 and 11.)

Further Reading

For a more thorough treatment of first-order logic as a formalization of mathematics see
Epstein’s Classical Mathematical Logic. Our logical axioms and rules are from Church,
who derived them from Russell (see Church’s Introduction to Mathematical Logic, p. 289).
The arithmetic axioms are due to Raphael Robinson, 1950, though the best place to read
about their history is in Undecidable Theories by Tarski, Mostowski, and Robinson, p.39.
Mendelson in his Introduction to Mathematical Logic gives detailed solutions to Exercises
11 and 12 for essentially the same system as ours.



22 Functions Representable in

Formal Arithmetic

In this chapter we’re going to show that we can represent the recursive functions as
those whose values we can compute using the proof machinery of Q. For later
chapters all that is needed here are the definitions on p. 192 and the definitions

and theorems starting with Corollary 21 (p. 200).

Dispensing with Primitive Recursion

It will be straightforward to show that the initial recursive functions (zero, successor,
and the projections) can be represented in Q. Showing closure under the operations
of composition and least search operator is fairly straightforward, though the latter is
tedious since it requires several long proofs in @. It is much more difficult to show
that the representable functions are closed under primitive recursion.

One way we could show closure under recursion would be to add to Q
infinitely many axioms corresponding to the recursion equations for all the primitive
recursive functions. But that is inelegant and defeats the spirit of our program, which
was to use a simple system of arithmetic whose consistency we could believe in.

More economical would be to use the full power of the least search operator,
for by adding coding and uncoding functions we can dispense with primitive
recursion as an initial operation (see Exercise 16.13). For example, we can define

XY =(pz[(2)g=1 A (D), =x-(2); A Ih(2) =y +11),

But we used exponentiation to define our coding functions.

Actually all we needed to define the coding functions was exponentiation, the
initial recursive functions, composition, and the least search operator (cf. Theorem
12.1). So we could get by with adding just one new function symbol, exp, to our
language and axioms corresponding to the recursion equations for exponentiation in
terms of multiplication. Still it would be a pity to do so, since exponentiation doesn’t

189
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have the primacy and intuitive clarity of addition and multiplication. Fortunately,
Gaodel, 1931, showed how we may define a different coding function that doesn’t
depend on exponentiation. Then we can prove that the partial recursive functions
can be characterized as
C = the smallest class of functions containing zero, successor, the projections,
addition, multiplication, and the characteristic function for equality, and
closed under composition and the pi-operator

To prove this requires a diversion into number theory.

1. A digression on number theory

To define a function B in C that can do the coding we will need to use the Chinese
Remainder Theorem.

Recall that y = z(mod x) (read “y is congruent to z modulo x”) means
that the integer difference between y and z is divisible by x. That is,

y=z(modx) iff x|{(y -z)
Thus, if y = z(mod x) then y and z have the same remainder upon division
by x. If we let

rem(x, y) = the remainder upon division of y by x
then we have that for any y and x,

y =rem(x, y) (mod x)

The Chinese Remainder Theorem (Exercise 1) gives sufficient conditions for
finding a number z that simultaneously satisfies a set of congruence equations:

z=y (mod x,), z=y,(modx,), ..., z=y,(modx,)
Namely, if the x;’s are relatively prime in pairs (that is, no two have a common
factor except for 1), then there issuch a z withz < x; - x, - -+ - x

n -

THEOREM 1 (Godel’s B-function) There is a function B € C such that for any
finite sequence of natural numbers ay, ..., a,there exists a natural number d
such that for every i <n, B(d, i)=a;.

Proof: To construct g we need to show that a number of other functions are in C.
First, we note that C is closed under the logical operations and the operations of
bounded existential quantification and bounded universal quantification (which we
leave as an exercise for you, cf. Chapter 11.D.3-5 and Exercises 11. 14 and 11.15).

Thus the pairing function J and unpairing functions K and L of Chapter
I11.E.6 arein C:

J(x,3) = 3 [(x+ y)(x+y+Dl+x
K(z)=min x<z [Ay<z (J(x,y) =2)]
L(z)=miny<z [IxLz(J(x,y)=2)]
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We'll let you define the following functions and (characteristic functions of)
predicates in such a way that you can see they are in C (Exercise 2):

m<n m divides n p is aprime
m=n n is a power of the prime p

Then the following is in C:
rem(x,y) =pz(Ik<y [(k-x)+z=y])
Now we define the three-variable version of Gédel’s B -function:
B*(x, y, z)=rem(1+(z+ 1y, x)

which we see is in C. All that’s left to show is that for any sequence of natural
numbers 4, , . . ., a, there exist natural numbers b and c such that for every

i <n, B*(b, c, i)=a;. Then the function we want for our theorem is

B(d, ) =p*(K(d), L(d), 1) .

Let j =max(n,ay,...,a,) and c=j! .

By Exercise 1.c below, the numbers u; =1+ (i + 1)c for 0<i< n have
no factors in common except for 1. So by the Chinese Remainder Theorem the
equations z = a; (mod u ;) have a simultaneous solution b <uy-u,- -+ - u
Butfori<n,a; < j<jland jl=c <1+(i + )c=u;; thatis, a; < u;
for all i <n. And hence the a;’s are the remainders upon division of b by the
u,;’s . Thatis, b is a number such that a; = rem(u;, b) for i < n. So for that b,
B*(b,c,i)=rem(1+ (i +1)c, b). =

n

2. A characterization of the partial recursive functions

THEOREM 2  The partial recursive functions are the smallest class of functions
containing zero, successor, the projections, addition, multiplication, and the
characteristic function for equality and closed under composition and the p-operator.

Proof: We have to show that this class is closed under primitive recursion.
That’s an easy variation on the example of exponentiation above. We’ll show
it for functions of one variable and leave the general case to you (Exercise 3).

Suppose

f(0) = a

f(x+1) = h(f(x), x) where h is in this class

Define the predicate
S(x, b) =pgs B(b,0)=a A Vi< x[B(b,i+1)=h(B(b, 1), 1]

By Theorem 1 (and its proof) S is in this class of functions and for every x there is
some b such that S(x, b). Then forall x, f(x)= B(pb[S(x,b)], x) and
so fisin C. ]
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B. The Recursive Functions Are Representable in O

Let f be a total function of k variables and A(xy, ..., X, x) a wif with k+ 1
free variables, where x is distinct from xy, ..., x; . We say that f is represented
by A in Q if:

f(m,, ..., m)=n implies

L FoA(my, ..., me,n)

2. l—QA(mI,..., m,,Xx) > XxX=n

From this definition we will derive (Lemma 4) the further condition:
3. If n # p, then l—Q TA(my, ..., my,p).

We say that f is representable in Q if there is some wff that represents it.

For example, we will show below that addition is represented in Q by the wff
X {+X,=X4. Sowe will have, for example, I—Q 0"+ 07" =07,

Fo 07+ 07" =x3 = x3=0""", and Fo07+07 = 0.

Given a function f that is represented by A in O, we can calculate its values
if Q is consistent: to calculate f(m,, ..., m), start proving theorems until we
get I—Q A(my,..., my,n) for some n. By condition (1) we will find one, and
by condition (3) there will be only one such, for which n = f(m, ..., m,).

This approach to calculation was originally taken as an explanation of what it
means for a function to be computable (see Herbrand, 1931, Church, 1936, pp.101-
102; and the comments of Godel below on p. 217). In this section we will show that
every recursive function is representable.

To do this we are going to have to show that many specific wffs are theorems
of Q. This is analogous to providing the Turing machines that compute the zero
function, the successor function, and so on in the proof that every recursive function
is Turing machine computable. If you wish, you can skip the details and go directly
to the statement of Theorem 19 .

Note: Other texts may define representability differently or use related notions

LI

such as “expressible”, “strongly representable”, or “weakly representable”.

Our first goal is to establish condition (3), for which we prove the following
lemma.

Lemma 3 For all natural numbers n and m, if n# m, then l—Q nzm.

Proof: Here n and m are numbers, and # and m are numerals. So we are
obliged to prove that infinitely many wffs are theorems of Q. To do this we
induct on the number m, first assuming n < m.
Our basisis n=0, m=1: axiom Q2 is I—Q 0 £x;”, so by generalization,
I—Q Vxl (0#x,"), and by L1 and modus ponens we have I—Q 020",
Suppose the lemma is true for m and all n < m. We will show it for all
n<m+1.



SECTION B The Recursive Functions Are Representable inQ 193

If n=0, proceed as above to show that -, 0 # m”. Suppose now it’s true
forn andn + 1 < m+ 1. Hence n < m, and so by induction, l—Qn;tm.
Axiom Q1 is I—Q x;"=x,” = X; =X, , 5o by generalization and L1 we can
substitute: I—Qn’ =m” > n=m. Since (A—=>B)=>(1B—1A) isavalid
propositional scheme, l—Q(n’=m’ —=2>n=m)->d3(n+tm-o>n"£m’),
and hence by modus ponens twice, -, n ‘rm’

If m<n, then we have -, m # n . By Theorem 21.2, Fox=y = y=x,
so by generalization and L1 we have l—Q n=m —>m =n, and hence as above,
l—Q n*m, =

Several things are important to note in this proof:

1. The letters m, n, r, s, etc. stand for numbers; hence m ,n , r , s stand for
unary numerals, whereas x and y stand for variables in the formal language.

2. We used induction to prove something about @, but not as a rule of proof within
Q itself.

3. We used generalization to get the universally quantified version of Q1 which we
then used to obtain the formula with n substituted for x; . We do this often and
from now on we’ll simply say “by substitution” or “by L1”. Also, we will use
axioms Q1-Q7 with any variables x and y in place of x, and X, ,as ]ustlfled
by our remarks on p. 184 above and Exercise 21.8.

4. We specifically quoted the valid propositional scheme that justified one of our
steps. In the future we’ll just say “by PC™.

5. We’ll also leave out the subscript Q inside the proofs, though we’ll keep it in
the statements of the lemmas and theorems. We will refer to the equality axioms
and Theorem 21.2 collectively as “properties of =", and Theorem 21.1 as
“J-introduction”.

Lemma 4 Suppose f is represented by A in @. If f(m,, ..., m)=n
and n # p, then l—Q'IA(mI,..,, my.,p).

Proof: 1If p # n, then by the previous lemma - p # n. Since A represents f,
FA(my,..., m,x) > x=n. So A(my,..,m,p)— p=n,andsoby
PC, F1A(my,..., m,p). ) ]

The rest of this section will be devoted to showing that the recursive functions
are representable in @ . To do this we will first show that each of the functions zero,
successor, the projections, addition, multiplication, and the characteristic function for
equality are representable, and then show that the representable functions are closed
under the operations of composition and the pi-operator.

Lemma 5 The zero function is represented in @ by (x; =x;) A (x,=0).

Proof: ByEl, 0=0 and forevery n, -rn =n. Therefore by PC,
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(n=n) A(0=0). Calling the formula in the lemma A, we have just proved
~A(n, 0) for every n, which shows that A satisfies condition (1) .

To show that it satisfies condition (2) is easy, for by PC:
Fln=n)A(x,=0)] > x,=0.

Lemma 6 The successor function is represented in Q@ by x;" = x, .

Proof:  For condition (1), suppose the successor of mis n. Thenm” and n
are identical terms, so by the properties of =, - m”=n . Condition (2) is exactly
Theorem 21.2.c.

Lemma 7 The projection function P,{ where 1 £ i < kisrepresented in Q by
the formula (x =X () A - A (X=X ) A (X, =X;).

We leave the proof of this as Exercise 4.

Lemma 8 a. For all natural numbers n and m, if n + m =k,
then l—Qn+m =k.

b. I—Qn+1 =n".

Proof: a. We prove this by inductionon m. f m=0,wehave Fn+0=n
by axioms Q4 and L1 . So suppose it’s true for r and m = r + 1. Then for some
s, k=s +1, and n+ r =, so by induction, - n +r =s. By Q5, we have
= (n+r) =n+r’, soby the properties of =, Fs”=n+r", and by the
same theorem, - n +r =s"; thatis, rn+m=k.
b. This part is easy, and we leave it to you.

Lemma 9 Addition is represented in Q by x{ +x, = X3 .

Proof: By Lemma 8 condition (1) is satisfied. To show condition (2), suppose
n + m =k. Then by the properties of =, since - n +m =k we have

b (n+m=x;) = k=x,, and using the symmetry of = and PC, we have
Fr+m=x3) > x3=k.

Lemma 10 Multiplication is represented in Q by x; * X, = X5 .

The proof is similar to the one for addition, and we leave it as Exercise 6.

Lemma 11 The characteristic function for equality is represented in Q by
[(x;=%X,) A(x3=1)] v [(x;#X,) A(x3=0)].

Proof: Call the characteristic function E. If n # m, then E(n, m)=0 and
n#m by Lemma 4. By the properties of = we have - 0 =0, so by PC,
Fl(n=m)A(0=1)] v(nztm)A(0=0)]. We'll leave to you to
show that condition (1) is satisfied for the case E(n,n).

For condition (2), call the wff A . Then since n = n, by PC we get
FA(n,n,x;) = x3=1, and similarly if n # m we get FA(n ,m , x;) =
x; =0.
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Lemma 12 Iff and g, ..., g, are representable in Q and f is a function of k
variables, and all the g; are functions of the same number of variables, then the
composition f(gy, ... , g;) is representable in Q.

Proof: We will prove this for fo g, where f and g are functions of one
variable, leaving the generalization to you.

Suppose f is represented by B(x;, w) and g by A(x,, y). Let z be a variable
that does not appear in either A or B. By repeated use of generalization and L1, you
can show that conditions (1) and (2) for the representability of f hold also for
B(z, w), and conditions (1) and (2) for g hold for A(x;, z). We claim that
fo g is represented by 3z (A(x;,z) A B(z,w)), which we will call C(x;, w).

If (fo g)(n) = m, then for some a, g(n)=a and fla)=m. So
 A(n,a)and - B(a,m). Soby PC,+ A(n,a) A B(a,m), and hence by
J-introduction, - C(n,m) .

For condition (2), we have - A(n,z) = z =a, so by PC,

[ A(n,z) A B(z,w)]— z =a. We also have by the properties of =,

z =a = (B(z,w)— B(a, w)) and by the representability of g,

- B(a,w)—> w=m. Soby PC,weget-[A(n,z) AB(z,w)] >

w =m. By J-introduction, we have C(n ,w) = w=m. n

To show that the representable functions are closed under the p-operator we
need the following lemmas.

Lemma 13 For every variable x and numeral n, Fo x'+n=x+n".

Proof: The proof is by induction on n.

If n =0, thenby Q4, - x+0=x,and -x"+0=x". Therefore, by the
propertiesof =, - x"+0=(x+0)". By Q5, Fx+0"=(x+0)", so by the
properties of = again, we have Fx"+0=x+0".

For our induction hypothesis we suppose thatn =m+ 1, and Fx"+ m =
x+m’. ByQ5 Fx"+m”=(x"+m)", and the properties of =, Fx"+m~
= (x +m”)". Againby QS,weget H(x +m”) "= x + m”’, and by the prop-
ertiesof =,wehave Fx"+m = x +m”"; thatis, WFx"+n =x +n". n

For any terms t and u which do not contain the variable x4 , take t < u to be
an abbreviation of the formula JIx; (x3"+t =u).

Lemma 14 If n < m, then I—Qn<m.
Proof: If n < m, then for some k, (k + 1) + n = m. Hence by Lemma 9,

=k ’+n =m. So by 3-introduction, F3x; (x3"+n =m); thatis,Fn<m. ]

Lemma 15 For any variable x other than x,
a. I—Q'I(x <0).
b. If n = p + 1, then I—Qx <n = (x=0v - vx=p).
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Proof:

Lx=0-= (x+x=0 = x,"=0)

2. x37#0

3.x=0 - 1(x"+x=0)

4. x=y" = (x3+x=0 = x;+y"=0)
5. %4y = (x3+y)”

6. x=y = (x3+x=0 = (x,+y)" =0)
7. (x3+y) #0

8. x=y = 1(x3+x=0)

b

10.
11.
12.
13.
14.
15.

(x=0vx=y") > (x3+x=0)

(x=0vx=y") > Vx37(x3"+x=0)
A% (x3+x=0) = 1(x=0vx=y")

x<0 - (x£0 > x#y")
x<0 - [x#0 - Vy(xzy")]
x#20 5 1Vy(x#y")

AM(x < 0)

a. We will sketch the proof. Let y be a variable other than x orx, .

properties of =, Q4, and PC
Q2 and properties of =
from (1) and (2) by PC
properties of =

Q5

properties of = using (4) and (5)
Q2 and properties of =
from (6) and (7) by PC
from (3) and (8) by PC
LlandL2

PC and definition

definition and PC

Lland L2

Q3 and definition

from (13) and (14) by PC

b. We will prove this by induction on n. In what follows it will be easier to read z
for x5 ; for the basis n = 1 we wish to prove dz(z’+x=1) -5 x=0.

1.

2.
3.

>

[ IR o N

Fx<n-=(x=0v - vx=p).
Fx<n = (x=0v - vx=pvx=n).

1.

Jy(x=y)vx=0

x=y =2 (z'+x=1-2z72"+y=1
z7+y =(z"+y)’

x=y =2 (z2+x=0" = @'+y)'=0)

(Z7+y) =0 > (27+y=0)
(x=y A2 +x=0")> (z+y=0)

L (x=y AZ+x=0") >3z (z"+y=0)
.13z (z°+y=0)
9.
10.
11.
12.
13.
14.
15.

A(x=y Az +x=0")
(z7+x=0") =2 (x=y")
Jz(z’+x=0") =2 (x=Yy")
(x=y")—=> 13z (z’+x=0")
Jy(x=y) >3z (z"+x=0")
Jz(z’+x=0") =21y (x=y")
Az (z’+x=0")—>x=0

Q3 and PC, where y is any
variable other than x or z
properties of =

by Q5

by (2) and (3) using the properties
of =, and the definition of 1
axiom Q1

from (4) and (5) by PC
J-introduction

by part (a)

from (7) and (8) by PC

by PC

J-introduction

by PC

J-introduction

by PC

from (1) and (14) by PC

Now we have the induction step. Assume n=p + 1 and also

(x=y AZ+x =n")>y<n

We wish to show

as for the basis step

2.(x=yAz+x =n") > (y=0v - vy=p)

by the induction hypothesis
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w

.t=u->t=u’ properties of =
4. (x=y)> [z°+x=n">(y'=1v - v y=n)]
by (2), (3), PC, and 3 -introduction
(cf. the proof for the basis stage)
5. (x=y)> [z+x=n">(x=1Vv -~ vx =n)]
properties of = and PC

6. Ay(x=y") =2 [z'+x=n">2>(x=1v ' vx=n)] J-introduction
7. [y (x=y)vx=0]>[z+x=n"> (x =0v - vx =n)]

PC on (6)
8. dy(x=y)vx=0 Q3 and PC
9. z7+x=n">>(x=0v - vx=n) modus ponens on (7), (8)
10. [Fz(z’+x=n")] 2> (x =0V - vX =n) J-introduction. =

Lemma 16 For every numeral n and every variable x except x;,
I—Qn <x> [(n"=x)v(n <x)]

Proof: In what follows we will write z for x5. We also will need two variables y
and w other thanx and z .

1. (z7+n=xAz=0)= (0"+n=x) properties of =

2.0+n=x = n’'=x Lemma 13, Q4, and properties of =
3.(z’+n=x Az=0) > n"=x PC

4.2z=0-> (z’+n=x = n’'=x) PC

S5.2=y > (z+n=x = y +n=x) properties of =

6. y'+n=x = y +n'=x Lemma 13

7. (z=y AZ°+n=x)>>y +n"=x PC

8. (z=y Az’ +n=x)—-3Jz(z’+nr"=x) I-introduction

9. 2=y = [z+n=x—2>3z(z"+n"=x)] PCon(8

10. Ay(z=y ) [z+n=x>Tz(z’+n"=x)]

J-introduction
1. [z=0v3Iy(z=y)]1 o[z +n=x> (n"=x vIz(z'+n'=x)]
PC on (4) and (10)
12. z7+n=x = [p"=x v3Iz(z’+n"=x)] Q3,(11),and PC
13. Az(z’+n=x)>[n"=x vIz(z'+n"=x)]
J-introduction [ ]

Lemma 17  For every numeral # and every variable x except x5,
l—Q(x <n) v(x=n)vn<x).

Proof: The proof is by induction on n. We first consider n =0.

. w=x = w+0=x Q4 and properties of =
2. w+0=x = Jz(z+0=x) J-introduction

3. w=x = 0<x PC and definition

4. x=w - 0<x properties of = and PC
5..x=2"- 0<x generalization and L1
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oo I B )

© N LR W

Ldz(x=z") = 0<x
.x=0vdz(x=2")
L (x=0)v(0<x)

L (x<0)v(x=0)v (0<x)

J-introduction

Q3 and PC

PC using (6) and (7)
PC

Now for the induction stage, assume n =p+ 1 and the lemma holds for p.

p<n

X=p—= x<n
X<p—> xX<n

n=xX—>X=n

.(x<p)v (x=p)v((p<x)

.x=p—>(p<n-—>Xx<n)

.p<X—=(x=n Vv n<x)

. (x<n)vx=n)v(n <x)

hypothesis

Lemma 14

properties of = (twice)

PC on (2) and (3)

via Lemma 15.b and Lemma 14
Lemma 16

properties of =

PC using (4), (5), (6), and (7)

Now we are ready to show that the representable functions are closed under
the p-operator.

Lemma 18 If g(X, y) is representable in Q, and f =AX ny[g(X, y)=0]
is total, then f is representable in Q.

Proof: We will do this for the case where f is a function of one variable and let

yo

1

el

= o

10.
11.

u generalize it.

Suppose that g is represented in Q by A(x;,X,,x) and z is a variable not
appearing in A. Then we claim that f is represented in Q by the following

-formula, which we call C(x;,x,):

A(X,X,,0) AVZ[z<x, = JA(%,,2,0) ]

Suppose f(n)=m. We will first show that condition (1) is satisfied. We
have two cases. First suppose m=0.

. ~A(n,m,0)

1(z<0)
z<0 > 1A(n,z,0)

C(n,0)
Now suppose m > 0.
FA(m,m,0)

Vz(z<0 - 1A(n,z,0))

. for k < m, 1A(n,k,0)
.fork<m, z=k = (WA(n,k,0)—>1A(n,z,0))

.fork<m, z=k 251A(n,z,0)
z<m—=>(z=0v -

z<m —>1A(n,z,0)

vz=p)

by the representability of g,
since g(n,m)=0

by Lemma 15.a

PC

generalization

PC on (1) and (4)

as for (1)
as g(n,k) | #0 [condition (3)]

Theorem 21.2

PC

where p+ 1=m by Lemma 15.b
PC on (9) and (10)
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12. Vz[z<m = 1A(n,z,0)] generalization
13. C(n,m) PC on (6) and (12)

Now we turn to condition (2) for both m=0 and m> 0. We need to prove
C(n,x,) > x,=m.

14. C(n,x,) > Vz[z<x, = 1A(n,2,0)] PC

15. C(n,x,) = A(n,x,,0) PC
16. A(n,x,,0) = I(x,<m) PC on (11) and substitution of x,
17. C(n,x,) = (x, <m) PC on (15) and (16)
18. [m< x, AC(n,x,)] = [m< x, A A(n,m,0)]
(1) and PC

19. [m< x, A A(n,m,0)] > Jz[z<x, A A(n,z,0)]
J-introduction

20. [m< x, AC(n,x,)] = V2 2z <x, A A(n,z,0)]
PC on (18) and (19)
and definition

21. [m< x, A C(n,x,)]1 =V z[ 2<%, = 7A(n,2,0)]

pC
22, M m< x, AC(n,x,)] PC on (14) and (21)
23. C(n,x,) 2 Wm<x,) PC on (22)
24. (x5 <m) v (x,=m) v (m<x,) Lemma 17
25. C(n,x,)—> (xy=m) PC using (24), (23), and (17) [ ]

The results of this section, Theorem 2, and Corollary 16.5 bring us to our goal.

THEOREM 19 a. Every general recursive function is representable in Q.
b. Every total partial recursive function is representable in Q.
c. If Q is consistent and f is represented in Q by A, then
f(my,...,m)=n iff I—QA(mI gy My, )

C. The Functions Representable in Q Are Recursive

THEOREM 20 If Q is consistent, then every total function which is representable
in Q is partial recursive.

Proof: We already described the calculation procedure informally when we
defined representability. To proceed formally, suppose f is a total function of k
variables that is represented in @ by A . First, we need to show that we can
recursively list the wifs of the form A(m,, ..., m;,n) . Thatis, there is a
recursive function h such that for all w, if m =(w),, ..., m=(w),_,,

and r=(w),, then h(w)=[ A(my, ..., m,r)]. We leave the proof of this

to you (Exercise 7) based on your Gédel numbering.
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Now recall from Chapter 21.F that there is a recursive predicate Prf such that
Prf (n,m) iff n codes a proof of the wff which has Gdel number m. So to
calculate f(m,, ... , m;) we look for the least w and y such that Ih(w) = k
and fori <k, (w);,=m;,, and Pif (y, h(w)). Then f(m,, ..., m)=(w),.
That is,
f(my, ..., m) = (pz [1h((2)g) =k A (i<k = (2)y; =m; )
A PIf[(2), B((2))1] Dok =

COROLLARY 21 If Q is consistent, then for any function f each of the following is
equivalent to f being representable in O
a. f is general recursive
b. f is total partial recursive
c. f istotal and Turing machine computable

D. Representability of Recursive Predicates

Recursive predicates are representable in terms of their characteristic functions. For
later reference we need to make some observations about them.

Suppose that C is a recursive set. Then we know that its characteristic
function is representable in @ . That is, there is some A such that

if ne C, then l—QA(n ,I1) and I—QA(n , ) > y=1

if ng C, then I—QA(n ,0) and I—QA(n ) 2> y=0
By Lemma3, + QO # 1 ; so we can conclude, with details of the proof left to you,

if ne C, then l—QA(n ,1)

if n¢ C, then l—Q'IA(n ,1)

We can summarize this by saying that the set C is represented by A(x) in Q,

where we understand A(x) to be A(x,1). By repeated use of generalization and
substitution we can assume that x is x; .

COROLLARY 22 If Q is consistent, then for any set C
a. C isrepresentable in Q iff Cisrecursive.
b. If Cisrepresentedby Ain @, then C = {n: l—QA(n) }.

Similarly we say that a predicate of natural numbers, R, of k variables
is representable in Q if there is a formula A(x,, ... , X, ) such that

if R(n;, ..., n), then l—QA(nI s s )
ifnot R(ny, ..., n), then I—Q'IA(nl sees )

Beware: Other authors discuss a closely related notion of definability for
predicates that is (usually) different from representability.
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COROLLARY 23 If Q is consistent, then for any predicate R
a. R isrepresentablein Q iff R isrecursive.
b. If R is represented by A in O, then
R(ny, ..., ny) iff l—QA(nI s s M),

Exercises

t1. a. Show that if a and b are relatively prime natural numbers, then there is a
natural number x such that ax = 1 (mod b) . (This amounts to showing
that there are integers u and v such that 1 = au + bv.)

b. Prove the Chinese Remainder Theorem:
If x;, ..., X, are relatively prime in pairs, and y; , ..., ¥, are any natural
numbers, then there is a natural number z such that z = y;(mod x;), for
1< i < n. Moreover, any two such z’s differ by a multiple of x;- -+ -x
(Hint: Let x = x;- -+ -x, and call w; =x/,;. Thenfor 1< i< n,
w; is relatively prime to x i and so, by part (a), there is some z; such that
w;z;=1(mod x;) for 1< i < n. Now let

n°

z=(wy -2 y) +(wy -2y y)+ -+ (wy 2z, - y)
Then z = w; - z;- y; = y; (mod x;). In addition, the difference between

any two such solutions is divisible by each x; , and hence by x;- - -x,,.
And on the other hand, if z is a solution, so is z ~ (x;- "X,). Hence
there must be a solution z < x;- - -x, .)

c. Given any sequence of natural numbers 4a;, ... , a,, let
J=max(n,ay,...,a,) and ¢ =j!. Show that the numbers

u;=1+ (i +1)c for 0 < i< n have no factors in common except for 1.
(Hint: If aprime p divides 1+ (i + )cand 1 + (j+ 1)cfor i< j<n,
then p divides (j - 1)c. But p does not divide c, for otherwise it would
divide 1, and p does not divide j - i, because then it would divide n!
which divides c.)

2. Complete the proof of Theorem 1 by showing that the following predicates
and function are in C. (Compare Exercises 11.6 and 11.19.)

a. m<n d. p isaprime
b. m divides n e. n is apower of the prime p
c. m=n

3. Complete the proof of Theorem 2 for functions of more than one variable defined
by primitive recursion.

. Prove that the projection functions are representable in Q@ (Lemma 7).
. Provel—Qn +I1=n".

. Prove that multiplication is representable in @ (Lemma 10).

N N B

. Prove that we can recursively list all wffs of the form A (m Jaeees My M)
as needed in the proof of Theorem 20 .
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A. Q Is Undecidable

We can diagonalize the sets representable in Q by diagonalizing the wffs with one
free variable. This will give us a set which is not representable, and hence not
recursive (Corollary 22.23). Since we can recursively distinguish these wffs, the
only part of the diagonalization process that could fail to be recursive is the decision
procedure for theoremhood in Q, so we can conclude that @, viewed as the
collection of its theorems, is recursively undecidable (Chapter 19.D.2).

THEOREM 1 If Q is consistent, then Q is recursively undecidable.

Proof: Recall that the provability predicate Prf was defined as Prf(x, y) iff
x codes a proof sequence which proves A , where y =[A]], and that this is
recursive (Chapter 21.F.6). Define a predicate W on the natural numbers by

W(a, b, x) =ps SOME A with exactly one free variable X{s
a=[A] and Prf(x, [A(b)])

This is also recursive (Exercise 1). Now define a predicate R by
R(a, b) =p, 3x W(a, b, x)
That is,

R(a, b) iff for some A with exactly one free variable x, ,
a=[A] and l—Q A(b)

Not every A with just one free variable x, represents a set: only those for
which, for every n, either I—QA(n) or - Q'lA(n) . But if A does represent a
set in @, then on the assumption that @ is consistent we have:

R(a, b) iff b is in the set represented by A where [A] = a
Now consider the diagonalization of R, namely,
S={n: notR(n,n)}

202
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Suppose that S is representable in 0, say by A and [A] = a. Then
ae S iff I—QA(a)
iff R(a, a)
iff ag$

This is a contradiction, so S is not representable in Q. So by Corollary 22.23,

S is not recursive, and hence R can’t be recursive. But that can only be because the
set of Godel numbers of theorems of @ is not recursive. That is, Q is recursively
undecidable. =

COROLLARY 2 If Q is consistent then assuming Church’s thesis, @ is undecidable.

We will postpone our historical remarks to the end of Chapter 24.

B. Theories of Arithmetic

We have established that there is no decision procedure for this one particular
fragment of arithmetic, @. But what about other fragments? And what about
all of arithmetic?

1. Fragments simpler than Q

Let’s first look at fragments that are simpler than Q.

Suppose we delete the symbol for multiplication from the formal language.
Then the set of all wffs of that language that are true of the natural numbers (Chapter
21.A.6 and 21.C.2) is decidable (see Chapter 21 of Boolos and Jeffrey). The same is
true if instead we delete the symbols for both addition and successor: + and “. Thus,
we also have finitistic proofs of the consistency of arithmetic without multiplication
and of arithmetic without addition and successor by using the decision procedure in
each case to show that some one wff is not a theorem.

Alternatively, if we keep the same language and delete even one of the seven
axioms Q1-Q7 then, assuming that what we have is consistent, we can no longer
represent all the recursive functions (see Tarski, Mostowski, and Robinson, particu-
larly their Theorem 11, p. 62). So from now on Q will be the simplest fragment of
arithmetic in which we’ll be interested.

2. Theories

What do we mean by “fragment of arithmetic” ?

We've already said that we won’t get anything more by adding any logical
axioms or rules (Chapter 21.B.6) . So, keeping the same language, the only option is
to add further arithmetic axioms. If we do that we’ll want to look at the theorems we
can generate, so we make the following definitions.
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Given a collection T of wffs in our formal language, we write F, A to mean
that there is a proof of A using the set T as axioms (instead of @) and the logical
axioms and rules we adopted previously (Chapter 21.C.1). We write ¥, A to mean
that there is no proof of A from T. If -, A, we say that A is a consequence of T

The theory of T is the collection {A: ;A }. A collection T of wffs in our
formal language is a theory if it contains all of its consequences: if F, A then
A eT. We say that theory T extends theory S justincase T D S.

As for Q we say a theory T is consistent if there is no wff A such that both
t, A and ;1A . Otherwise it is inconsistent. There is only one inconsistent
theory: the collection of all wffs (see Chapter 19.E), and that is certainly decidable.

From this point on when we refer to a collection of axioms as a theory we mean
the collection of its theorems.

3. Axiomatizable theories

If we add more wffs to Q as axioms, we’d like to be able to prove further theorems
from them. This will be pretty hard if we don’t know which wffs are axioms. That
is, we ought to require that the collection of new axioms be decidable.

We say that a theory T is axiomatizable if there is a decidable collection of
wifs § such that T = the theory of S. If we wish to stress that we have identified
decidability with recursiveness, we will say a theory is recursively axiomatizable.

4. Functions representable in a theory

The definition of representability for functions and predicates (Chapter 22.B and D)
carries over to any theory T by replacing Q by T.

THEOREM 3 If T is a theory that extends @, then all the recursive functions are
representable in T

Proof: Suppose f is recursive. Then it is representable in @; that is, there is

some A such that whenever f(m,, ..., m;)=n, then l—QA(ml sy My X)
and I—QA(mI seees M ,X) = x=n. Since T extends Q, these are also
theorems of T, which is just to say that f is representable in T'. ]

For any axiomatizable theory T that extends Q and any particular recursive
axiomatization of T, we can establish just as for Q that proving is a computable
procedure. Hence if T is consistent then every function representable in it must be
recursive. So we have the following theorem.

THEOREM 4 a. If T isan axiomatizable extension of @, then the set of (Godel
numbers of ) theorems of T is recursively enumerable.
b. If T is a consistent axiomatizable extension of Q, a total function
is representable in T iff it is recursive.
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5. Undecidable theories

What was the essential ingredient in proving that @ is undecidable? We needed that
the recursive functions are representable in Q and that Q is consistent. We did not
need that only the recursive functions are representable in Q.

THEOREM 5  a, Every consistent theory in which the recursive functions are

representable is recursively undecidable.
b. Every consistent theory that extends @ is recursively undecidable.

Proof: a. Let T be such a theory. If T is axiomatizable the proof is as forQ.
If T is not axiomatizable, then since the entire collection of theorems of T could
serve as axioms, it must not be decidable. Note that we do not need to assume that
T extends Q.
b. This part follows from (a) and Theorem 3. =

Peano Arithmetic (PA) and Arithmetic

Induction is the most powerful tool to prove theorems about the natural numbers
that we have used in this book. That proof method is not available in Q: within Q
we have only the inductive definitions of addition and multiplication given by the
axioms.

The principle of induction in its strongest form says:

For every set of natural numbers X: if (0 € X and if for every n,
if ne X then n + 1 € X), then every natural number is in X.

We can’t formalize this statement in our formal language since we’ve only
allowed ourselves to quantify over natural numbers, not over sets of natural numbers.
But the informal proofs we have given required something weaker: for the proposi-
tion P in question that depends on n, if [P(0), and for every n, if P(n) then
P(n + 1) ], then for all n, P(n). This proof procedure we can formalize by
taking the counterpart to such a proposition to be a wff with one free variable.

Peano Arithmetic (PA) is the theory obtained by adding every instance of
the first-order scheme of inductionto Q:

[A(0) AVX(A(x) 2 AKX))] > VxA(x)

We leave to you (Exercise 2) to show that the set of all instances of the induction
scheme is decidable, and hence that PA is axiomatizable.

The first-order scheme of induction adds tremendous power to Q. For
instance, we can now prove that addition and multiplication are commutative and
associative, as well as all the other wifs of Theorem 21.3. Here is an example.

FpaXx+(y+z)=(x+y)+z
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Proof: Call this wff we want to prove A(z) . Here is a sketch of how to give a
formal proof.

l.y+0=y Q4

2. x+(y+0)=x+y properties of = (Theorem 21.2)
3. (x+y)+0=x+y Q4 and L1

4. A(0) properties of =

S.y+z =(y+z) Qs

6. x+(y+z)=x+(y+z) properties of =

7. x+(y+z) =(x+(y+z)) Q5 and L1

8. (x+y)+z' =((x+y)+1z) Q5 and L1

9. A(z) = A(z") (6), (7), (8), and properties of =
10. Vz (A(z) = A(z")) generalization

11. [A(0) AVZ(A(z)— A(z"))] = Vz A(z) the induction scheme

12. Vz A(z) PC using (4), (10), and (11)

13. x+(y+z)=(x+y)+z L1 ]

Is PA so powerful that we can now prove everything true of the natural
numbers that can be expressed in our formal language? On the assumption that
that question even makes sense (Chapter 21.C.2), we make the following
nonconstructive definition.

Arithmetic is the collection of all wifs in our formal language
that are true about the natural numbers

We needn’t accept that such a collection exists, but to investigate whether the
truths of arithmetic can be reduced to a formal system of proof we shall adopt as a
working hypothesis that there is such a collection.

Given that there is a collection called Arithmetic, then it is a theory, since the
consequences of true wffs are true. And it is consistent since no wff is both true and
false. Moreover, as long as we’ve gone this far we may as well assume that it
extends @, for those axioms are as good candidates as we’ll ever have for general
truths of the natural numbers. But please note, we are not making these assumptions
for PA nor for any of the other work that follows, except for discussions involving
Arithmetic .

Now we can pose our question in the following terms: Is PA = Arithmetic ?
And while we’re at it: Is PA decidable? Is Arithmetic decidable?

For decidability we have the following as a Corollary to Theorem 5.

COROLLARY 6 a. If PA is consistent, then it is recursively undecidable.
b. Arithmetic is recursively undecidable.

Thus, assuming Church’s Thesis, Arithmetic is undecidable and so there is no
constructive procedure for determining whether an arbitrary wff is true.
Let’s now turn to the question of whether PA = Arithmetic.



SECTION C Peano Arithmetic and Arithmetic 207

THEOREM 7  Arithmetic is not axiomatizable.

Proof: Suppose Arithmetic were axiomatizable. Then it would be recursively
decidable: To decide whether a wff A is true we begin the proof machinery that
recursively enumerates the theorems, in this case all wffs true about the natural
numbers. Since either A or A is true, we must eventually find one of them on

the list. If we find A , then A is true. If we find A, then A is not true. Hence
Arithmetic would be recursively decidable. But that contradicts Corollary 6,

so Arithmetic is not axiomatizable. )

COROLLARY 8 Arithmetic # PA

Proof: PA is axiomatizable, but Arithmetic is not. =

COROLLARY 9 (Godel, 1931) If T is a consistent axiomatizable theory in the
language of first-order arithmetic, then there is some wif true of the natural numbers
which cannot be proved in T'.

Proof: By Theorem 7, Arithmetic # T. We cannot have T O Arithmetic
by the same argument as for Theorem 7. Hence there must be some A which is true
and is not a theorem of T'. =

Consider the theory T consisting of Q plus the scheme 1Vx(0 +x=x).
In Theorem 21.3 we showed that T has a model and hence is consistent (assuming
that the theorems of Q are true of the natural numbers). So for that theory Corollary
9 is trivial. What we are concerned with now are theories where T' — Arithmetic .

COROLLARY 10 If T is a consistent axiomatizable extension of Q all of whose
theorems are true of the natural numbers, then there is some sentence A true
of the natural numbers such that ;. A and ;1A .

A closed wff A such that neither -, A nor b 1A is called formally
undecidable relative to T .

What can we now conclude? The truths of arithmetic in the formal language
we have chosen cannot be axiomatized. Even the very powerful theory PA cannot
capture all the truths of arithmetic expressible in our formal language. Moreover,
any interesting fragment of arithmetic that we can axiomatize (i.e., one extending
Q) can be used to characterize the recursive functions. The power of this makes it
undecidable.

But Corollaries 9 and 10 are unsatisfying. We have had to make some very
strong assumptions about the meaning and truth of wffs. Moreover, for a given
theory T we have not actually produced a sentence that is formally undecidable
relative to T. For the theory Q we have some examples from Theorem 21.3
(Exercise 3 below), but how about other theories? In Chapter 24 we will show that
assuming only the consistency of a theory extending Q we can construct a sentence
formally undecidable relative to that theory along the lines of the liar paradox.
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Exercises

1

CHAPTER 23 The Undecidability of Arithmetic

. (From the proof of Theorem 1)

a. Show that the predicate W is recursive.
b. Show that the predicate R is recursively enumerable.

t2. Show that the collection of all instances of the induction scheme of PA is

3

4

6.

t7.

recursively decidable.

. a. Why are the wffs of Theorem 21.3 formally undecidable relative to Q ?

(Hint: We’ve shown that they aren’t provable. Why aren’t their negations
provable?)
b. Show that we can deduce Q3 from the induction scheme of PA .

tc. Prove that all the wffs of Theorem 21.3 are theorems of PA .

(Hint: For wff (b) we’ve shown this above. Do (a), (d), (h), (f), (c), (g)
in that order. Prove each informally first, and then convert your informal
proof into a formal one. For part (e) use PC to reduce it to a wff with no
quantifiers.)

. We say that a theory T is complete if for every closed A, either AeT or

J1AeT.

a. Why do we require A to be closed? (Hint: Consider 3y (2 - y=x).)

b. What theories discussed in this chapter are complete?

c. Is the inconsistent theory complete?

d. Generalize the argument of Theorem 7 to show that any axiomatizable
complete theory is decidable. Note that you will have to use two different
methods, one if the theory is consistent, and another if it is not. Is there a
decision procedure that will tell you which method to use?

e. Suppose that T extends @, and T is complete. Is T decidable?

Is T axiomatizable?

f. Is PA complete?

. Show that the set of G6del numbers of wffs in Arithmetic is not recursively

enumerable (Hint: cf. Theorem 17.3 or Theorem 7.)

a. Show that there is a function representable in Arithmetic that is not
recursive,
(Hint: Use any r.e. nonrecursive set and the Projection Theorem 17.5.)

b. Prove that there is a function on the natural numbers that is not representable
in Arithmetic . Do not simply use a counting argument.

Prove Church’s Theorem (1936a):
The collection of theorems that can be proved using only the logical
axioms and rules is (recursively) undecidable, if it is consistent.
[Hint: Modify the definition of “consequence” from Chapter 19.Appendix.2
to apply to first-order logic without the axioms of Q. Then modify the proof of
the Deduction Theorem there to show that for any closed wif A :
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TU{A}-B iff THFA—>B
Letting A4, ..., A; be the universally quantified forms of Q1-Q7, show that:

FoB iff FoA = (A (A3 (A2 (A2 (A (A;-B)))). ]
8. Is Corollary 10 a blow to Hilbert’s program? (See the last paragraph on p. 57.)

Further Reading

For a full exposition of undecidability that augments both this chapter and the next,
with many examples of both decidable and undecidable theories, see Epstein’s
Classical Mathematical Logic.
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A. Self-Reference in Arithmetic: The Liar Paradox

There is no computable procedure for deciding whether an arbitrary wff of arithmetic
is true (Corollary 23.6). Nor can we axiomatize or list the true sentences (Theorem
23.7, Exercise 23.5). But might we be able to define in the formal language the set
of true sentences?

If we could define truth, we could also define falsity. Then via the self-
reference available to us from our G6del numberings we could recreate the liar
paradox, “This sentence is false.”

THEOREM 1 (Godel, 1934) The set of sentences true of the natural numbers is not
representable in Arithmetic.

Proof:  Suppose to the contrary that {n: for some A, n =[A] and A is true of
the natural numbers} is representable in Arithmetic. Then so too is the set

F ={m: for some A with exactly one free variable x;, m=[A]
and A(m) is false}

because the rest of the definition of F is recursive (we leave the details to you since
we’ll do a similar proof for Theorem 2). Suppose that F(x, ) represents F (see
Chapter 22.D) and [F(x,)]=a. Then F(a) € Arithmetic (i.c., F(a) is true) iff

a€ F. Butae F iff F(a) is false, a contradiction. So F and hence the

sentences true of the natural numbers cannot be represented in Arithmetic . ]

Theorem 1 is sometimes colloquially stated as: Arithmetical truth is not
definable in arithmetic.

Godel’s insight in 1931 was that “true” need not be the same as “provable”.
By replacing “true” in the liar paradox by “provable”, we get not a paradox but a

210
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sentence that expresses its own unprovability (from our vantage point outside the
system) and that we can show is indeed unprovable.

THEOREM 2 If @ is consistent, then there is a wff U (which intuitively expresses its
own unprovability) such that I+QU .

Proof: Define a predicate W by

Wi(n, x) =p, some A with exactly one free variable x;, n=[A]
and Prf(x,[A(n)])

This is recursive [it’s W(n, n, x) from the proof of Theorem 23.1]. Hence by
Corollary 22.23 it is representable in Q, say by W(xy,x,). Consider the wff with
one free variable

Vx, TW(x;,x,)

and then for some a, [Vx, TW(x;,x,)] = a. Define
U =p; Vx,1W(a, x,)

(intuitively U expresses that it itself is unprovable in Q). Then
W(a, x) iff x is the G6del number of a proof in Q of U

Suppose that U is provable in Q. Then there is a number n such that
W(a, n). Hence -oW(a, n), so by J-introduction |—Q3X2W(a, X,).
But that is just I—Q‘IU, which contradicts the consistency of Q. Hence |+QU . [

We have not yet produced a wff that is formally undecidable relative to Q.
We could claim that U will do if we suppose that all the theorems of Q are true, but
we have scrupulously avoided questions of truth and meaning in Theorem 2 except
as motivation. In any case, a much weaker syntactic assumption will do. We say
that a theory T is w-consistentif for every wif B, whenever 5 B(#) for every
n, then 71Vx B(x). We leave to you the proof that any ®-consistent theory is
consistent as well as the following corollary (Exercise 1).

COROLLARY 3 If Q is w-consistent, then Q'IU , and hence U is formally
undecidable relative to Q.

Using only syntactic assumptions we have shown that there must be a wff
which is true but not provable in Q, since U is a closed wff and thus one of U or
U must be true.

Rosser, 1936, showed how to complicate the definition of U to produce a wff
V that requires only the assumption that @ is consistent in order to prove that it is
formally undecidable relative to Q (Exercise 2).

Theorem 2 and Corollary 3 generalize to any consistent axiomatizable
extension of Q. If T is an axiomatizable theory that extends @, then proving
is a computable procedure in T, too. That is, using your Gédel numbering of the
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language, the set of Godel numbers of axioms is recursive and the predicate Prfy
defined by

Prfp(x,y) =pes X codes a proof sequence in T which proves
the wff whose Godel number is y

is recursive. So we can define a wff Uy exactly as we did U, replacing Prf by
Prfy everywhere, such that U intuitively expresses its own unprovability in T'.
The proof of the following is then the same as for Theorem 2 and Corollary 3.

THEOREM 4 (Godel’s First Incompleteness Theorem, 1931)

If T is a consistent axiomatizable extension of @, then t*5 Uz.
If T is also mw-consistent, then t* ;71 Ug.

The proofs of Theorem 2 and Theorem 4 are completely constructive. Later
mathematicians have produced “intuitive” theorems of arithmetic that can’t be
proved in PA (see Further Reading below).

The Unprovability of Consistency

What does it mean to say that we cannot prove PA consistent within PA? We need
some way to talk about the consistency of PA within PA .
Define the predicate Neg by

Neg(x, y) =p, x is the Godel number of a wff, and
y is the Gédel number of its negation

This is recursive, as you can show using your Gédel numbering. Then

PA is consistent iff there isno A suchthat p4 A and +p4 1A
iff forevery x,y, z, w,
not [ Neg(x,y) A Prfpy(2,x) A Prfpy(w,y)]

Call the part in brackets C(x, y, z, w). It is recursive and hence is representable
in Q, say by C, which also represents it in PA. Define

Consispy =p.; Vx; Vx, Vx3 Vx, 1C(xq, X, X5,X )

Viewed from outside the system, Consisp,4 expresses that PA is consistent.

THEOREM 5 (Gddel’s Second Incompleteness Theorem, 1931)

If PA is consistent, then t*p, Consisp, .

Proof: Recall that the proof of Theorem 4 for PA is the proof of Theorem 2

with Prfp, in place of Prf. If we choose, we may make that entire proof part

of ordinary arithmetic by talking of indices of wffs rather than wffs and interpreting
all the discussion of the formal system in terms of predicates on those indices. The
interpretation of the formal system does not figure into the proof of:

if PA is consistent, then #* Up,
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Moreover, we know that Up, formalizes the proposition that Up, is not provable.
So we can establish as an informal theorem of arithmetic:

if Consispy then Upy

The entire proof of this arithmetic statement is finitary and, we claim, can be
formalized within PA (compare how we proved the associative law of arithmetic
in PA by formalizing the usual informal proof, p. 206). You can imagine how
formalizing that informal proof would be tedious and extremely long, and therefore
we will not include it here. (You can find it proved in detail in a slightly different
version in Shoenfield, pp. 211-213, where his theory N, p. 22, is our @, and his
theory P, p. 204, is our PA.) Thus, we have:

|_PA COnSiSPA 4 UPA

Since we also have t*p, Up, , we must have i p, Consisp, . ]

We can also ask whether Godel’s Second Incompleteness Theorem applies to
consistent axiomatizable extensions of PA or even Q. The answer is “yes” if we
are careful about how we interpret consistency as an arithmetic predicate and how
the theory is presented (see, e.g., Boolos and Jeffrey, Chapter 16, as well as
Feferman, and Bezboruah and Shepherdson). It is possible, however, to give a
finitary consistency proof within PA of the weak theory Q, though not within Q
itself (see Shoenfield: the finitary consistency proof is on p. 51, and the description
of how to convert it to one in PA is on p. 214 ).

Generally, then, we conclude that if an axiom system is consistent and contains
as much number theory as PA, then we cannot prove the consistency of that system
within the system itself.

What is the significance of Godel’s Second Incompleteness Theorem for
Hilbert’s program? If we are intent on proving finitistically that infinitistic methods
are acceptable in mathematics, then at the very least we should be able to prove that
PA is consistent, There are several possibilities.

1. All finitary methods of proof can be formalized within PA. There is good
evidence for this: In 1937 Ackermann showed that in essence PA is equivalent to
set theory without infinite sets (see Moore, p. 279). (Note that we don’t claim that
PA is itself a finitary theory of arithmetic.)

In this case Gddel’s theorem demonstrates that Hilbert’s program cannot be
accomplished. Here is what Shoenfield says (where we’ve relabeled the theories
with our names):

The theorem on consistency proofs is a limitation on the type of consistency
proof which we can give for PA . For this to be of any significance, we must
know that some types of consistency proofs can be formalized in PA . Now it
is reasonable to suggest that every finitary consistency proof can be formalized
in PA (or equivalently, in a recursive[ly axiomatizable] extension of PA).
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First, a finitary proof deals only with concrete objects, and these may be
replaced by natural numbers by assigning such a number to each object (as we
have done for expressions [wffs]). Second, the proof deals with these objects in
a constructive fashion; so we can expect the functions and predicates which arise
to be introducible in recursive extensions of PA.

An examination of specific finitary consistency proofs confirms this
suggestion. For example, the consistency proof for @ given in Chapter 4 can
be formalized in PA . It is a tedious but elementary exercise to formalize the
proof of the consistency theorem, We then have to check that the set of
expression numbers of true variable-free formulas of @ can be introduced in
a recursive extension of PA; and this is also straightforward.

We cannot, of course, state with assurance that every finitary consistency
proof can be formalized in PA, since we have not specified exactly what
methods are finitary. . ..

Investigations by Kreisel have shown that a consistency proof which could
not be formalized in PA would have to use some quite different principles
from those used in known finitary proofs.

We conclude that it is reasonable to give up hope of finding a finitary
consistency proof for PA .

Shoenfield, p. 214

2. There are further finitary principles, but we can axiomatize them all in some
extension of PA. But then our remark that Godel’s theorem can be extended to
cover such extensions has the same effect as Theorem 5 in the first case.

3. There are further finitary principles and they can all be expressed in our formal
language, but they cannot be axiomatized. This, too, would put an end to Hilbert’s
hopes.

For all formal systems for which the existence of undecidable arithmetical
propositions was asserted above, the assertion of the consistency of the system in
question itself belongs to the propositions undecidable in that system. That is, a
consistency proof for one of these systems G can be carried out only by means
of methods of inference that are not formalized in G itself. For a system in
which all finitary (that is, intuitionistically unobjectionable [see Chapter 25. A])
forms of proof are formalized, a finitary consistency proof, such as the formalists
seek, would thus be altogether impossible. However, it seems questionable
whether one of the systems set up, say Principia Mathematica, is so all-
embracing (or whether there is a system so all-embracing at all).

Godel, 1931a, p. 205
4. There are further finitary principles that may suffice to prove the consistency of
PA but which cannot be formalized in our first-order language.

I wish to note expressly that [Theorem 5 for the system P of Principia
Mathematica] (and the corresponding results for M [formal set theory]
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and A [classical mathematics]) do not contradict Hilbert’s formalistic viewpoint.
For this viewpoint presupposes only the existence of a consistency proof in which
nothing but finitary means of proof is used, and it is conceivable that there exist
finitary proof’s that cannot be expressed in the formalism of P (or of Mor A).

Godel, 1931, p. 195

Indeed, a consistency proof for PA was given by Gentzen in 1936 a short time
after Godel’s work appeared (see Kleene, 1952, §79 or the Appendix of Mendelson,
1964). Briefly, a binary relation on the natural numbers is a linear ordering if it is
transitive, antisymmetric, antireflexive, and total. It is a well-ordering if in addition
every nonempty set of natural numbers has a least element in the ordering. Note that
this latter is not a first-order assumption. We gave examples of such orderings in
Chapter 13: @2, @, ..., @", ..., and argued that there is a valid principle of
induction for each. Similarly (see, e.g., Péter, 1967) there are orderings ©®, ©® ,
... for each of which there is a principle of induction that can be reduced to ordinary
induction. Gentzen showed that we can give a consistency proof of, for example,
PA if we assume not just one of these principles of induction but all of them at once.
(That is, we allow induction on any ordinal less than £, which is the least fixed
point of Ax (®X).) But if the consistency of PA is in question, how much more so
the theory of PA plus the formalization of Gentzen’s induction principle as a scheme
of induction in our formal language.

If we hold to finitary or even classical methods of proof, faith cannot be
banished from mathematics: we simply have to believe that PA is consistent, since
any proof which we could formalize will use methods or principles that are more
questionable than those we use in the system itself.

Perhaps then we should look at arithmetic from a more constructive viewpoint
than classical mathematics, as we will do in Chapter 26.

But before we leave this topic, here is what Gddel, much later, thought of the
relation of his theorems to Hilbert’s program.

‘What has been proved is only that the specific epistemological objective which
Hilbert had in mind cannot be obtained. This objective was to prove the consis-
tency of the axioms of classical mathematics on the basis of evidence just as
concrete and immediately convincing as elementary arithmetic.

However, viewing the situation from a purely mathematical point of
view, consistency proofs on the basis of suitably chosen stronger meta-
mathematical presuppositions (as have been given by Gentzen and others) are
just as interesting, and they lead to highly important insights into the proof
theoretic structure of mathematics. Moreover, the question remains open
whether, or to what extent, it is possible, on the basis of the formalistic
approach, to prove ‘constructively’ the consistency of classical mathematics,
i.e., to replace its axioms about abstract entities of an objective Platonic realm
by insights about the given operations of our mind.

Gidel, quoted in Reid, 1970, pp. 217-218
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Historical Remarks

By 1930 research on Hilbert’s program was in full swing: In 1929 Presburger had
shown that arithmetic without multiplication is decidable, and in 1931 Skolem did
the same for arithmetic without addition and successor. Finitary consistency proofs
had been given for some restricted but interesting fragments of arithmetic, for
example, by Herbrand in 1931. There seemed good reason to believe that a finitary
consistency proof could be given for formalized arithmetic,

In 1930 Godel proved the completeness theorem for first-order logic (see p. 180
above), which justified that the logical axioms and rules we have adopted are
sufficient. In 1931 he introduced the idea of numbering a formal system so that
theorems about the system could be translated into theorems about natural numbers,
To be able to use that idea to talk about a formal theory within the theory itself, he
needed to show that various predicates were representable: “is the Godel number of
a wff”, “is the G6del number of an axiom”, Prf, and so on. To do so he showed
that the primitive recursive functions (which he called “recursive”) are representable
in the first-order part of the formal system of Principia Mathematica of Whitehead
and Russell. He then observed, as we have in Section A, that arithmetic truth could
not be defined in that theory by showing that the liar paradox would result (see
Tarski, 1933, p. 247 and pp. 277-78, for historical comments on that). Replacing
“true” by “provable” in that example, he then constructed in that theory a wff which
intuitively expresses that it itself is unprovable and showed that on the assumption of
w-consistency neither the wff nor its negation can be provable and hence that there
must be a wff which is true but unprovable (he used the term “undecidable” for what
we call “formally undecidable™). Then, following just as we did here, he showed
that the consistency of the theory could not be proved within the theory itself
(assuming it is consistent). )

The system of Principia Mathematica was framed in a language that is much
more extensive than the first-order language of arithmetic we have used. Gédel was
clearly concerned about the status of the class of functions he had shown to be
representable in the system, the primitive recursive ones, and devoted a section of his
paper to showing that they could be represented in our formal language of arithmetic.
It was for that purpose he devised his B-function (Chapter 22.A). Only later were
the undecidability results formulated for simpler theories such as Q (see Tarski,
Mostowski, and Robinson, p. 39).

It was not until 1936 that Rosser showed that the assumption of consistency,
rather than ®-consistency, was sufficient to establish a formally undecidable
sentence. Compare that to how we proved the existence of formally undecidable
sentences in Chapter 23: any theory in which the recursive functions are represent-
able is undecidable, in particular Arithmetic is undecidable, and hence is not
axiomatizable. G&del did not proceed along those lines because it was not clear to
him that the primitive recursive functions were all the computable ones, and without
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a precise notion of computability there was no precise notion of an axiomatizable
theory. Here is how he grappled with that problem in his lectures in 1934:

A formal mathematical system is a system of symbols together with rules for
employing them. The individual symbols are called undefined terms. Formulas
are finite sequences of the undefined terms. There shall be defined a class of
formulas called meaningful formulas, and a class of meaningful formulas called
axioms. There may be a finite or infinite number of axioms. Further, there shall
be specified a list of rules, called rules of inference; if such a rule be called R,
it defines the relation of immediate consequence by R between a set of
meaningful formulas My, ..., My called the premises, and a meaningful
formula N, called the conclusion (ordinarily k = 1 or 2). We require that the
rules of inference, and the definitions of meaningful formulas and axioms, be
constructive; that is, for each rule of inference there shall be a finite procedure
for determining whether a given formula B is an immediate consequence (by
that rule) of given formulas A, ..., A, and there shall be a finite procedure
for determining whether a given formula A is a meaningful formula or an axiom,
Godel, 1934, p. 41

In 1964, in an addendum to his paper of 1934, G&del commented on how the
difficulty of characterizing formal systems was overcome:

In consequence of later advances, in particular of the fact that, due to A. M.
Turing’s work, a precise and unquestionably adequate definition of the general
concept of formal system can now be given, the existence of undecidable
arithmetical propositions and the non-demonstrability of the consistency of a
system in the same system can now be proved rigorously for every consistent
formal system containing a certain amount of finitary number theory. Turing’s
work gives an analysis of the concept of “mechanical procedure” (alias
“algorithm” or “computation procedure” or “finite combinatorial procedure”).
This concept is shown to be equivalent with that of a “Turing machine”,
A formal system can simply be defined to be any mechanical procedure for
producing formulas, called provable formulas. For any formal system in this
sense there exists one in the sense of [the quotation immediately above] that has
the same provable formulas (and likewise vice versa), provided the term “finite
procedure” occurring [in the quotation immediately above] is understood to
mean “mechanical procedure”. This meaning, however, is required by the
concept of formal system, whose essence it is that reasoning is completely
replaced by mechanical operations on formulas. (Note that the question of
whether there exist finite non-mechanical procedures not equivalent with any
algorithm, has nothing whatsoever to do with the adequacy of the definition of
“formal system” and of “mechanical procedure”.)

Godel, 1934, pp. 71-72

Finally, we’1l let Godel tell you how (in retrospect) he believes his work
depended on his philosophical views:
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A similar remark applies to the concept of mathematical truth, where formalists
considered formal demonstrability to be an analysis of the concept of mathe-
matical truth and, therefore, were of course not in a position to distinguish

the two.

I would like to add that there was another reason which hampered
logicians in the application to metamathematics, not only of transfinite
reasoning, but of mathematical reasoning in general and, most of all, in
expressing metamathematics in mathematics itself. It consists in the fact that,
largely, metamathematics was not considered as a science describing objective
mathematical states of affairs, but rather as a theory of the human activity of

handling symbols. )
Godel, quoted in Wang, p. 10

Exercises

1. a, Prove that if a theory T extends Q and is ®-consistent, then it is consistent.
b. Prove that if Q is consistent and - consistent, then I-"Q‘IU .
c. Let T be the theory of the axioms of @ ptus IVx (0 +x=x).
Prove (using Theorem 21.3)
i. If Q is consistent, then so is T.
ii. T is ®-inconsistent.
12. (Rosser’s Theorem, 1936)
Define
W*(n,y) =p, some A with exactly one free variable x; ,
n=[A] and Prf(y,[NA(n)])
This is recursive and hence representable in Q, say by W* . Now consider the
wif with one free variable x, :
Vx,[W(x,x,) = 3x3 (x3<x, A WH(x;,%43))]
with Godel number m. Define
V=pee VX, [W(m,x,) = 3x; (x5 <x, A WH(im,x3))]
1. W(m, n) holds iff n is a G6del number of a proof in Q of V.
2. W*(m, n) holds iff n is a Godel number of a proof in Q of 1V,

In terms of the standard interpretation, V intuitively expresses that if it has a
proof which is coded by k, then there is also a proof of its negation which is
coded by some number less than k.

Prove: if Q is consistent, then V is formally undecidable relative to Q.
(Hint: You will need Lemmas 22.15 and 17.)

13. (Second-Order Peano Arithmetic)
a. Describe what changes we would have to make to the first-order langnage of
arithmetic to express the full (complete) induction principle:

For every set of natural numbers X: if 0 € X, and if for every n,
if neX then n+ 1eX, then every natural number is in X
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Formalize that principle as a scheme and define Full (Second-Order) Peano
Arithmetic (FPA) in that new language to be PA plus that axiom scheme.

b. Show that any model of FPA is isomorphic to the natural numbers.

c. Conclude that a wff in the extended language (which includes the old language)
is true of the natural numbers iff it is true in every model of FPA .

d. Conclude that there can be no axiomatic proof theory for this language that
would allow us to deduce formally all consequences of the new axiom.

tt14. Give a finitistic consistency proof of PA .
Be sure to send us a copy.

Further Reading
Joel Spencer in “Large numbers and unprovable theorems” gives a clear discussion of
unprovability in PA in terms of functions that grow too fast. He also gives an example of
a mathematical statement that is formally undecidable in PA which is not a translation via
codings of a metamathematical assertion. The first example of a clear combinatorial prin-
ciple that is true but not provable in PA was given in 1977 by I. Paris and L. Harrington in
“A mathematical incompleteness in Peano arithmetic”.
In “The present state of research into the foundations of mathematics”, Gentzen, 1938,
gives a very clear discussion of consistency proofs and their relation to Godel's theorems.
See Epstein’s Classical Mathematical Logic for a presentation of second-order
arithmetic with full induction.
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25 Church’s Thesis

In Chapter 10 we first looked at the identification of the notion of an effectively
computable function with that of a total recursive function; we called that Church’s
Thesis. Now we’ve seen some of the equivalences which establish the Most
Amazing Fact (Chapters 18 and 22), and we’ve seen applications of Church’s Thesis
in undecidability and incompleteness theorems about formal systems of arithmetic
(Chapters 23 and 24). So we can begin to evaluate the significance and nature of
that thesis.

History

The first statement of what has come to be called Church’s Thesis was in an abstract
which Church gave for his 1936 paper.

In this paper a definition of recursive function of positive integers which is
essentially Gddel’s is adopted. And it is maintained that the notion of an
effectively calculable function of positive integers should be identified with that
of recursive function, since other plausible definitions of effective calculability
turn out to yield notions which are either equivalent to or weaker than
recursiveness.

Church, 1935

In his paper Church said the following:

We now define the notion, already discussed, of an effectively calculable
function of positive integers by identifying it with the notion of a recursive
function of positive integers (or of a A-definable function of positive integers).
This definition is thought to be justified by the considerations which follow, so
far as positive justification can ever be obtained for the selection of a formal
definition to correspond to an intuitive notion.

Church, 1936, p. 100

Thus, Church took the identification to be a definition.

223
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It was Post, 1936, who took it to be an hypothesis. To repeat from his paper,
which we looked at in Chapter 10:

The writer expects the present formulation to turn out to be logically equivalent
to recursiveness in the sense of the Gdel-Church development. Its purpose,
however, is not only to present a system of a certain logical potency but also, in
its restricted field, of psychological fidelity. In the latter sense wider and wider
formulations are contemplated. On the other hand, our aim will be to show that
all such are logically reducible to formulation 1. We offer this conclusion at the
present moment as a working hypothesis. And to our mind such is Church’s
identification of effective calculability with recursiveness.* Out of this hypo-
thesis, and because of its apparent contradiction to all mathematical develop-
ment starting with Cantor’s proof of the non-enumerability of the points of a
line, independently flows a Godel-Church development. The success of the
above program would, for us, change this hypothesis not so much to a definition
or to an axiom but to a natural law,

*Actually the work done by Church and others carries this identification considerably
beyond the working hypothesis stage. But to mask this identification under a definition
hides the fact that a fundamental discovery in the limitations of the mathematicizing
power of Homo Sapiens has been made and blinds us to the need of its continual
verification.

Post, 1936, p. 291

Post objected to Church’s calling the identification a definition. Post was quite
explicit: He was attempting to abstract and characterize something about human
capabilities. The informal notion of computability or effectiveness was about what
people can do.

Turing had the same goal and, independently of Church and Post, attempted to
give a formal analogue of the notion of computability, as we saw in Chapter 9.
Although his machines are now seen as the most convincing analysis, his statement
of his goals was less precise and certainly less memorable than Church’s:

The computable numbers may be described as the real numbers whose
expressions as decimals are calculable by finite means. ... According to
my definition, a number is computable if its decimal can be written down
by a machine.
Turing, 1936, p. 116

It appears that Turing means by “machine” the kind of machines defined in his
paper, but that is not clear. Moreover, he seems to take for granted that a function
which can be computed by any one of his machines is computable, and is concerned
only with the converse (see Chapter 9.A).

In 1937 Church wrote reviews of both Post’s and Turing’s papers. There, and
in 1938, he continued to maintain that he was making a definition.

[Post] does not, however, regard his formulation as certainly to be identified with
effectiveness in the ordinary sense, but takes this identification as a “working
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hypothesis” in need of continual verification. To this the reviewer would object
that effectiveness in the ordinary sense has not been given an exact def-inition,
and hence the working hypothesis in question has not an exact meaning. To
define effectiveness as computability by an arbitrary machine, subject to
restrictions of finiteness, would seem to be an adequate representation of the
ordinary notion, and if this is done the need for a working hypothesis disappears.

Church, 1937a

This notion of an effective process occurs frequently in connection with
mathematical problems, where it is apparently felt to have a clear meaning,
but this meaning is commonly taken for granted without explanation. For our
present purposes it is desirable to give an explicit definition.

Church, 1938, p. 226

The idea that it was a thesis predominated, however, as Kleene wrote in 1943:

Now, the recognition that we are dealing with a well-defined process which for
each set of values of the independent variables surely terminates so as to afford a
definite answer, “Yes” or “No,” to a certain question about the management of
termination, in other words, the recognition of effective decidability in a predi-
cate, is a subjective affair. Likewise, the recognition of what may be called
effective calculability in a function. We may assume, to begin with, an

intuitive ability to recognize various individual instances of these notions. In
particular, we do recognize the general recursive functions as being effectively
calculable, and hence recognize the general recursive predicates as being
effectively decidable.

Conversely, as a heuristic principle, such functions (predicates) as have
been recognized as being effectively calculable (effectively decidable), and for
which the question has been investigated, have turned out always to be general
recursive, or in the intensional language, equivalent to general recursive functions
(general recursive predicates). This heuristic fact, as well as certain reflections
on the nature of symbolic algorithmic processes, led Church to state the
following thesis, The same thesis is implicit in Turing’s description of
computing machines,

Thesis I: Every effectively calculable function (effectively decidable
predicate) is general recursive.

Since a precise mathematical definition of the term effectively calculable
(effectively decidable) has been wanting, we can take the thesis, together with
the principle already accepted to which it is the converse, as a definition of it for
the purpose of developing a mathematical theory about the term. To the extent
that we have already an intuitive notion of effective calculability (effective
decidability), the thesis has the character of an hypothesis——a point emphasized
by Post and Church. If we consider the thesis and converse as definition, then
the hypothesis is an hypothesis about the application of the mathematical theory
developed from the definition. For the acceptance of the hypothesis, there are,
as we have suggested, quite compelling grounds.

Kleene, 1943, p. 274



226 CHAPTER 25 Church’s Thesis

There is a certain hedging here that is not unusual: many would have liked to
take it as simply an heuristic principle. Godel originally took it so in 1934.

Recursive functions [what we now call primitive recursive functions] have the
important property that, for each given set of values of the arguments, the value
of the function can be computed by a finite procedure.*
* The converse seems to be true, if, besides recursions according to the scheme (2),
recursions of other forms (e.g., with respect to two variables simultaneously) are
admitted. This cannot be proved, since the notion of finite computation is not defined,
but it serves as a heuristic principle.

Godel, 1934, pp. 43-44

B. A Definition or a Thesis?
1. On definitions

There are two kinds of definitions. One is the kind that mathematicians normally use
and is called a nominal definition. Included in this type are purely conventional
definitions that amount to using one word or symbol in place of others. For instance,
in group theory we define the symbol “o~1” to stand for “the B such thata- B=1",
Or an author of a book on group theory will define the word “group” to mean any
object that satisfies her axioms.

Also included in this type are definitions that are proposed as formalizations or
“rational reconstructions” of imprecise or vague intuitive notions. This is the type of
definition Church apparently intended.

Nominal definitions are a matter of convenience, for instance, when a long
string of symbols is replaced by a single one, or they are a way to point our attention
to a particular object or concept, or an attempt to replace a vague intuitive notion by
a precise formal one. They are to be judged by their utility, their fruitfulness, and
their aptness.

The other type of definition, more common in philosophy, is called an
absolute, or real definition: a characterization of a concept or object is given by
listing its essential features. For example, “human” was defined by Aristotle as
“rational animal”, for whatever is a human is necessarily a rational animal, and
whatever is a rational animal is necessarily a human.

Absolute definitions are not about what words mean but about what things
are. They are assertions in disguise. They assert that a concept or object for which
we already had a word is correctly characterized by certain properties. This assumes
that the concept, such as computability, which we had thought to be vague was not,
either because it refers to a completely precise (though indistinct to us) platonic
abstraction as Gddel holds below or because it refers to something in the world of
our senses which we had previously understood poorly as Post apparently believed
about the notion of effective calculability.

Whether a particular definition is classified as nominal or absolute may depend
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on your viewpoint. An example is the definition of “3Ix” as “1V¥x71”, which we
gave in Chapter 21. We put that forward as a nominal definition, a matter of
convenience. A classical mathematician, however, would likely take it as an
absolute definition, for he would say that it is a necessary fact that there is something
which satisfies a predicate if and only if not everything fails to satisfy that predicate.

In this section we will follow the debate about whether Church’s Thesis is a
definition, in the sense of a nominal definition, to be judged only by whether it is apt
or fruitful, or whether it is a thesis, in the sense of an absolute definition, and hence
true or false.

2. Kalmir, from “An argument against the plausibility of
Church’s Thesis”

In 1957 Kalmar revived the debate about whether the identification should be taken
as a thesis or a definition.

In his famous investigations on unsolvable arithmetical problems, Church used a
working hypothesis, viz. the identification of the notion of effectively calculable
functions with that of general recursive (or, equivalently, A-definable) functions.
This working hypothesis is known under the name Church’s thesis. It has
several equivalent forms—e.g. Turing’s identification of the notion of effectively
calculable functions with that of functions computable by means of a Turing
machine, or Markov’s principle of the normalizability of algorithms—which are
generally accepted in the investigations on unsolvable problems.

In the present contribution, I shall not disprove Church’s thesis. Church’s
thesis is not a mathematical theorem which can be proved or disproved in the
exact mathematical sense, for it states the identity of two notions only one of
which is mathematically defined while the other is used by mathematicians
without exact definition. Of course, Church’s thesis can be masked under a
definition: we call an arithmetical function effectively calculable if and only if it
is general recursive, venturing however that once in the future, somebody will
define a function which is on the one hand, not effectively calculable in the
sense defined thus, on the other hand, its value obviously can be effectively
calculated for any given arguments. Similarly, in defining a problem, containing
a parameter which runs through the natural numbers, to be solvable if and only if
its characteristic function is general recursive, one takes the risk that somebody
in the future will solve a problem which is unsolvable under this definition. For
this reason, it seems to me better to regard such statements as Church’s thesis, or
the identity of solvable problems with those having a general recursive charac-
teristic function as propositions rather than definitions, however, not mathema-
tical but “pre-mathematical” ones. The more than two pages of Church’s paper
[1936] filled with plausibility (hence pre-mathematical) arguments for his thesis,
show that his opinion about this question does not differ much from mine.

Kalmér, 1957, pp. 72-73
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3. A platonist perspective: Godel

For most platonists, Church’s identification is a thesis. The class of computable
functions exists independently of us and our investigations, and the question is
whether that class is the same as the class of total recursive functions. The leading
exponent of platonism in mathematics recently has been Godel; Wang has reported
on conversations with Godel about formalizing intuitive concepts.

Godel on mechanical procedures and the perception of concepts

“If we begin with a vague intuitive concept, how can we find a sharp concept to
correspond to it faithfully?” The answer Godel gives is that the sharp concept is
there all along, only we did not perceive it clearly at first. This is similar to our
perception of an animal first far away and then nearby. We had not perceived
the sharp concept of mechanical procedures sharply before Turing, who brought
us to the right perspective. And then we do perceive clearly the sharp concept.
There are more similarities than differences between sense perceptions and the
perceptions of concepts. In fact, physical objects are perceived more indirectly
than concepts. The analog of perceiving sense objects from different angles is
the perception of different logically equivalent concepts. If there is nothing
sharp to begin with, it is hard to understand how, in many cases, a vague concept
can uniquely determine a sharp one without even the slightest freedom of
choice. “Trying to see (i.e. understand) a concept more clearly” is the correct
way of expressing the phenomenon vaguely described as “examining what we
mean by a word.” . ..

Godel mentions that the precise concept meant by the intuitive idea of
velocity clearly is ds/dt, and the precise concept meant by “size” (as opposed to
“shape”), e.g. of a lot, clearly is equivalent with Peano measure in the cases where
either concept is applicable. In these cases the solutions are unquestionably
unique, which here is due to the fact that only they satisfy certain axioms which,
on closer inspection, we find to be undeniably implied in the concept we had.
For example, congruent figures have the same area, a part has no larger size than
the whole, etc.

There are cases where we mix two or more exact concepts in one intuitive
concept and then we seem to arrive at paradoxical results. One example is the
concept of continuity. Our prior intuition contains an ambiguity between
smooth curves and continuous movements. We are not committed to the one or
the other in our prior intuition. In the sense of continuous movements a curve
remains continuous when it includes vibrations in every interval of time,
however small, provided only that their amplitudes tend toward O if the time
interval does. But such a curve is no longer smooth. The concept of smooth
curves is seen sharply through the exact concept of differentiability. We find
the example of space-filling continuous curves disturbing because we feel
intuitively that a continuous curve, in the sense of being a smooth one, cannot
fill the space. When we realize that there are two different sharp concepts mixed
together in the intuitive concept, the paradox disappears. Here the analogy with
sense perception is close. We cannot distinguish two neighboring stars a long
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distance away. But by using a telescope we can see that there are indeed two stars.

Wang, 1974, pp. 84-86

And here are G6del’s own words about the significance of Turing’s
formalization of computable functions.

Tarski has stressed in his lecture (and I think justly) the great importance of the
concept of general recursiveness (or Turing’s computability). It seems to me
that this importance is largely due to the fact that with this concept one has for
the first time succeeded in giving an absolute definition of an interesting
epistemological notion, i.e., one not depending on the formalism chosen. In all
other cases treated previously, such as demonstrability or definability, one has
been able to define them only relative to a given language, and for each
individual language it is clear that the one thus obtained is not the one looked
for. For the concept of computability however, although it is merely a special
kind of demonstrability or decidability the situation is different, By a kind of
miracle it is not necessary to distinguish orders, and the diagonal procedure does
not lead outside the defined notion.

Godel, 1946, p. 84

4. Other examples: definitions or theses?

Let us consider the example of a schoolteacher who wishes to teach a child the
definition of a circle. The child already knows “what a circle is”, and we can take
that either in the sense of having learned the notion from experience or having
acquired it in the platonic heaven above the heavens. The teacher then tells him that
a circle is the locus of all points equidistant from some one point. That sounds pretty
odd, and the words themselves may have to be explained to the child. Certainly, the
teacher will have to convince him that the definition is right by reflecting on the
meaning of the words and showing how a circle can be drawn by tying down one end
of a string and attaching a pencil or piece of chalk to the other. The teacher has to
show the child that his intuitive concept of circle, which he might only be able to
express by “It’s round,” corresponds to the rigid formal definition.

Now does this “evidence” show that the teacher was really thinking of a “circle
thesis”, as Kalmar might suggest?

Or consider the example of attempts to characterize continuity. There was,
and we have an intuitive notion of a continuous curve, one which can be drawn with
no breaks. The “can be drawn” was refined into: at every point the function agrees
with its limit at that point. And in the nineteenth century we come to the characteri-
zation due to Cauchy and Weierstrass:

A function is continuous iff for every point x in its domain, given any
positive number € there is a positive number 3 such that if [z- x| <3,
then [ f(z) -f(x)| <e.
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This is presented nowadays as a definition. But shouldn’t we call this the
Cauchy-Weierstrass Thesis? What guarantee do we have that this story of &’s and
€’s is exactly what our intuitive idea of limit was? That doubt is not absurd when
we remember that behind the §’s and £’s are the natural numbers (the archimedean
principle that for every € > O there is some natural number n such that L <n-¢)
so that we have reduced the idea of an approximation and a curve with no breaks to
the idea of natural numbers and inequalities. Certainly that is something we should
justify, especially since a consequence of this “definition” and the characterization of
smoothness as differentiability is that there is a curve which has no breaks but is not
smooth anywhere (a continuous nowhere differentiable function).

Why should we consider these examples different from what Church did?
Oswaldo Chateaubriand has suggested to us that it might be because the preformal
notions in these two examples were originally conceived to be part of mathematics,
whereas constructivity or computability was all along considered to be a nonmathe-
matical notion. Perhaps, but it seems to us the notion of a circle or an unbroken
curve is not inherently mathematical and is learned by children long before they
can add.

No, the difference is that these definitions resolved only mathematical queries;
they led to certain formal mathematics being applied to problems from our physical
experience. Church’s thesis/definition, on the other hand, was motivated and
adopted to resolve philosophical problems about the meaning and justification of
mathematics. In philosophical contexts, agreements are hard to reach and the near
unanimity of agreement on Church’s thesis /definition, which we will discuss in the
next section, has been nothing less than astounding.

We believe that each one of these examples is a definition, or each is a thesis.
But which of these we call them depends on what we believe we are doing when we
do mathematics: abstracting from experience, or coming to see clearly platonic
abstract concepts.

5. On the use of Church’s Thesis

All the authors we have quoted above are in agreement on one thing: the thesis/
definition is not part of mathematics, it is not part of the theory of recursive
functions or Turing machines. Those theories are interesting in their own right even
if Church’s thesis/definition were to be abandoned. Whatever else the Most
Amazing Fact establishes, it shows that the notion which is stable under so many
different formulations must be fundamental. Thus, it is simply a confusion when a
modern practitioner of recursion theory writes the following:

Church’s Thesis is more than a philosophical statement about the nature of
computability. Itis auseful tool in proofs. We shall often find, in the following
chapters, that it is easy to give an informal description of a function from which
it appears that the function is computable. Again, we may give an informal
description of how to decide whether or not an element is in a given set. To show
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that the function is partial recursive, or that the set is recursive, might involve
some long and messy calculations. Such calculations, which are not likely to
give any insight as to what is happening, are usually replaced by an appeal to
Church’s Thesis. That is, since we have given an intuitive argument that the
function is computable (or that the set is decidable), we then claim that Church’s
Thesis tells us that the function is partial recursive. This saves tedious
calculations; readers should convince themselves, however, that any time
Church’s Thesis is used, a formal proof can be made by anyone who is
sufficiently industrious.

D. Cohen, 1987, p. 104

To invoke Church’s thesis when “the proof is left to the reader” is meant amounts to
giving a fancy name to a routine piece of mathematics while at the same time
denigrating the actual mathematics.

Rather, Church’s thesis/definition is about the applicability of the formal
mathematical theory. It is a bridge between the mathematics and the philosophical
problems that generated the mathematics. Whether it is the right bridge is the
question, and this can be asked whether we take it as a definition (is the definition
apt?) or as a thesis (is the thesis true?).

Why then do people believe it is the right bridge?

Arguments For and Against
1. For

Kleene has stated the case for Church’s thesis/definition. He takes it as evident that
every recursive function is computable and discusses only whether every computable
function is recursive.

(A) Heuristic evidence

(A1) Every particular effectively calculable function, and every operation for
defining a function effectively from other functions, for which the question has
been investigated, has proved to be general recursive. A great variety of
effectively calculable functions, of classes of effectively calculable functions,
and of operations for defining functions effectively from other functions,
selected with the intention of exhausting known types, have been investigated.
(A2) The methods for showing effectively calculable functions to be general
recursive have been developed to a degree which virtually excludes doubt that
one could describe an effective process for determining the values of the
function which would not be transformed by these methods into a general
recursive definition of the function.

(A3) The exploration of various methods which might be expected to lead to a
function outside the class of the general recursive functions has in every case
shown either that the method does not actually lead outside or that the new
function obtained cannot be considered as effectively defined, i.e. its definition
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provides no effective process of calculation. In particular, the latter is the case
for the Cantor diagonal method. ...

(B) Equivalence of diverse formulations.
[Kleene discusses what we have called “The Most Amazing Fact”.]

(C) Turing's concept of a computing machine.

Turing’s computable functions (1936-7) are those which can be computed by a
machine of a kind which is designed, according to his analysis, to reproduce all
the sorts of operations which a human cornf)uter could perform, working
according to preassigned instructions. Turing’s notion is thus the result of a
direct attempt to formulate mathematically the notion of effective calculability,
while the other notions [e.g. A-definability, recursiveness] arose differently and
were afterwards identified with effective calculability. Turing’s formulation
hence constitutes an independent statement of Church’s thesis (in equivalent
terms). Post 1936 gave a similar formulation. . . .

(D) Symbeolic logics and symbolic algorithms.
In brief, . . . if the individual operations or rules of a formal system or symbolic
algorithm used to define a function are general recursive, then the whole is
general recursive [see Chapter 19.F, Chapter 21.F, and p. 217]. So we could
include [these] as particular examples of operations or methods of definition
under (AI).

Kleene, 1952, pp. 319-323

In Section D we will evaluate the significance of this evidence. But first let’s
turn to the arguments against Church’s thesis/definition.

2. Not every recursive function is computable:
theoretical vs. actual computability

A major criticism of the thesis/definition is that there are many recursive functions
(or, nonextensionally, programs) for which too much time or material would be
required to perform the calculations—not just now, but ever. Recall, for instance,
the Ackermann-Péter function y. Try to calculate Ww(47, 14); or if you have a
year or two available on a supercomputer, start the calculation of (8489727, 12).
We know that y dominates all primitive recursive functions, and so by suitably
formalizing the notion of number of steps in a computation, say by using the
universal computation predicate, we know that for all but a finite and actually
rather small number of m, the calculation of y(m, n) takes more steps than, say:

100
100 n times
100

So we could not actually calculate such values. And this doesn’t depend on the value
of y(m, n) being very large, since the same applies to Ev o . Worse, we know
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that y is rather low on the hierarchy of complexity of computation (see Chapter 13).
Further, we can produce a recursive function f that by any even generous

plausible measure of the amount of material needed to do the calculations (say one

atom for each decimal digit in the calculation) would require more matter than there

is in the solar system to calculate f{0) or f(x) for any x. Are we justified in

calling such a function computable? The usual response is of the sort given by

Mendelson:

Human computability is not the same as effective computability. A function is
considered effectively computable if its value can be computed in an effective
way in a finite number of steps, but there is no bound on the number of steps
required for any given computation. Thus, the fact that there are effectively
computable functions which may not be humanly computable has nothing to do
with Church’s Thesis.

Mendelson, 1963, p. 202

This is too cavalier. Certainly what Turing and Post were doing was analyzing
what a person or machine could do, and therein lies the power of their analyses to
convince. The question is what is meant by “could”. The same problem arises when
we say that a natural number is any number we can reach by successively adding 1,
starting at 0. If we say there are infinitely many natural numbers, then we must be
interpreting the word “can” quite generously, since there is no way we or anything
else on earth can add 1 more times than there are atoms on the earth to represent
addition (or if you don’t want to represent them, consider how long it would take to
add in your mind). Theoretical versus actual computation is analogous to theoretical
versus actual finiteness, a topic taken up in the paper by van Dantzig in the next
chapter.

Because of the evidence for it, Church’s thesis/definition is useful as a bound,
a limitation on what we would willingly call computable. Perhaps a function being
recursive does not mean that we could compute its values in our lifetime for even
small inputs; but if a function can be shown not to be recursive, then we can feel
confident that no one would be justified in calling it computable. That is, Church’s
thesis /definition is useful primarily in establishing negative results about computa-
bility (see Goodstein, 1951a). And this was what we were interested in when we
began our studies of computability: Is there an effective procedure for deciding the
truth-value of each statement in arithmetic? Is there an effective procedure for
establishing the consistency of infinitistic mathematics? With Church’s thesis/
definition providing an upper bound for computability, we can answer these queries
in the negative. On the other hand, in those cases such as arithmetic with addition
but not multiplication where a recursive procedure has been found for deciding the
truth-value of statements in the theory, the question immediately arises: Can it be
done in a polynomial number of steps depending on the length of the wff? That is,
is the decision procedure actually (versus theoretically) computable?
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Note the similarity to the case of continuity described earlier: the example of a
continuous nowhere differentiable function is likely to make us think of the
definition of continuity as an upper bound on what we would be willing to call
continuous.

3. Interpretation of the quantifiers in the thesis/definition

Let’s state Church’s thesis/definition in a precise form for recursive functions using
our notation.

A function f is computable iff there exists an index e such that
for all X', there exists a computation (coded by some q) such that
P(X)d = f(X), thatis, C(e, <X’5, (q)g, ) and (q)y = f(X).

There are two existential quantifiers. Péter, 1957, and Heyting, 1962, have
argued that both of these must be interpreted effectively. That is, given a function
which is claimed to be computable, an index should be effectively produced for it
and there should be an effective proof that for each X’ the computation halts.

Church had already anticipated this objection in 1936 (for his definition, a
function is recursive if equations of a certain type can be found for it).

The reader may object that this algorithm cannot be held to provide an effective
calculation of the required particular value ... unless the proof is constructive
that the required equation ... will ultimately be found. But if so this merely
means that he should take the existential quantifier which appears in our
definition of a set of recursion equations in a constructive sense. What the
criterion of constructiveness shall be is left to the reader.

Church, 1936, p. 95n
But here is what Heyting has to say:

The notion of a recursive function, which had been invented in order to make
that of a calculable function more precise, is interpreted by many mathemati-
cians in such a way, that it loses every connection with calculability, because
they interpret non-constructively the existential quantifier which occurs in the
definition.

Of course every finite set is primitive recursive. But is every subset of a
finite set recursive? Who can calculate the Gédel number of the characteristic
function of the set of all non-Fermat exponents less than 1010 [those numbers n
for which there are x, y, zsuch that x? + y = z] or of the set

P,={xlx<n & ENTi(x,x,y)} [ie{x: x<n & @],
where n is a given natural number? The answer depends upon the logic

which is adopted. If recursiveness is interpreted non-constructively, then
P, constitutes a counter-example to the converse of Church’s thesis.

Heyting, 1962, pp. 195-196
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That is, the existential quantifier must be constructive (non-extensional) or it has no
force. But, as Péter argues, if we interpret it constructively then we have a vicious
circle, for we are defining constructivity in terms of itself.

Platonistically there is no problem: the quantifiers need not be interpreted
constructively, for such sets as Heyting describes either are or are not recursive.
It is a different problem whether we can prove that they are recursive, or whether
we can exhibit the index of a machine that computes their characteristic function.
Mendelson states it rather baldly for the characterization of computable functions in
terms of equations.

In addition, for a function to be computable by a system of equations it is not
necessary that human beings ever know this fact, just as it is not necessary for
human beings to prove a given function continuous in order that the function be
continuous.

Mendelson, 1963, p. 202

This is no argument; it is only a viewpoint. In the next chapter we will look at
the brand of constructivism of which Heyting is a spokesman, called intuitionism.

The debate about the second existential quantifier is about whether we should
demand that we know in advance that all computations halt, as we do with the
primitive recursive functions. We know from Chapter 15 that we cannot in general
predict recursively which computations halt, for if we could we would have a
contradiction by diagonalizing. i

But the requirement that we must know in advance that the computations halt
for the function to be deemed computable has no force against the characterization of
effective processes (as opposed to functions) as partial recursive programs. The
nature of effectiveness is such that we cannot expect to be rewarded like good little
children who play by the rules. The significance of the unsolvability of the halting
problem is that the fundamental notion is that of an effective procedure, not an
effective function: What is effective step by step may lead us nowhere (cf. the
remarks by Gédel in Chapter 15.D, pp. 126-127). This, as our inability to reduce
the infinite to the finite, seems to be another example that there is no certainty in
an uncertain world.

4. A paradoxical consequence?

After what we’ve discussed so far you might find it surprising that Kalmdr, 1957,
has argued that Church’s thesis/definition gives too narrow a characterization of
effectivity. Kalmadr doesn’t actually produce a function that he claims to be
computable but not recursive. Rather he shows what he considers to be a
paradoxical consequence of the thesis/definition. Here is his argument.

Take a recursively enumerable set that is not recursive, such as K.
Consider the following procedure:
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Given a number p, to decide “p € K", simultaneously:

1. Generate the elements of K, and

2. Look for a proof “not in the frame of some fixed postulate system but
by means of arbitrary—of course, correct—arguments” that pe K.

Since K is not recursive, by Church’s thesis/definition this procedure is not
effective. But then there must be some p for which the proposition “pe K”
is false, that is p ¢ K yet that fact cannot be proved by any correct means.

The proposition stating that, for this p, [“p € K”’] would be undecidable, with
other words, the problem if this proposition holds or not, would be unsolvable,
not in G6del’s sense of a proposition neither provable nor disprovable in the
frame of a fixed postulate system, nor in Church’s sense of a problem with a
parameter for which no general recursive method exists to decide, for any given
value of the parameter in a finite number of steps, which is the correct answer to
the corresponding particular case of the problem, “yes” or “no”. As a matter of
fact, the problem, if the proposition in question holds or not, does not contain
any parameter and, supposing Church’s thesis, the proposition itself can be
neither proved nor disproved, not only in the frame of a fixed postulate system,
but even admitting any correct means. It cannot be proved for it is false and it
cannot be disproved for its negation cannot be proved. According to my
knowledge, this consequence of Church’s thesis, viz. the existence of a
proposition (without parameter) which is undecidable in this, really absolute
sense, has not been remarked so far.

However, this “absolutely undecidable proposition” has a defect of
beauty: we can decide it, for we know, it is false. Hence, Church’s thesis
implies the existence of an absolutely undecidable proposition which can be
decided viz., it is false, or, in another formulation, the existence of an
absolutely unsolvable problem with a known definite solution, a very strange
consequence indeed.

Kalmdr, 1957, p. 75

Kalmdr's argument is flawed. Even granting that the description actually
corresponds to a function (which it certainly does by intuitionist standards, cf.
Chapter 26.A.2), there is a problem. Kalmdr refers to “this proposition”—in our
formulation “pe K” —as if we indeed had such a number p. Yet we cannot
produce such a proposition, for if we could we would have a contradiction: if we can
prove that the proposition is “pe K™ then that must be because p ¢ K, and hence
we have a proof that p ¢ K and that there is no proof that p ¢ K. What we can
do is prove that there must exist some p ¢ K for which there is no proof that
p ¢ K, though we cannot say which p this is. At least in classical mathematics
that is quite sufficient. But for a constructivist it seems more than a little odd that not
only do we have a nonconstructive existence proof, but a proof that it cannot be
made constructive.
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D. Interpreting the Evidence

The most significant pieces of evidence for Church’s thesis/definition, as discussed
above, are (i) the fact that despite many concerted efforts no one has been able to
produce a function that is clearly computable and not recursive, (ii) Turing’s analysis
that the recursive functions are computable, and (iii) the Most Amazing Fact that the
various attempts to formalize the notion of computability by what appeared to be
radically different means have all been shown by effective translations to be
equivalent. How are we to interpret these?

The platonist can explain the evidence easily: the class of computable
functions was there all along and we have finally managed to “see” it. Indeed,
the Most Amazing Fact is taken as good evidence that there is a platonic reality
of abstract objects independent of us.

But we can argue along with Post that Church’s thesis/definition is about
human capabilities. Perhaps the Most Amazing Fact is a consequence or reflection
of the structure of our bodies and brains.

Or perhaps it is a cultural artifact, a product of our Western mathematical-
scientific culture and age. That no one has yet produced a computable function
which is not recursive establishes nothing: for millennia logicians thought that all
forms of correct reasoning which could be codified were in Aristotle’s syllogistic,
whereas now many other formal methods are taken (seen?) to be correct (see, e.g.,
Epstein, 1994). Moreover, in a different age the ancient Greeks took the notion of
constructivity, for both numbers and geometric figures, to be quite different:
constructible by straightedge and compass.

Or finally, consider what Kreisel has to say:

The support for Church’s Thesis . . . consists above all in the analysis of
machine-like behavior and in a number of closure conditions, for example
diagonalization. ... It certainly does not consist in the so-called empirical
support; namely the equivalence of different characterizations: what excludes
the case of a systematic error? (Cf. the overwhelming empirical support from
ordinary mathematics for: if an arithmetic identity is provable at all, it is
provable in classical first-order arithmetic; they all overlook the principle
involved in, for example, consistency proofs.)

Kreisel, 1965, p. 144

And whether it is an error, or whether there is any sense in which we are
“right” and if so why, we are incapable of verifying. These various interpretations
do not correspond to various different assertions whose truth or falsity we can
investigate, for what “evidence” could there ever be for Plato’s heaven above the
heavens? These various interpretations correspond to different ways of under-
standing the nature of mathematics, which we will explore in the next two chapters.
Amongst these, there appears to be no definitive choice.
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Exercises

CHAPTER 25 Church’s Thesis

1. Is it a thesis or a definition? Rewrite the quotation from Kalmdr in Section B.2 up
to the end of the second sentence in the second paragraph replacing “Church’s
thesis” everywhere by “the Cauchy-Weierstrass continuity thesis” and making the
other necessary changes. Is the analogy apt? Is our analogy of Church’s thesis/
definition with the definition of a circle apt?

2. Are we justified in using Church’s thesis within the mathematical development of
recursive function theory? Rewrite the quotation from Cohen above in Section B.
replacing “Church’s thesis” everywhere by “the Cauchy-Weierstrass continuity
thesis” and making the other necessary changes. Would that paragraph be
acceptable in a freshman calculus course? In a graduate level research text
(cf. Lerman, p. 9) ?

3. Compare Wang’s report on G6del’s views contained in Section B.3 with the
quotations from Plato in Chapter 2. In what way could the evidence for Church’s
thesis /definition be construed as evidence for platonism?

4. In Section C.2 we described certain functions as being recursive but not “actually
computable”. Are we justified in calling such a function “effective” or
“computable” ? Can you make precise the distinction between actually
computable and theoretically computable?

5. Are we justified in making the distinction between a process which is effective
and which might not halt, and a function which is computable and must give an
output for every natural number (Section C.3)?

6. Argue against our conclusion that there is no possible way to resolve which of the
various interpretations of the evidence for Church’s thesis/definition is correct.

Further Reading

Odifreddi in Classical Recursion Theory presents a thorough discussion of Church’s
thesis/definition, which we highly recommend. He analyses it in its various guises: as a
thesis about mechanism and hence about physics and computers, as a thesis about computers
and thought, as a thesis about the nature of the brain, and as a thesis about constructivism in
mathematics.

Our discussion of the history of Church’s Thesis has been confined to the published
sources from that period. Several recent articles draw on personal recollections, in particular
an interesting taped oral discussion edited by Crossley, 1975, and Kleene’s “Origins of
recursive function theory” (a very difficult paper). Several articles in The Universal Turing
Machine, A Half-Century Survey, edited by Rolf Herken, discuss the history and
significance of Church’s Thesis.

For a survey and history of various notions of definition see Abelson’s entry,
“Definitions” in The Encyclopedia of Philosophy.



26 Constructivist Views
of Mathematics

In this chapter we will look at several views of the nature of mathematics which to
one degree or another reject infinitistic assumptions.

Kronecker had been an early and powerful opponent of the introduction of
infinite sets and nonconstructive existence proofs into mathematics even before the
crises of the set-theoretic paradoxes. As Professor of Mathematics in Berlin he had
considerable influence, making it difficult for Cantor to publish anything and
impossible for Cantor to be promoted. Hilbert, too, had to take into account
Kronecker’s views in the early part of his career, and his paper “On the infinite”
(Chapter 7) should be seen in part as the culmination of his concern that Kronecker’s
views would predominate.

However, the first fully developed alternative to what is now called classical
mathematics, that is, mathematics based on the use of infinite sets and classical
reasoning (Chapter 21.B), was the movement called intuitionism initiated by
Brouwer. His paper in Section A is one of the first on the subject, and it is important
to keep in mind that it was published in 1913, when axiomatic set theory was still in
its infancy and long before Hilbert’s paper “On the infinite” (see p. 57).

Recursive analysis, which we consider in Section B, is quite different from
Brouwer’s intuitionism. Both Goodstein and a Russian school develop the theory of
real numbers by embracing Church’s Thesis: a real number is, in essence, a decimal
whose digits are the output of a recursive function.

Bishop, in Section C, criticizes Brouwer’s work as too imprecise and
infinitistic, and recursive analysis as too formal and limited. His goal is to replace
classical mathematics with a body of constructive results; negative theorems, which
would state that something is not constructive or does not exist, are of no interest to
him since they would involve precisely delimiting the boundaries of constructivity.
He takes the notion of a constructive function as primitive and, along with Brouwer,
refuses to identify it with any formal notion.
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But Nicolas Goodman, in Section D, criticizes Bishop’s work in turn by
pointing out that a theoretical construction which could not be realized in practice
or a natural number we “could” write but never will because there are not enough
physical resources on earth to do so, are abstract, not finitistic, and hence we are
justified in using classical methods in reasoning about them. In this sense, he says,
constructive mathematics is a partner with classical mathematics, its interest being
directed to different results.

Van Dantzig and Isles make the same criticisms in Section E but conclude
instead that a more finitistic approach is called for. We do not “have” the natural
numbers as a well-defined unique sequence but only different notations for specific
natural numbers, notations which may be incomparable. The status of induction is
then in question, and we conclude our readings with Isle’s reinterpretation of the
Halting Problem for Turing machines.

Intuitionism

1. L.E.]J. Brouwer, from “Intuitionism and formalism”, 1913

The subject for which I am asking your attention deals with the foundations of
mathematics. To understand the development of the opposing theories existing
in this field one must first gain a clear understanding of the concept “science”;
for it is as a part of science that mathematics originally took its place in human
thought.

By science we mean the systematic cataloguing by means of laws of
nature of causal sequences of phenomena, i.e., sequences of phenomena which
for individual or social purposes it is convenient to consider as repeating them-
selves identically,—and more particularly of such causal sequences as are of
importance in social relations.

That science lends such great power to man in his action upon nature is
due to the fact that the steadily improving cataloguing of ever more causal
sequences of phenomena gives greater and greater possibility of bringing about
desired phenomena, difficult or impossible to evoke directly, by evoking other
phenomena connected with the first by causal sequences. And that man always
and everywhere creates order in nature is due to the fact that he not only isolates
the causal sequences of phenomena (i.e., he strives to keep them free from
disturbing secondary phenomena) but also supplements them with phenomena
caused by his own activity, thus making them of wider applicability. Among
the latter phenomena the results of counting and measuring take so important a
place, that a large number of the natural laws introduced by science treat only of
the mutual relations between the results of counting and measuring. It is well to
notice in this connection that a natural law in the statement of which measurable
magnitudes occur can only be understood to hold in nature with a certain degree
of approximation; indeed natural laws as a rule are not proof against sufficient
refinement of the measuring tools.
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The exceptions to this rule have from ancient times been practical arith-
metic and geometry on the one hand, and the dynamics of rigid bodies and
celestial mechanics on the other hand. Both these groups have so far resisted
all improvements in the tools of observation. But while this has usually been
looked upon as something accidental and temporal for the latter group, and
while one has always been prepared to see these sciences descend to the rank of
approximate theories, until comparatively recent times there has been absolute
confidence that no experiment could ever disturb the exactness of the laws of
arithmetic and geometry; this confidence is expressed in the statement that
mathematics is “the” exact science.

On what grounds the conviction of the unassailable exactness of
mathematical laws is based has for centuries been an object of philosophical
research, and two points of view may here be distinguished, intuitionism
(largely French) and formalism (largely German). In many respects these two
viewpoints have become more and more definitely opposed to each other; but
during recent years they have reached agreement as to this, that the exact
validity of mathematical laws as laws of nature is out of the question. The
question where mathematical exactness does exist, is answered differently by
the two sides; the intuitionist says: in the human intellect, the formalist says:
on paper.

In Kant we find an old form of intuitionism, now almost completely
abandoned, in which time and space are taken to be forms of conception
inherent in human reason. For Kant the axioms of arithmetic and geometry were
synthetic a priori judgments, i.e., judgments independent of experience and not
capable of analytical demonstration; and this explained their apodictic
[necessarily true] exactness in the world of experience as well as in abstracto.
For Kant, therefore, the possibility of disproving arithmetical and geometrical
laws experimentally was not only excluded by a firm belief, but it was entirely
unthinkable.

Diametrically opposed to this is the view of formalism, which maintains
that human reason does not have at its disposal exact images either of straight
lines or of numbers larger than ten, for example, and that therefore these
mathematical entities do not have existence in our conception of nature any
more than in nature itself. It is true that from certain relations among mathema-
tical entities, which we assume as axioms, we deduce other relations according
to fixed laws, in the conviction that in this way we derive truths from truths by
logical reasoning, but this non-mathematical conviction of truth or legitimacy
has no exactness whatever and is nothing but a vague sensation of delight arising
from the knowledge of the efficacy of the projection into nature of these
relations and laws of reasoning. For the formalist therefore mathematical
exactness consists merely in the method of developing the series of relations,
and is independent of the significance one might want to give to the relations
or the entities which they relate. And for the consistent formalist these
meaningless series of relations to which mathematics is reduced have
mathematical existence only when they have been represented in spoken or
written language together with the mathematical-logical laws upon which their
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development depends, thus forming what is called symbolic logic.

Because the usual spoken or written languages do not in the least satisfy
the requirements of consistency demanded of this symbolic logic, formalists try
to avoid the use of ordinary language in mathematics. How far this may be
carried is shown by the modern Italian school of formalists, whose leader,
Peano, published one of his most important discoveries concerning the existence
of integrals of real differential equations in the Mathematische Annalen in the
language of symbolic logic; the result was that it could only be read by a few of
the initiated and that it did not become generally available until one of these had
translated the article into German.

The viewpoint of the formalist must lead to the conviction that if other
symbolic formulas should be substituted for the ones that now represent the
fundamental mathematical relations and the mathematical-logical laws, the
absence of the sensation of delight, called “consciousness of legitimacy,” which
might be the result of such substitution would not in the least invalidate its
mathematical exactness. To the philosopher or to the anthropologist, but not to
the mathematician, belongs the task of investigating why certain systems of
symbolic logic rather than others may be effectively projected upon nature.

Not to the mathematician, but to the psychologist, belongs the task of explaining
why we believe in certain systems of symbolic logic and not in others, in parti-
cular why we are averse to the so-called contradictory systems in which the
negative as well as the positive of certain propositions are valid.*

As long as the intuitionists adhered to the theory of Kant it seemed that the
development of mathematics in the nineteenth century put them in an ever
weaker position with regard to the formalists. For in the first place this develop-
ment showed repeatedly how complete theories could be carried over from one
domain of mathematics to another: projective geometry, for example, remained
unchanged under the interchange of the roles of point and straight line, an
important part of the arithmetic of real numbers remained valid for various
complex number fields and nearly all the theorems of elementary geometry
remained true for non-archimedian geometry, in which there exists for every
straight line segment another such segment infinitesimal with respect to the first.
These discoveries seemed to indicate indeed that of a mathematical theory only
the logical form was of importance and that one need no more be concerned
with the material than it is necessary to think of the significance of the digit
groups with which one operates, for the correct solution of a problem in
arithmetic.

But the most serious blow for the Kantian theory was the discovery of
non-euclidean geometry, a consistent theory developed from a set of axioms
differing from that of elementary geometry only in this respect that the parallel
axiom was replaced by its negative. For this showed that the phenomena usually
described in the language of elementary geometry may be described with equal
exactness, though frequently less compactly in the language of non-euclidean
geometry; hence it is not only impossible to hold that the space of our

* See Mannoury, Methodologisches und Philosophisches zur Elementarmathematik,
pp. 149-154.
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experience has the properties of elementary geometry but it has no significance
to ask for the geometry which would be true for the space of our experience. It
is true that elementary geometry is better suited than any other to the description
of the laws of kinematics of rigid bodies and hence of a large number of natural
phenomena, but with some patience it would be possible to make objects for
which the kinematics would be more easily interpretable in terms of non-
euclidean than in terms of euclidean geometry.*

However weak the position of intuitionism seemed to be after this period
of mathematical development, it has recovered by abandoning Kant’s apriority
of space but adhering the more resolutely to the apriority of time. This neo-
intuitionism considers the falling apart of the moments of life into qualitatively
different parts, to be reunited only while remaining separated by time, as the
fundamental phenomenon of the human intellect, passing by abstracting from its
emotional content into the fundamental phenomenon of mathematical thinking,
the intuition of the bare two-oneness. This intuition of two-oneness, the basal
intuition of mathematics, creates not only the numbers one and two, but also all
finite ordinal numbers, inasmuch as one of the elements of the two-oneness may
be thought of as a new two-oneness, which process may be repeated indefinitely;
this gives rise still further to the smallest infinite ordinal number ®. Finally this
basal intuition of mathematics, in which the connected and the separate, the
continuous and the discrete are united, gives rise immediately to the intuition of
the linear continuum, i.e., of the “between,” which is not exhaustible by the
interposition of new units and which therefore can never be thought of as a mere
collection of units.

In this way the apriority of time does not only qualify the properties of
arithmetic as synthetic a priori judgments, but it does the same for those of
geometry, and not only for elementary two- and three-dimensional geometry,
but for non-euclidean and n-dimensional geometries as well. For since
Descartes we have learned to reduce all these geometries to arithmetic by means
of the calculus of coordinates.

From the present point of view of intuitionism therefore all mathematical
sets of units which are entitled to that name can be developed out of the basal
intuition, and this can only be done by combining a finite number of times the
two operations: “to create a finite ordinal number” and “to create the infinite
ordinal number ®”; here it is to be understood that for the latter purpose any
previously constructed set or any previously performed constructive operation
may be taken as a unit. Consequently the intuitionist recognizes only the
existence of denumerable sets, i.e., sets whose elements may be brought into
one-to-one correspondence either with the elements of a finite ordinal number or
with those of the infinite ordinal number ®. And in the construction of these
sets neither the ordinary language nor any symbolic language can have any other
role than that of serving as a non-mathematical auxiliary, to assist the
mathematical memory or to enable different individuals to build up the same set.

For this reason the intuitionist can never feel assured of the exactness of a

* See Poincaré, Science and Hypothesis, [Dover, 1952] p. 104
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mathematical theory by such guarantees as the proof of its being non-
contradictory, the possibility of defining its concepts by a finite number of
words, or the practical certainty that it will never lead to a misunderstanding
in human relations.

As has been stated above, the formalist wishes to leave to the psychologist
the task of selecting the “truly-mathematical” language from among the many
symbolic languages that may be consistently developed. Inasmuch as psychol-
ogy has not yet begun in this task, formalism is compelled to mark off, at least
temporarily, the domain that it wishes to consider as “true mathematics” and to
lay down for that purpose a definite system of axioms and laws of reasoning if it
does not wish to see its work doomed to sterility. The various ways in which
this attempt has actually been made all follow the same leading idea, viz., the
presupposition of the existence of a world of mathematical objects, a world
independent of the thinking individual, obeying the laws of classical logic and
whose objects may possess with respect to each other the “relation of a set to its
elements.” With reference to this relation various axioms are postulated,
suggested by the practice with natural finite sets; the principal of these are:

“a set is determined by its elements”; “for any two mathematical objects it is
decided whether or not one of them is contained in the other one as an
element”; “to every set belongs another set containing as its elements nothing
but the subsets of the given set”; the axiom of selection: “a set which rs split
into subsets contains at least one subset which contains one and not more than
one element of each of the first subsets™; the axiom of inclusion: “if for any
mathematical object it is decided whether a certain property is valid for it or
not, then there exists a set containing nothing but those objects for which the
property does hold”; the axiom of composition: “the elements of all sets that
belong to a set of sets form a new set.”

On the basis of such a set of axioms the formalist develops now in the first
place the theory of “finite sets.” A set is called finite if its elements can not be
brought into one-to-one correspondence with the elements of one of its subsets;
by means of relatively complicated reasoning the principle of complete
induction is proved to be a fundamental property of these sets; this principle
states that a property will be true for all finite sets if, first, it is true for all sets
containing a single element, and second, its validity for an arbitrary finite set
follows from its validity for this same set reduced by a single one of its
elements. That the formalist must give an explicit proof of this principle, which
is self-evident for the finite numbers of the intuitionist on account of their
construction, shows at the same time that the former will never be able to justify
his choice of axioms by replacing the unsatisfactory appeal to inexact practice or
to intuition equally inexact for him by a proof of the non-contradictoriness of his
theory. For in order to prove that a contradiction can never arise among the
infinitude of conclusions that can be drawn from the axioms he is using, he
would first have to show that if no contradiction had as yet arisen with the nth
conclusion then none could arise with the (n+1)th conclusion, and secondly,
he would have to apply the principle of complete induction intuitively. But it is
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this last step which the formalist may not take, even though he should have
proved the principle of complete induction; for this would require mathematical
certainty that the set of properties obtained after the nth conclusion had been
reached, would satisfy for an arbitrary n his definition for finite sets, and in
order to secure this certainty he would have to have recourse not only to the
unpermissible application of a symbolic criterion to a concrete example but also
to another intuitive application of the principle of complete induction; this
would lead him to a vicious circle reasoning.

In the domain of finite sets in which the formalistic axioms have an
interpretation perfectly clear to the intuitionists, unreservedly agreed to by them,
the two tendencies differ solely in their method, not in their results; this
becomes quite different however in the domain of infinite or transfinite sets,
where, mainly by the application of the axiom of inclusion, quoted above, the
formalist introduces various concepts, entirely meaningless to the intuitionist,
such as for instance “the set whose elements are the points of space,” “the set
whose elements are the continuous functions of a variable,” “the set whose
elements are the discontinuous functions of a variable,” and so forth. In the
course of these formalistic developments it turns out that the consistent
application of the axiom of inclusion leads inevitably to contradictions.

[Here he describes the Burali-Forti paradox, which is a variation on Cantor’s
antinomy of the set of all sets presented in Chapter 6.D]. ...

Although the formalists must admit contradictory results as mathematical
if they want to be consistent, there is something disagreeable for them in a
paradox like that of Burali-Forti because at the same time the progress of their
arguments is guided by the principium contradictionis, i.e., by the rejection of
the simultaneous validity of two contradictory properties. For this reason the
axiom of inclusion has been modified to read as follows: “If for all elements of
a set it is decided whether a certain property is valid for them or not, then the
set contains a subset containing nothing but those elements for which the
property does hold.”

In this form the axiom permits only the introduction of such sets as are
subsets of sets previously introduced; if one wishes to operate with other sets,
their existence must be explicitly postulated. Since however in order to
accomplish anything at all the existence of a certain collection of sets will have
to be postulated at the outset, the only valid argument that can be brought
against the introduction of a new set is that it leads to contradictions; indeed
the only modifications that the discovery of paradoxes has brought about in the
practice of formalism has been the abolition of those sets that had given rise to
these paradoxes. One continues to operate without hesitation with other sets
introduced on the basis of the old axiom of inclusion; the result of this is that
extended fields of research, which are without significance for the intuitionist
are still of considerable interest to the formalist.

[The rest of the paper is devoted to a critique of transfinite set theory.]

Brouwer, pp. 77-84
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2. Modern intuitionism

Intuitionism as developed by Brouwer, Heyting, and others who followed has
become a distinct alternative to what is now known as classical mathematics.

In the theory of finite mathematical objects they agree with the classical results;
they disagree with the classical attempt to generalize proof procedures from the
domain of finite mathematical objects to infinite ones. In particular they require
that to establish an existence statement one must exhibit an object satisfying the
desired property. Facts of existence must be justified by construction.

For a classical mathematician there are only two possibilities for any
mathematical problem: true or false (although we may not know which it is).
But for an intuitionist this is not the case. Here is an example. Consider the
decimal a =.aya;---a,--- where

3 if no string of seven consecutive 7’s appears before the nth
a, = decimal place in the decimal expansion of 7

0 otherwise

We may prove, the intuitionist says, that 171 (a is rational) by showing that

1 (ais rational) leads to a contradiction. For if a were not rational, then it could
not be a finite string of 3’s, .333---3. So it would have to be 1/3, which is a
contradiction. But it is, at present, not correct to assert that a is rational, for no
method is known to compute numbers p and g such that a = p/q. The
intuitionist does not accept that from 71714 we can conclude A. Alternatively,
the example can be viewed as a rejection of the law of excluded middle, A viA,
since we have shown that “1(a is rational)” is false.

The solution is to abandon the principle of bivalence, and suppose our
statements to be true just in case we have established that they are, i.e. if
mathematical statements are in question, when we at least have an effective
method of obtaining a proof of them.

Dummett and Minio, p. 375

An explanation of proof is then needed. The simplest (atomic) arithmetic
statements are equalities of terms, for example, 47 + 82 =118, 10'°= 100 ; and
these we can prove or disprove by a computation procedure. For compound
statements, Dummett and Minio explain:

The logical constants fall into two groups. A proof of A A B is anything that is
a proof of A and of B. A proof of A v B is anything that is a proof either of
A or of B. A proof of 3x A(x) is anything that is a proof, for some n, of
the statement A(n) . Note that any proof of any sentence containing only the
constants A, v, and 3 is a computation or a finite set of computations.

The second group is composed of V, —, and 7. A proof of Vx A(x)
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is a construction of which we can recognize that, when applied to any number
n, it yields a proof of A(n). Such a proof is therefore an operation that
carries natural numbers into proofs. A proof of A — B is a construction of
which we can recognize that, applied to any proof of A, it yields a proof of B,
Such a proof is therefore an operation carrying proofs into proofs. Note that it
would be incorrect to characterize a proof of Vx A(x) merely as “a construc-
tion which, when applied to any number n, yields a proof of A(n)”, ora
proof of A — B as “a construction which transforms every proof of A into

a proof of B”, since we should then have no right to suppose that we could
effectively recognize a proof whenever we were presented with one. . ..

A proof of 1A is usually characterized as a construction of which we can
recognize that, applied to any proof of A, it will yield a contradiction. This is
unsatisfactory because “a contradiction” is naturally understood to be a state-
ment B A1B, so that it seems we are defining 7 in terms of itself. We can
avoid this in either of two ways. We can choose some one absurd statement, say
0=1, and say that a proof of 1A is a proof of A— 0=1. ... Alternatively,
we may regard the sense of 71, when applied to atomic statements, as being
given by the computational procedure which decides those statements as true or
false, and then define a proof of 1A, for any non-atomic statement A, as being
a proof of A — B A 1B, where B is an atomic statement.

Dummett and Minio, pp. 12-14

Dummett and Minio’s discussion of the nature of proof is intended to be more
than a suggestion to aid our understanding in the spirit of Brouwer. Since Heyting
first tried to codify some of the laws of reasoning acceptable to intuitionists in 1930,
a formal logic of intuitionism has been a major concern of intuitionists, as the
followers of Brouwer are now called, and it is that which they are trying to explain
(see Epstein 1990, Chapter VII).

The main area of research for intuitionists, however, has been an alternative
conception of real numbers based on the idea of a “free-choice sequence”, a notion
which they use in their version of real analysis (the theory of functions of a real
variable that underlies the calculus). For Brouwer a sequence is something which is
freely constructed. Time is divided into discrete stages, and at any moment n we
can tell whether, say, we have a proof of Goldbach’s Conjecture (see p. 122). So we
may define a real number x = (x,) by taking

1 if there is a w and no primes p, g such that
Xgp =4 P-qg.w<nand p+q=2w
0 otherwise

1 if a proof of Goldbach’s Conjecture has been obtained
X4l = by stage n
0 otherwise

This is an example of a choice sequence for which there is no determinate procedure
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for calculating x,, because “proof” is not to be understood as a proof in some
specific formal system, but any arbitrary correct proof.

We may prove intuitionistically that x # 0. Suppose to the contrary that we
had a proof that x=0. Then

i. We would have a proof that for all n, x,,=0, that is, a proof that
there is no counterexample to Goldbach’s Conjecture.
and
ii. We would have a proof that for all n, x,, =0, thatis, a proof
that we shall never obtain a proof of Goldbach’s Conjecture.

But (ii) contradicts (i). So from the assumption that we have a proof of x =0 we
get a contradiction, and hence x 0 .

Nonetheless we cannot produce a number g such that x > 1/q.

But the notion of a free-choice sequence, the acceptance of completed infinities
(even though denumerable), and the emphasis on formal logic have been
unacceptable to many who are concerned with constructivity in mathematics.

Recursive Analysis

Turing’s paper in Chapter 9 was called “On computable numbers”. His definition of
computability via machines was intended to be a basis for a computable version of
real analysis:

The “computable” numbers may be described briefly as the real numbers whose

expressions as a decimal are calculable by finite means. ... According to my
definition, a number is computable if its decimal can be written down by a
machine.

We shall say that a sequence B, of computable numbers converges
computably if there is a computable integral valued function N(€) of the
computable variable € , such that we can show that, if € >0 and n > N(g)
and m > N(g), then |1B,- Bl < e.

We can then show that
vii. A power series whose coefficients form a computable sequence of

computable numbers is computably convergent at all computable points in

the interior of its interval of convergence.
viii. The limit of a computably convergent sequence is computable.
And with the obvious definition of “uniformly computably convergent”:
ix. The limit of a uniformly computably convergent computable sequence of
computable functions is a computable function. Hence
x. The sum of a power series whose coefficients form a computable sequence
is a computable function in the interior of its interval of convergence.
From (viii) and ®=4(1 —% + % -« - -) we deduce that T is computable.

Frome=1+1+ % +-L % ... we deduce that e is computable.

3t
Turing, p. 116 and p. 142
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Turing’s ideas have been developed by a Russian school of mathematicians
based on the acceptance of Church’s Thesis (see Bridges and Richman, or Troelstra
and van Dalen).

Goodstein, whose constructivist views we studied in Chapter 2.B and
Chapter 5.G, was one of the first proponents of recursive analysis (see Goodstein,
1951a and 1961). He, however, argues that computable functions must halt, and
since we cannot predict if a general recursive function will halt, he uses only
primitive recursive functions.

Computable analysis in Turing’s or even Goodstein’s sense differs from
classical numerical analysis (the study of numerical solutions to equations involving
functions of real variables) as performed on a computer (with no limitations of time
or memory) only to the extent that the reasoning involved is constructive.

It has been contended, by Rudolf Carnap and others, that since we are unable to
find in application an absolute standard by which the validity of a formal system
may be tested we are free to choose what formalisation of mathematics we
please, technical considerations alone leading us to prefer one system to another.
If we accept this standpoint then the distinction between constructive and non-
constructive systems is a distinction without a difference and the constructive
system becomes little more than a poor relation of the non-constructive.

I consider this view to be wholly mistaken. Even if we leave out of account

the question of demonstrable freedom from contradiction, the Principia

[ Mathematica of Whitehead and Russell] and the Grundlagen [der Mathematik
of Hilbert and Bernays] must be rejected as formalisations of mathematics for
their failure to express adequately the concepts of universality and existence.
Even though we do not discover a contradiction in a formal system by showing
that the existential quantifier fails to express the notion of existence, for we have
no right to pre-judge the meaning of the signs of the system—and to this extent
Carnap is right —none-the-less when a mathematician seeks to establish the
existence of a number with a certain property he will not, and should not, be
satisfied to find that all he has proved is a formula in some formal system, which
whatever it may affirm assuredly does not say that a number exists with the

desired property.
prope Goodstein, 1951a, p. 24

C. Bishop’s Constructivism
1. Errett Bishop, from Foundations of Constructive Analysis

Preface

If every mathematician occasionally, perhaps only for an instant, feels an urge to
move closer to reality, it is not because he believes mathematics is lacking in
meaning. He does not believe that mathematics consists in drawing brilliant
conclusions from arbitrary axioms, of juggling concepts devoid of pragmatic
content, of playing a meaningless game. On the other hand, many mathematical
statements have a rather peculiar pragmatic content. Consider the theorem that
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either every even integer greater than 2 is the sum of two primes, or else there
exists an even integer greater than 2 that is not the sum of two primes. The
pragmatic content of this theorem is not that if we go to the integers and observe
we shall see certain things happening. Rather the pragmatic content of such a
theorem, if it exists, lies in the circumstance that we are going to use it to help
derive other theorems, themselves of peculiar pragmatic content, which in turn
will be the basis for further developments.

It appears then that there are certain mathematical statements that are
merely evocative, which make assertions without empirical validity. There are
also mathematical statements of immediate empirical validity, which say that
certain performable operations will produce certain observable results, for
instance, the theorem that every positive integer is the sum of four squares.
Mathematics is a mixture of the real and the ideal, sometimes one, sometimes
the other, often so presented that it is hard to tell which is which. The realistic
component of mathematics - the desire for pragmatic interpretation—supplies
the control which determines the course of development and keeps mathematics
from lapsing into meaningless formalism. The idealistic component permits
simplifications and opens possibilities which would otherwise be closed. The
methods of proof and the objects of investigation have been idealized to form a
game, but the actual conduct of the game is ultimately motivated by pragmatic
considerations. ...

There have been, however, attempts to constructivize mathematics, to
purge it completely of its idealistic content. The most sustained attempt was
made by L.E.J. Brouwer, beginning in 1907. The movement he founded has
long been dead, killed partly by extraneous peculiarities of Brouwer’s system
which made it vague and even ridiculous to practicing mathematicians, but
chiefly by the failure of Brouwer and his followers to convince the mathematical
public that abandonment of the idealistic viewpoint would not sterilize or cripple
the development of mathematics. Brouwer and other constructivists were much
more successful in their criticisms of classical mathematics than in their efforts
to replace it with something better. Many mathematicians familiar with
Brouwer’s objections to classical mathematics concede their validity but remain
unconvinced that there is any satisfactory alternative. . ..

A Constructivist Manifesto

1. The descriptive basis of mathematics

Mathematics is that portion of our intellectual activity which transcends our
biology and our environment. The principles of biology as we know them may
apply to life forms on other worlds, yet there is no necessity for this to be so.
The principles of physics should be more universal, yet it is easy to imagine
another universe governed by different physical laws. Mathematics, a creation
of mind, is less arbitrary than biology or physics, creations of nature; the
creatures we imagine inhabiting another world in another universe, with another
biology and another physics, will develop a mathematics which in essence is the
same as ours. In believing this we may be falling into a trap: Mathematics
being a creation of our mind, it is, of course, difficult to imagine how
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mathematics could be otherwise without actually making it so, but perhaps we
should not presume to predict the course of the mathematical activities of all
possible types of intelligence. On the other hand, the pragmatic content of our
belief in the transcendence of mathematics has nothing to do with alien forms of
life. Rather it serves to give a direction to mathematical investigation, resulting
from the insistence that mathematics be born of an inner necessity.

The primary concern of mathematics is number, and this means the
positive integers. We feel about number the way Kant felt about space. The
positive integers and their arithmetic are presupposed by the very nature of our
intelligence and, we are tempted to believe, by the very nature of intelligence in
general. The development of the theory of the positive integers from the
primitive concept of the unit, the concept of adjoining a unit, and the process of
mathematical induction carries complete conviction. In the words of Kronecker,
the positive integers were created by God. Kronecker would have expressed it
even better if he had said that the positive integers were created by God for the
benefit of man (and other finite beings). Mathematics belongs to man, not to
God. We are not interested in properties of the positive integers that have no
descriptive meaning for finite man. When a man proves a positive integer to
exist, he should show how to find it. If God has mathematics of his own that
needs to be done, let him do it himself.

Almost equal in importance to number are the constructions by which
we ascend from number to the higher levels of mathematical existence. These
constructions involve the discovery of relationships among mathematical entities
already constructed, in the process of which new mathematical entities are
created. The relations which form the point of departure are the order and
arithmetical relations of the positive integers. From these we construct various
rules for pairing integers with one another, for separating out certain integers
from the rest, and for associating one integer to another. Rules of this sort give
rise to the notions of sets and functions.

A set is not an entity which has an ideal existence. A set exists only
when it has been defined. To define a set we prescribe, at least implicitly,
what we (the constructing intelligence) must do in order to construct an
element of the set, and what we must do to show that two elements of the set
are equal. A similar remark applies to the definition of a function: in order to
define a function from a set A to a set B, we prescribe a finite routine which
leads from an element of A to an element of B, and show that equal elements
of A give rise to equal elements of B.

Building on the positive integers, weaving a web of ever more sets and
more functions, we get the basic structures of mathematics: the rational number
system, the real number system, the euclidean spaces, the complex number
system, the algebraic number fields, Hilbert space, the classical groups, and
so forth. Within the framework of these structures most mathematics is done.
Everything attaches itself to number, and every mathematical statement
ultimately express the fact that if we perform certain computations within
the set of positive integers we shall get certain results. . ..

The transcendence of mathematics demands that it should not be confined
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to computations that I can perform, or you can perform, or 100 men working
100 years with 100 digital computers can perform. Any computation that can be
performed by a finite intelligence—any computation that has a finite number of
steps—is permissible. This does not mean that no value is to be placed on the
efficiency of a computation. An applied mathematician will prize a computation
for its efficiency above all else, whereas in formal mathematics much attention
is paid to elegance and little to efficiency. Mathematics should and must
concem itself with efficiency, perhaps to the detriment of elegance, but these
matters will come to the fore only when realism has begun to prevail. Until then
our first concern will be to put as much mathematics as possible on a realistic
basis without close attention to questions of efficiency.

2. The idealistic component of mathematics

... Brouwer fought the advance of formalism and undertook the disengagement
of mathematics from logic. He wanted to strengthen mathematics by associating
to every theorem and every proof a pragmatically meaningful interpretation.

His program failed to gain support. He was an indifferent expositor and an
inflexible advocate, contending against the great prestige of Hilbert and the
undeniable fact that idealistic mathematics produced the most general results
with the least effort. More important, Brouwer’s system itself had traces of
idealism [the view that ideal (abstract) objects have a real existence] and, worse,
of metaphysical speculation. There was a preoccupation with the philosophical
aspects of constructivism at the expense of concrete mathematical activity.

A calculus of negation was developed which became a crutch to avoid the
necessity of getting precise constructive results. It is not surprising that some of
Brouwer’s precepts were then formalized, giving rise to so-called intuitionistic
number theory, and that the formal system so obtained turned out not to be of
any constructive value. In fairness to Brouwer it should be said that he did not
associate himself with these efforts to formalize reality; it is the fault of the
logicians that many mathematicians who think they know something of the
constructive point of view have in mind a dinky formal system or, just as bad,
confuse constructivism with recursive function theory.

Brouwer became involved in metaphysical speculation by his desire to
improve the theory of the continuum. A bugaboo of both Brouwer and the
logicians has been compulsive speculation about the nature of the continuum.

In the case of the logicians this leads to contortions in which various formal
systems, all detached from reality, are interpreted within one another in the hope
that the nature of the continuum will somehow emerge. In Brouwer’s case there
seems to have been a nagging suspicion that unless he personally intervened to
prevent it the continuum would turn out to be discrete. He therefore introduced
the method of free-choice sequences for constructing the continuum, as a
consequence of which the continuum cannot be discrete because it is not well
enough defined. This makes mathematics so bizarre it becomes unpalatable to
mathematicians, and foredooms the whole of Brouwer’s program. This is a pity,
because Brouwer had a remarkable insight into the defects of classical mathe-
matics, and he made a heroic attempt to set things right.
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3. The constructivization of mathematics

A set is defined by describing exactly what must be done in order to construct an
element of the set and what must be done in order to show that two elements are
equal. There is no guarantee that the description will be understood; it may be
that an author thinks he has described a set with sufficient clarity but a reader
does not understand. As an illustration consider the set of all sequences {n;}
of integers. To construct such a sequence we must give a rule which associates
an integer 1y to each positive integer k in such a way that for each value of k
the associated integer ny can be determined in a finite number of steps by an
entirely routine process. Now this definition could perhaps be interpreted to
admit sequences {n; } in which n; is constructed by a search, the proof that
the search actually produces a value of ny after a finite number of steps being
given in some formal system. Of course, we do not have this interpretation in
mind, but it is impossible to consider every possible interpretation of our
definition and say whether that is what we have in mind. There is always
ambiguity, but it becomes less and less as the reader continues to read and
discovers more and more of the author’s intent, modifying his interpretations if
necessary to fit the intentions of the author as they continue to unfold. At any
stage of the exposition the reader should be content if he can give a reasonable
interpretation to account for everything the author has said. The expositor
himself can never fully know all the possible ramifications of his definitions,
and he is subject to the same necessity of modifying his interpretations, and
sometimes his definitions as well, to conform to the dictates of experience.

The constructive interpretations of the mathematical connectives and
quantifiers have been established by Brouwer [see pp. 246-247 of this text]. . ..

Brouwer’s system makes essential use of negation in defining, for
instance, inequality and set complementation. Thus two elements of a set A
are unequal according to Brouwer if the assumption of their equality somehow
allows us to compute that 0 =1. It is natural to want to replace this negativistic
definition by something more affirmative, phrased as much as possible in terms
of specific computations leading to specific results. Brouwer does just this for
the real number system, introducing an affirmative and stronger relation of
inequality in addition to the negativistic relation already defined. Experience
shows that it is not necessary to define inequality in terms of negation. For
those cases in which an inequality relation is needed, it is better to introduce
it affirmatively. The same remarks apply to set complementation.

Van Dantzig and others have gone as far as to propose that negation could
be entirely avoided in constructive mathematics. Experience bears this out. In
many cases where we seem to be using negation—for instance, in the assertion
that either a given integer is even or it is not—we are really asserting that one of
two finitely distinguishable alternatives actually obtains. Without intending to
establish a dogma, we may continue to employ the language of negation but
reserve it for situations of this sort, at least until experience changes our minds,
and for counterexamples and purposes of motivation. This will have the
advantage of making mathematics more immediate and in certain situations
forcing us to sharpen our results. . ..
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Constructive existence is much more restrictive than the ideal existence of
classical mathematics. The only way to show that an object exists is to give a
finite routine for finding it, whereas in classical mathematics other methods can
be used. In fact the following principle is valid in classical mathematics:

Either all elements of A have property P or there exists an element of A

with property not P. This principle, which we shall call the principle of
omniscience, lies at the root of most of the unconstructivities of classical
mathematics. This is already true of the principle of omniscience in its simplest
form: if {ny} is a sequence of integers, then either n; = 0 for some k or

ny # 0 for all k. We shall call this the limited principle of omniscience.
Theorem after theorem of classical mathematics depends in an essential way on
the limited principle of omniscience, and is therefore not constructively valid.
Some instances of this are the theorem that a continuous real-valued function on
a closed bounded interval attains its maximum, the fixed-point theorem for a
continuous map of a closed cell into itself, the ergodic theorem, and the Hahn-
Banach theorem. Nevertheless these theorems are not lost to constructive mathe-
matics. Each of these theorems P has a constructive substitute Q, which is a
constructively valid theorem Q implying P in the classical system by a more

or less simple argument based on the limited principle of omniscience. For
instance, the statement that every continuous function from a closed cell in
euclidean space into itself admits a fixed point finds a constructive substitute in
the statement that such a function admits a point which is arbitrarily near to its
image. ...

Almost every conceivable type of resistance has been offered to a
straightforward realistic treatment of mathematics, even by constructivists.
Brouwer, who has done more for constructive mathematics than anyone else,
thought it necessary to introduce a revolutionary, semimystical theory of the
continuum. Weyl, a great mathematician who in practice suppressed his
constructivist convictions, expressed the opinion that idealistic mathematics
finds its justification in its applications to physics. Hilbert, who insisted on
constructivity in metamathematics but believed the price of a constructive
mathematics was too great, was willing to settle for consistency. Brouwer’s
disciples joined forces with the logicians in attempts to formalize constructive
mathematics. Others seek constructive truth in the framework of recursive
function theory. Still others look for a short cut to reality, a point of vantage
which will suddenly reveal classical mathematics in a constructive light. None
of these substitutes for a straightforward realistic approach has worked. It is no
exaggeration to say that a straightforward realistic approach to mathematics has
yet to be tried. It is time to make the attempt.

Bishop, 1967, pp. viii-ix and pp. 1-10

2. Some definitions from Bishop’s program

Bishop followed up on his manifesto by developing a great deal of modern mathe-
matics in a constructive vein (see Further Readings below). To give you an idea of
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his work, we present some of his definitions and basic concepts.

For Bishop the notion of a (constructive) function on the natural numbers is
taken as primitive; he does not identify it with the notion of recursive function. A
function is total and at every stage n of its calculation it is completely determined
how to calculate its value for n+1 (cf. the example of a free-choice sequence
in Section A.2).

He also takes the integers as primitive and derives from them in the usual way
the rationals with the operations of addition, subtraction, multiplication, and division
and the relations of equality, inequality, and <.

A sequence is defined as a function from the positive integers. Then a real
number is defined as a sequence (x,) of rationals such that for all m, n,
|x,, - x,| < 1/m+ 1/n (the ordering is on the rationals). That is, a real number
is a (constructive) Cauchy sequence of rationals with predetermined rate of
convergence.

Two reals x=(x,) and y = (y,) are equal if for all n, |x,-y,| < 2/n.

A real number x = (x,) is positive if for some n, x,> 1/n. The ordering and
inequality relations are then defined as: x > y iff x -y is positive, and x 2y
iff x>y or y >x, where x -y=(x,, - y,,). We leave for you to show
(Exercise 9) that x = (x,,) is positive iff there are numbers g, m such that for all
n>m, x, > 1/q (compare this to the proof that x # 0 in Section A.2).

Criticisms of Intuitionism and Bishop's Constructivism

If intuitionists and constructivists in the line of Bishop feel that classical mathematics
allows abstract notions that have no concrete intuitive sense, then there are others
who believe the same criticism can be applied to intuitionism and constructivism.

1. Paul Bernays on intuitionism

Intuitionism makes no allowance for the possibility that, for very large numbers,
the operations required by the recursive method of constructing numbers can
cease to have a concrete meaning. From two integers k, I one passes
immediately to k! ; this process leads in a few steps to numbers which are

far larger than any occurring in experience, €.g., 672577%),

Intuitionism, like ordinary mathematics, claims that this number can be
represented by an Arabic numeral. Could not one press further the criticism
which intuitionism makes of existential assertions and raise the question: What
does it mean to claim the existence of an arabic numeral for the foregoing
number, since in practice we are not in a position to obtain it ?

Bernays, 1935, p. 265
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2. Nicolas Goodman, from ‘“Reflections on Bishop’s
philosophy of mathematics”

Nicolas Goodman argues that Brouwer’s conception of mathematics is too subjec-
tive, for there is nothing in it to preclude accepting a proof of a contradiction. On the
other hand, according to Goodman, Bishop’s constructivism relies on an unknowable
but objective reality just as classical mathematics does, and hence classical logic
should be acceptable to it.

1 have tried to describe certain aspects of the experience of doing mathematics
by using the metaphor of seeing. As a matter of fact, for me mathematical
insight does have a strong specifically visual component. When I do mathe-
matics, I see vague, almost dreamlike, images. Nevertheless, doing mathematics
is not like dreaming. It makes sense to say that I have made a mistake. Often,
when I am working on a problem, an idea comes to me, I experience that sense
of relief that comes from the breaking of the tension, and then, to my dismay,

I see that the idea is not correct. In a dream, on the other hand, there are no
errors. Everything is arbitrary, and so everything is correct. It is impossible to
be mistaken. It is only after waking from the dream that I can criticize the
dream.

The essential attribute of a mathematical proof is not that it enables us to
visualize or grasp a certain pattern, but that it enables us to recognize that a certain
proposition is true. The standard intuitionistic definition of negation as implying a
contradiction is a definition of negation only because no one thinks that we will
ever prove a contradiction. A correct constructive proof that 0 =1 would amount
to a certification of the insanity of the human race. From this it follows that truth
cannot consist merely in provability. If to assert the truth of a theorem is only to
assert that one has a proof of the theorem, then it becomes incomprehensible why
we should not be able to prove mutually contradictory theorems.

There seems to be nothing in Brouwer’s philosophy to prevent mathema-
ticians from proving two mutually contradictory theorems. For Brouwer, doing
mathematics is a constantly repeated act of free creation. Mathematical objects
have the properties I say they have because they are my creations and I see that
they have those properties. I create them so as to have those properties. It may
perfectly well happen, on Brouwer’s view, that you and I see different things—
create differently. Brouwer’s mathematics is dreamlike in that, though it may
have internal coherence, it has no referent outside of itself. Doing mathematics
is a private and subjective experience. In fact, there seems to be nothing to
prevent Brouwer from changing his mind. Today he sees one thing and
tomorrow he sees another. The dreamer dreams and dreams again. Errett
Bishop, on the other hand, is no subjectivist. He insists on the objective
character of mathematical knowledge. For example, he asserts that

Mathematics, a creation of mind, is less arbitrary than biology or physics,
creations of nature; the creatures we imagine inhabiting another world in
another universe, with another biology and another physics, will develop
a mathematics which in essence is the same as ours [pp. 250-251 above].
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Such objectivity must somehow be grounded in a mathematical reality.

Let me put this point in terms of the visual metaphor I have been using.
The finitary mathematician I considered above will never prove two mutually
contradictory theorems because it is impossible that he should clearly visualize a
finite pattern and see in that pattern two mutually contradictory facts. If he were
to find only one element of order two in the cyclic group of order four yesterday
and two such elements today—well, then, we can only conclude that today he is
not paying close enough attention. We know this because we know that the
pattern formed by the cyclic group of order four is an actuality which cannot
display contradictory features. Similarly, if the constructive analyst correctly
proves a theorem, then that proof displays an aspect of the actual pattern that he
is studying. That pattern also actually exists, and therefore it also cannot display
contradictory features. Hence the constructive analyst also cannot correctly
prove a theorem today that contradicts a theorem he correctly proved yesterday.

Suppose we say that the infinity dealt with by the constructive analyst is
only potential, not actual. Then we must ask whether the analyst is free to
actualize that potentiality in a creative and spontaneous and unpredictable way.,
If so, then we have Brouwerian subjectivism. It is the free choice sequences,
objects which are forever indeterminate, that allow Brouwer to refute the law of
the excluded middle. To reject classical logic is to affirm that mathematical
reality is inherently vague. It is the indeterminacy introduced by the unknown
and unknowable future action of Brouwer’s subjective will that produces this
vagueness of Brouwer’s version of mathematical reality. Nothing like this is to
be found in Bishop. Of course, Bishop does not claim to be able to refute
classical logic. It seems to me, however, that Bishop’s insistence on objectivity
ought to force him to accept classical logic. In order to make mathematics
objective, Bishop must hold that the mathematical potential infinity can be
actualized in only one way. In Cantor’s language, there is only one road which
we travel when we, for example, extend the sequence of natural numbers. But
then, as Cantor argued,* that road is actually infinite, not merely potentially
infinite. Its character is determined independently of our activity. It is that
actual infinity which grounds the objectivity of the mathematician’s knowledge.
But the actual infinity will plainly also make every well-defined assertion either
true or false.

In order to give an account of the objective character of mathematical
propositions, we must recognize that the theorems we prove are true about a
determinate structure which we do not dream, but which is actual and
independent of which of us is studying it. It seems to me irrelevant to this point
whether, as Bishop seems to hold, this structure is a “creation of mind,” or
whether, as I hold, it exists independently of any mind, and would exist even if
there were no mind. In either case its properties do not depend on the beholder
or on the particular mind that creates it. Mathematical theorems are true in the

* Georg Cantor, Abhandlungen Mathematischen und Philosophischen Inhalts,
ed. E. Zermelo, Olms, Hildesheim, 1966, pp. 136-7
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sense that they correctly describe a structure whose properties are independent
of our knowledge.

If this is the case, then there can be no objection in principle to the noncon-
structive application of classical logic in mathematical reasoning. The same
determinate structure that is needed to ground the objective character of
mathematics will also suffice to ground classical logic. The desire for
constructive proofs, then, becomes a matter of preference and not a matter of
principle. If Kronecker prefers constructive arguments and Noether prefers
conceptual arguments, let each go her own way. It is a matter of taste, not a
question of foundational correctness.

The theorems that the analyst proves are true of a structure which, in some
sense, must be actual. It is not at all clear, however, just what the sense of that
actuality is to be. As Bishop might say, it is “out of this world” (see Bishop,

p. viit). Specifically, the structure that mathematics is about is infinite and
therefore neither surveyable nor physically realizable. It can exist neither in a
mind nor in the physical world. Where, then, can it exist? My argument for the
existence of such a structure is itself nonconstructive. Ihave not shown the
structure. I have merely argued that without it there can be no mathematical
activity.

Of course, Bishop himself is in favor of a certain degree of idealization of
mathematical existence. Thus he says that

The transcendence of mathematics demands that it should not be
confined to computations that I can perform, or you can perform,
or 100 men working 100 years with 100 digital computers can
perform. Any computation that can be performed by a finite
intelligence—any computation that has a finite number of steps—
is permissible [p. 252 in this text].
Nevertheless, we must certainly draw the line somewhere. For, to quote Bishop
once more,

We are not interested in properties of the positive integers that have
no descriptive meaning for finite man. When a man proves a
positive integer to exist, he should show how to find it. If God has
mathematics of his own that needs to be done, let him do it himself
[p- 251 in this text].

It is not obvious, however, just where that line should be drawn. A computation
which is not feasible in the actual physical universe is, to paraphrase Bishop, of
interest only to God. Indeed, potential computations are of a great many kinds.
There are computations that I actually perform and which I can survey, like
multiplying two three-digit integers. Then there are computations which I
actually perform, but which I cannot survey. Perhaps contemporary mathema-
ticians do not do many such computations, but some mathematicians of previous
generations devoted a great deal of their professional time to extensive compu-
tations carried out by hand. Kepler, for example, made trigonometric tables by
hand. Then there are computations which I could actually perform by hand, but
which I have a machine do for me. There are computations performed by
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machine which it would not be feasible to do by hand. There are computations
which I could perform by hand but which, as a matter of fact, I do not bother to
perform at all. There are computations which could be performed by a presently
existing machine, but which I cannot afford the expense of carrying out. There
are computations which are beyond the powers of any machine now on the
market, but which could be performed by some physically possible machine.
There are computations which, though finite, are not performable on any
machine which could actually exist in this physical universe. Then there

are computations which are possibly infinite, but which are quite simple.

An example is the computation called for by the following instruction:
“Systematically search for a counter-example to the Fermat conjecture. If, after
checking all possibilities, you have not found a counter-example, certify the
conjecture as true.” Then there are more complex infinite computations, such as
the one called for by the following instruction: “List all and only those G&del
numbers of partial recursive functions which happen to give total functions.” . . .

There is nothing very problematical about a computation which I have
actually carried out and which I can survey. Such a computation is a completely
constructive object. Itis, so to speak, the paradigm case of a construction in the
sense of Heyting or Brouwer. But already a computation which, although I have
carried it out, I cannot survey, has something hypothetical about it. I do not
actually see that the outcome of the computation is what I say it is. I may have
great faith that T have not made an error, perhaps because I have checked my
computation repeatedly, but that faith is still only faith, not mathematical
certainty. A computation carried out by machine has the result it has because of
the laws of physics, which are presumably only empirical. There is something
very nonconstructive about relying on the results of machine computations.
After all, the entire computational process is hidden. A computation which no
one has carried out is a figment. It does not exist. A computation which, though
finite, could not be carried out, therefore could not actually exist. It is not even
potentially an ingredient in a mind or in the physical universe. Vague talk about
possibility “in principle” should not be allowed to distract us from the clear and
fundamental distinction between what we can actually do and what we cannot
actually do.

It seems to me, therefore, that if a line must be drawn between actual
existence and merely ideal mathematical existence, then that line should be
drawn not between the finite and the infinite, as Bishop urges, but between the
feasible and the infeasible as, for example, Kino has suggested.* If the line is
drawn there, however, then the restriction to actual existence would maim
mathematical practice in a fundamental and incurable way.

Finite objects which are so large as not to be mentally or physically
realizable have a rather strange status in constructive mathematics. For
example, a natural number, no matter how large, is constructively either prime
or not prime. It constructively either is or is not a counter-example to the
Fermat conjecture. These cases of excluded middle apply to such numbers not
* See Akiko Kino, “How long are we prepared to wait?—A note on constructive
mathematics.” Preprint.
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because of the existence of any actual or physically potential computations
which would decide which of the two cases applies, but only by virtue of the
logical force of the principle of mathematical induction. The proof that every
positive integer is either prime or not prime is based on an application of mathe-
matical induction which presupposes that if a computation taking n steps can
actually be carried out, then so can a computation taking n +1 steps. But that
is false because our capacities are finite and bounded, not potentially infinite.
Thus the principle of mathematical induction commits the constructive mathe-
matician to the mathematical existence of objects which cannot actually exist.
But more than that, It commits the constructive mathematician to the use of
classical logic for these objects. As a matter of fact, whether a sufficiently large
integer is prime can only be settled by a proof. It cannot be settled by a routine
computation. Therefore, on the usual constructive grounds, we ought not to
assert that such a number is or is not prime.

Classical logic is every bit as misleading when applied to the arbitrarily
large but finite as it is when applied to the infinite. For example, the construc-
tive mathematician is committed to holding that there is an integer which is
prime if the 10100ty digit in the decimal expansion of w is even, and which is
composite if that 10190th digit is odd. It seems unlikely that anyone will ever
know the value of such an integer, Certainly no one now knows its value. It
seems to me every bit as empty to say that the value of such an integer could be
computed “in principle” as it is to say that such an integer must exist because of
the law of the excluded middle.

Goodman, 1981, pp. 139-144

E. Strict Finitism

Many of Goodman'’s criticisms of Bishop do not have the same weight if we agree
that a computation is indeed something we can do, not theoretically but actually.

1. D. van Dantzig, “Is 101010 a finite number?”

1. Unless one is willing to admit fictitious “superior minds” like
Laplace’s “intelligence”, Maxwell’s “demon” or Brouwer’s “creating subject”,
it is necessary, in the foundations of mathematics like in other sciences, to take
account of the limited possibilities of the human mind and of mechanical
devices replacing it.

2. Whether a natural number be defined according to Peano, Whitehead
and Russell and Hilbert as a sequence of printed signs (e.g. primes, affixed to a
zero) or, according to Brouwer, as a sequence of elementary mental acts, in both
cases it is required that each individual sequence can be recognized and two
different ones can be distinguished. If—as it is usually done both by formalists,
logicists and intuitionists—one assumes that by such a procedure in a limited
time arbitrarily large natural numbers could be constructed, this would imply the
rejection of at least one of the fundamental statements of modern physics
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(quantum theory, finiteness of the universe, necessity of at least one quantum
jump for every mental act). Modern physics implies an upper limit, by far
surpassed by 10101° for numbers which actually can be constructed in this way.
Weakening the requirement of actual constructibility by demanding only that
one can imagine that the construction could actually be performed—or, perhaps
one should say rather, that one can imagine that one could imagine it—means
imagining that one would live in a different world, with different physical
constants, which might replace the above mentioned upper limit by a higher one,
without anyhow solving the fundamental difficulty.

3. The result of 2. seems to be contradictory: it is impossible to
construct natural numbers as large as 10100 bt 101010 js a natural number.

The contradiction, however, is apparent only, as one has meanwhile
unconsciously changed the meaning of the term “natural number”.

4. In fact, assume that natural numbers in the original sense, say 0, 07,
077,07, ... have been constructed up to a definite one which we abbreviate
by ny, and let Sy be the set they form. The definition by complete induction
of the sums:

x+0=x, x+y =(x+y)’,
then is applicable only inasfar as x + y“€ S;. The same holds (mutatis
mutandis) for the properties of sums. One can, however, form formal sums
X+y,(x+y)+z,...,wherexe S|, ye S;,z€ S; ... These
sums do not exist as natural numbers in the first sense, but only in a new sense.
The proof of the properties of sums, e.g. x + y = ¥ + x holds only for
numbers in the first sense; for those in the second sense these properties must be
considered as postulates. The fact that nobody doubts that if we could enlarge
n; sufficiently, the proof would apply to these formal sums also, does not
mean that these relations have been proved. In this way formal sums consisting
of a limited number of terms can be constructed. Let n, be the largest among
those, which on a given moment actually have been formed and S, the set they
form. If n; is very large, it does not necessarily contain all natural numbers in
the (fictitious) classical sense up to n, , but only sums consisting of a suffi-
ciently small number of terms for which sufficiently simple abbreviations have
been introduced.

5. Similarly the definition of multiplication, of involution [exponen-
tiation?], etc. introduce each a new concept and a new class Sy, Sy, . .. of
natural numbers, if their constituent parts are allowed to be chosen arbitrarily
among the numbers previously constructed. In this sense 1010°" belongs to
Sy, but not to S5 and still less is a number in the original sense (S)).
Moreover e.g. the statement that

101010, 1010% _ 10102, 1q10'°

can not be said to have been proved, but is only a formal rule for handling
formally the symbols, e.g. of S, .
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6. Poincaré’s statement that complete induction is the creative principle
of mathematics can not be maintained. Such a principle—inasfar as the term
is appropriate—is contained in the successive definitions of arithmetical
operations, their formal extension outside the class of numbers hitherto obtained,
and the formal maintenance of the arithmetical rules proved for those which
belong to the first class S .

7. The difference between finite and transfinite numbers can not be
defined operationally:* it is possible that always when a mathematician A
uses the term “a transfinite number”, another mathematician B interprets it as
“a finite number” (of course not always the same one) without ever coming to
an inconsistency. This will, indeed, be the case if Bdisposes of a method of
defining far larger numbers than A does. B can then construct a natural
number (in his sense) Q surpassing by far all those which A can reach with his
methods (all of them, of course, applied a limited number of times). If then A,
or, if B is “world champion” in the construction of possibly large numbers, any
mathematicians, whosoever, speak of the transfinite number ®, B interprets this
as the natural number Q , @ +1 as Q +1, ®2as Q2 , etc. Note that A will never
meet Q - 1, and that B need not interpret 2 as the square of his interpretation
of ® but may just as well choose a larger number. Being aware of the possibility
that another mathematician may find definitions surpassing those he possesses,
i.e. that he may lose his “world championship”, B will use the terms “transfinite”
or “infinite”, or symbols like @ and X only in the sense of “numbers surpassing
everything I can ever obtain” but not as anything essentially different from the
numbers he can obtain. This implies that the question put in the title of this paper
does not admit a unique and unambiguous answer.

8. Brouwer’s “Over de grondslagen der wiskunde” (1907) begins with
the words (in translation): “ One, two, three . . . ; we know this sequence of
sounds (spoken ordinal numbers) by heart as a sequence without end, i.e.
continuing itself always according to a known law.” If one tries to find out what
the dots stand for, one sees that Brouwer’s statement can not be maintained. All
well-known difficulties of defining the well-ordered transfinite numbers of the
second class occur among the spoken ordinal numbers; we do notknow the
“whole” sequence by heart, and it does not continue according to a known law.

Going on, one arrives at million, . . ., billion, . . ., trillion, . . ., quadrillion,
quintillion, sextillion, . . . and—knowledge of Latin getting scanty—,
millionnillion, . . . , millionnillionnillion, . . . millionnilli . . . illion (million times

repeated), etc., corresponding to:

* This statement is due in principle to G. Mannoury, Woord en Gedachte, 1931,

pp. 55-58. The present paper is an effort to relieve the apparent contradiction mentioned
above which originally made the statement ununderstandable and unacceptable to most
mathematicians, including, till some years ago, myself. More or less similar ideas,
however, have been expressed long ago since by E. Borel (cf, his “nombres
inaccessibles”) and by M. Fréchet.
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0, 02, 03, ©4, 05,0, 0 o®°, @ (o times repeated), etc.
But: what stands “etc.” for?

9. The difference between finite and infinite numbers is not an essential,
but a gradual one. According to the successive definitions of “natural numbers”
in the successive senses, the individual identifiability and distinguishability
disappear gradually if the numbers become larger and larger and can be retained
by new definitions only for a scarcer and scarcer class of numbers. We leave
here out of consideration, for simplicity, the fact stressed already in 1909 by
G. Mannoury* that the identifiability and distinguishability even of the smallest
numbers are not absolute.

10. Also the difference between “formalistic” and “intuitionistic”
foundation of mathematics is only a gradual one. No “intuitionist” in the world
has ever actually “constructed” the number 1010 10 according to its original
definition, so that it “only” has a “formal” meaning for him, just like the
numbers of the second transfinite class. An intuitionist, if he were consistent,
might not call 10 1010 4 finite natural number. He also would reject (most of)
today’s socalled intuitionistic mathematics as being too formal. But—luckily
perhaps—he is not always so consistent.

11. With a few exceptions like perhaps E. Borel, M. Fréchet and
G. Mannoury, most mathematicians, logicians and philosophers have believed
in the possibility of obtaining an absolutely unassailable “foundation” of
mathematics. This belief must be characterized as an illusion. In particular
intuitionist mathematics can not be said to be absolutely “exact”, although it
can be said to be “more exact” than classical mathematics.

* G. Mannoury, Methodologisches und Philosophisches zur Elementarmathematik,
P. Visser, Haarlem, (1909), in particular pp. 6-8.

2. David Isles, from ‘“Remarks on the notion of standard
non-isomorphic natural number series”

In Chapter 3 we said, “One of the fundamental assumptions of this course will be
that we understand how to count and that each of us can continue the sequence 1, 2,
3,... . Weknow what it means to add 1 and can continue to do so indefinitely.”

But though we may be confident that we can always add 1, we also know that
some recursive functions give outputs that are too large to be expressed as decimals.
All we have are notations for their outputs, such as 1010'%, 6725772 ory(5,8)
where \ is the Ackermann-Péter function; these we must somehow place within the
“unique” ordering of the natural numbers. Perhaps, David Isles argues, we do not
have a unique natural number series but many series depending on what notations
(functions) we claim give natural numbers.
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“The notion of ‘formalization’ is now to be enlarged; ‘to formalize’ the
use of a notion means for me ‘to expose a method of using its name’ ”.*

To many people, one of the most puzzling of the claims made by Yessenin-
Volpin in the article from which the above quote is taken is that it is possible to
work consistently with “natural number series” of various lengths each of which
may be closed under some but not all primitive recursive functions. This note
represents an attempt to make these claims seem more reasonable and to begin an
explanation (independent, to some extent, of Volpin’s work) of where such a
viewpoint might lead.

Since the time of Skolem’s work in the 1920°s, mathematicians have been
aware of non-standard models for arithmetic [see, e.g., Chapter 17 of Boolos and
Jeffrey]. Yet the “existence” of such non-standard integers has never really
been taken seriously; the faith (dogma) that we possess a clear picture of “the
intuitive” natural numbers as well as of the relation of equality between them
has never really been shaken. These non-standard integers are usually pictured
as having a more complex and richer structure than our familiar natural
numbers. In contrast, the view to be advanced here is that what will be called
standard natural numbers series or natural number notation systems (NNNS’s)
are, in general, less rich and complex than “the” so-called “intuitive” series.

1. Skeptical comments

Are “the” intuitive natural numbers categorical [unique up to isomorphism]?
That is, is the description of natural number as clear and definitive as we usually
take it to be? This was no idle question for Frege, who in the Foundations of
Arithmetic, attempted to achieve an absolute and clear description of the

natural numbers. Any denial of categoricity has important consequences.
Whenever we define a class of mathematical objects via an inductive definition
and then proceed to establish results about objects in that class we make tacit use
of properties of the natural numbers over which the inductive definition is
carried out (e.g. we might use the presumed fact that the series is closed under
certain functions). One example of such a definition that will be considered at
the end of the paper is that of Turing machines and Turing machine computa-
tions. Unlike other mathematical constructions, however, our conception of the
natural numbers also strongly influences the ways in which we argue and reason
about “mathematical objects”. For it can reasonably be argued that it is primar-
ily on the basis of our presumed intuitive understanding of the natural numbers
that we accept mathematical induction as a valid tool of reasoning. If this is
correct, it is a case where the perception (invention, reflective abstraction) of a
particular mathematical structure has historically resulted in the acceptance of
certain forms of argumentation based on that structure (and, subsequently, to
the present social situation where the presence of these forms of argumentation
is one of the identifying characteristics of mathematical discourse). The

* A.S. Yessenin-Volpin, “The ultraintuitionistic criticism and antitraditional program
for the foundations of mathematics” in Intuitionism and Proof Theory, Kino, Myhill,
and Vesley eds., North Holland, 1970, p. 30.
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acceptance of this form of argumentation quickly leads to that impressive
structural richness of the “intuitive” natural numbers which was mentioned
earlier. For by its aid we are persuaded that a structure which initially is
understood as being closed under a particular unary operation (“successor”) is,
in fact, closed under every primitive recursive function—and more. ...

The author is of the opinion that the belief in induction as a method of
proof stems from the view that the nature of “natural numbers” is clear, that their
generation from 0 is a determinate process, that the equality relation between
any two is “immediately graspable,” in a word, that the natural numbers are
unequivocally defined up to isomorphism. But on what is such a belief in the
uniqueness of the natural numbers based? Three arguments are common. The
first, because it uses induction to establish an isomorphism between any two
natural number series is also circular [cf. Exercise 24.3]. The other two depend
on definitions or “constructions” of the natural numbers. The more sophisti-
cated of these is the set-theoretical definition which posits the set of natural
numbers as the intersection of all sets which contain a zero and which are closed
under a successor function. The first difficulty with this justification is that the
class of natural numbers so defined depends on the particular axiomatic set
theory adopted. To the author’s knowledge there is today no principled reason
for selecting one set theory as the preferred one, and thus there would seem to
be, at present, no unique axiomatic characterization of the natural numbers
attainable in this way. But even if there were, such an impredicative definition
[one in which an object is defined by quantification over a set of objects among
which is the object to be defined] could be taken as descriptive only if one
adopts a realist [platonist] position according to which the definition merely
singles out a preexisting set. Consequently, this explanation of natural numbers
is only available to those who feel inclined to accept not just realist modes of
speaking but in particular realist modes of speaking as providing a contentful
reduction of the intuitive notion.

In any case, it is probably true that even most mathematicians whose
practice is realist would agree that the set-theoretic explanation fails to be a
reductive advance because it is far less clear than the intuitive notion. It is
what is called the “counting description” which forms the basis for most
mathematicians’ belief in the uniqueness of the natural numbers. This
description is usually presented in the form of rules of which a simple
version might be:

R1) Write down a stroke 1;
R2) Given a set of strokes (call it X) write down X1.
R3) Now apply R1 once and then apply R2 again and again.

An understanding of the “structure of the natural numbers” thus consists in an
understanding of these rules. But what has actually been presented here? Rules
R1 and R2 are fairly unambiguous, in fact, one could easily use them to write
down a few numerals. Butrule R3 is in a different category. It does not
determine a unique method of proceeding because that determination is
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contained in the words “apply R2 again and again.” But these words make use
of the very conception of natural number and indefinite repetition whose
explanation is being attempted: in other words, this description is circular.
Clearly the situation remains unaltered through various elaborations of R3, e.g.
“carry out an indefinite loop”, etc. (The same point was made by van Heijenoort
in 1967, p. 356: “The repeated iteration of the successor operation seems—and
perhaps is—very clear to our minds, but it is either circular (to obtain any
number we take the successor of O a certain number of times) or rests upon
hidden and rather complex set-theoretic assumptions (“finitely many times”).
The intuitive characterization is so clear because, in fact, no definition at all has
been given. A few numbers have been exhibited, and intuition is assisted by
words like “repeatedly” and “and so on” or by three dots).

A natural rejoinder to this might be: “Nonsense. Iunderstand R3 perfectly
well because I understand how to use it.” But to respond thus seems to be saying
that the meaning of R3 is given by its use. If this is so, to claim that the natural
numbers are unique would be to claim that that use is unique —and that seems
palpably false. For the use may be manifested in an enormous variety of forms,
using various notation systems, computer, etc., and it may be a difficult matter to
see that two such apparently different procedures are, in some sense, isomorphic.
T have had someone respond to this criticism by saying that one must stop
somewhere, that one simply has to accept that competent users of English
understand R3 and its employment. This may be so but it would then seem that
any clear description of the natural numbers would have to include discussion of
what constitutes competency in this use of English. For example, would
someone who took R3 quite literally and applied R2 only twice (obtaining 111)
be judged a competent user?

Obviously this argument is subsumed under Wittgenstein’s argument that
if the meaning of rules is determined by their use, then as usage changes so does
the rules’ meaning. ...

II. Natural number notation systems

By way of motivating the alternative description of natural numbers consider
again the “counting picture”. As a description of a subject’s counting behavior,
R1 and R2 are probably accurate enough as far as they go. An observer will
observe a subject carrying out R1 and R2. But he will not observe the subject
applying R3 because, as the observation is confined to a finite period of time,
the observer will see the subject use R1 and R2 a finite number of times. The
observer then uses his own understanding of the natural numbers to interpret the
subject’s actions as following R1 and R2 in accordance with R3. That is, an
understanding of R3 is part of the observer’s interpretation of the subject’s
“natural number behavior”. To say that an understanding of R3 is part of the
observer’s interpretation does not imply that the observer must be “in possession
of” an understanding of the natural numbers. Clearly such a position would
merely commit us to the first step of an infinite regress in this analysis. Rather
what must be kept clearly in mind at this point is that if we describe the observer
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studying his subject we have introduced a second observer, observer,, and
observer, can see that the structure of natural numbers which observer; is using
to interpret his study of the subject is of the same type as the subject’s.

What all of this suggests is an abandonment of Frege’s attempt to provide
an absolute description of “the” natural numbers and to recognize that we are
working with a relative concept. That is, we are working with structures of a
“natural number” type and, in general, can only provide a description of one of

these by making use of another (perhaps less complex) structure of the same type.

We can get some understanding of the sort of data that Volpin claims
characterizes a structure of natural number type by returning to our discussion
of the observer of some subject’s “natural number behavior”. For the observer,
the description of the structure of natural numbers as he observes it in the
subject includes the following sort of data:

1) Certain explicit generation rules (among these will always be
“successor”’, +1);

2)  Certain auxiliary rules for distinguishing or identifying various symbols as
they are generated;

3) Perhaps a certain collection of notations, e.g. 1, 2, 3, 4, S, . . . which the
subject will actually produce during the observation period.

4) These observed examples 1, 2, 3, . .. will constitute the stage of the
subject’s natural number series which will have “arrived” or “be
completed” at the time of observation. In addition, the subject may
describe certain functions applicable to the arrived elements (addition,
multiplication, exponentiation for example) and indicate his belief that, say
210, will be among his natural numbers. That is, in addition to the
“completed” events of the series there will be “expected” or “future”
events such as 10 + 10 or 210, which will also be taken into attention by
the subject (although at the time of observation they are not among the
arrived members of the series and hence cannot be used as arguments of
the indicated functions).

(The reader should resist the temptation to equate “arrived” with some
absolute notion of “finite”. In this picture it is quite possible that a notation
which is arrived, i.e. finite, with respect to one series is in the future, i.e. infinite,
with respect to another.)

The elements of this picture seem to be captured by the following:
Tentative Definition 1 A natural number series (or natural number notation
system, NNNS) at a particular stage consists of

1.1) A collection of notations (the arrived numbers) plus (defined) relations of
equality and ordering between them;

1.2) A defined successor operation on the notations which respects the ordering
and which permits an enumeration of the arrived elements;

1.3) A collection of function symbols with associated rules for equality and
ordering.
(Example Axy (x+y) withrules )a=b and c=d —
a+c=b+d, ii) a<b—>c+a<c+b,etc.)
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1.4) The notations resulting from one application of these function symbols to
arrived elements together with the inherited equality and ordering (which
will, in general, be a partial order) constitute the future elements or those
that “will be arrived” at the next stage of the series.

Comment 1 The relative character of this definition is indicated by the words
“at a particular stage”. Here “stage” refers to some arrived number of another
natural number notation system Nn . The usual situation is that inductive
constructions will be given indicating the definition of the arrived and future
elements of an Nn, N, in terms of the arrived and future elements of some
Nn, Np.

“arrived” “future”

Al e

Comment 2 By an “enumeration” of the arrived elements in clause 1.2 is
meant the provision of two constructions. First an operation of +1 on the
arrived elements of N;. Second a procedure E, constructed inductively over
the arrived elements of Ny, which can produce a single output at a time of the
form Op; or n + 1 and which outputs all and only the arrived elements of N .
Further the inductive construction induces a linear ordering of the output of E
such that i) On; is produced first and ii) n + 1 is produced only if n is
produced at the immediately preceding step.

Comment 3 Because of the partial ordering mentioned in clause 1.4, it follows
that +1 induction is only valid when restricted to the arrived elements of a NNNS.
For this reason, although it is the case by assumption that any NNNS, Nj say,
is closed under Ax (x + 1)—i.e. that if x has arrived in N; (x€ Np),
then x + 1 will arrive in Ny (x + 1 &8 Nj)—it does not follow that it need be
closed under Ax (x +2). For if C(n) is the predicate “n + 2 will arrive”,
then, even granted that (n + 1) +2 = (2 + 2) + 1, we cannot conclude that
C(n + 1) because +1 is only applicable to arrived elements of Nj and we
only have that n + 2 will arrive.

In this setting the problem of showing that Ny is closed under a function
f takes the following form: x has been constructed in Ny on the basis of a
certain number ky having arrived in Ny which itself is closed under a
function g (Volpin calls kx the “genetic support” of x). Then if
g(kx) € ANO one must show that the construction which produces N
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guarantees that f(x) will have genetic support g(kx). In a nutshell, to show
that an Nn is closed under a function is not a matter which can be established via
“internal induction” but only on the basis of its construction from another Nn.

)
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IV. Relativization of Inductive Definitions

As a final example, let us consider the changes effected when one uses different
NNNS’s in place of the intuitive natural numbers in a standard argument from
recursion theory. In what follows o «<— n means that Turing machine program
o is given input n. Recall the standard

[Isles continues. . .]

THEOREM (Unsolvability of the Halting Problem)

Let T be the class of Turing machine programs and lal be the Godel number of
o€ T. There is no “test” Turing machine § € T such that
. Y if a«lal halts
B « lal halts in state .
N if o« lol doesn’thalt
Proof: If there were, define the contradictory machine p* =8 { <YSRY> |
S any symbol of § } . ]

In this argument the intuitive natural numbers are used in at least three
distinct constructions:

1) in the inductive definition of the class of Turing machine programs. Here a
given inductive definition will have a length and we may speak of 1(c) ,
the shortest length of the Turing machine program o;

2) the class of inputs to the Turing machines; and

3) to measure the length of Turing machine computations (this is implicit in the
words “halts” and “doesn’t halt” ).

Now whatever may be our preconceptions, there is nothing in this
argument that requires the “same” natural numbers in all three constructions.
Indeed all that is required is that if e € T, then | ol should be defined, that is
should be available as an input. Hence it is consistent with the structure of the
argument to suppose that we have three different NNNS’s, N1, N3, and N3
and that for a particular stage k we consider the class of Turing machine
programs T(NiX) (where o € T(N; k) means 1(o)) € NiX), the class of
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Exercises

inputs N>X and relativize the notion of “halting” to “halting as measured in

1
N3k If further Nq and N are so related that if ne Ny then 222 € N»,
it then follows that lol € NpX when o e T(N;X). With these changes the
theorem now becomes less impressive:

THEOREM Any Turing machine B € T(NX) which has the property that
forall a € T(MX) (and lal € Nyk)

Y if a«lal halts (N3k)

N if o« lal doesn’thalt (N3k)

fails to have this property at stage k + 1.

B« lal halts in state {

The point of this example is to suggest that the peculiarly “absolute”
character of a result such as the unsolvability of the halting problem may be
chimerical and have its origin in certain unrecognized assumptions (the
uniqueness of the natural numbers). Obviously the same sort of criticism can be
brought against the current readings of the first Godel incompleteness theorem.

Isles, 1981, pp. 111-118 and pp. 131-133

1. How does Brouwer’s “neo-intuitionism” differ from Kant’s intuitionism?

2. a.
b.

Does Brouwer accept completed infinities?
Why does Brouwer reject that all the real numbers can be collected into a set?
Can that argument be used against the rationals?

. For Brouwer, what is the role of symbolic logic and even ordinary language

in mathematics?

. Would a proof of the consistency of classical mathematics justify infinitistic

reasoning for intuitionists?

4. The theory of recursive functions deals with denumerable sets (cf. our remarks in
Chapter 11.B). Would any part of the mathematical development we’ve given be
unacceptable to intuitionists? Do intuitionists accept Church’s Thesis?

5. Say whether the following proofs are acceptable to a constructivist such as
Brouwer. If not, indicate what classical principle (PC or first-order) is being
used which is unacceptable, and say what conclusions a constructivist could draw.

a.

b.

The proof in Chapter 8.D that the following function is computable:
1 if no string of consecutive run of at least x 5’s in a row
g )= occurs in the decimal expansion of 1
0 otherwise

The following proof that there are irrational numbers a, b such that aP is
rational: Either v2 *2 is rational or not. If it is, then we are done. If not, take
a=v2" and b=v2 . Then at = 22 =2.
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6. How does Bishop’s view of the role of negation in mathematics differ from
Brouwer’s?

7. What classical laws of reasoning from Chapters 19 and 21 give rise to Bishop’s
principle of omniscience? Why doesn’t Bishop discuss those instead? Would our
first-order logic be acceptable to Bishop if we deleted those?

8. What do you think Bishop means by “reality” when he says that certain formal
systems are “detached from reality” ?

9. In Bishop’s system prove that x = (x,,) is positive iff there are g and m
such that for all n > m, x_ > 1/q.

10. a. Why are the following theorems of classical mathematics not constructively
valid?
i. If f is a uniformly continuous function from [0, 1] to the real numbers
and f(0) < 0 and f(1) > 0, then for some x with0 < x <1, f(x)=0.
ii. Every continuous function on [0,1] has a maximum.

iii. For any infinite collection of points in (0,1) there is a point a € (0,1)
such that every interval about a in (0,1) contains a point of the
collection.

iv. Every subset of a finite set is finite.

b. Present proofs of (i) and (ii) from any calculus textbook and point out where
nonconstructive reasoning is used.

11. What does van Dantzig mean when he says that the difference between finite
and infinite numbers cannot be defined operationally? Could we just point to
some very large finite number and say this is what we will take as infinite?

12. Why does van Dantzig say that intuitionist mathematics is not absolutely exact?
Do his arguments apply to Bishop’s brand of constructivism? Is he correct in
saying that at least intuitionism is “more exact” than classical mathematics?

13. a. How does Goodman criticize Brouwer’s notion of negation?
b. Why does Goodman say that Bishop’s assumptions should lead him to accept
classical logic?

14. When one of the authors of this book does 100 sit-ups in the morning he often
counts, “85, 86, 87, 88, 89, 100.” Is this what Isles means by a natural number
series? If not, why not?

Further Reading

Bridges and Richman in Varieties of Constructive Mathematics develop a fair amount of
constructive mathematics along the lines set out by Bishop and contrast it with both
intuitionistic mathematics and recursive analysis. For a more advanced treatment see
Beeson’s Foundations of Constructive Mathematics which also has an appendix on the
history of constructivism, or Troelstra and van Dalen’s Constructivism in Mathematics.
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Heyting’s Intuitionism: an introduction is a well-known text on intuitionism. “The intended
interpretation of intuitionistic logic” by Weinstein has a good discussion of intuitionism with
a comparison to Hilbert’s views in “On the infinite”.

Cantor’s struggles to get his work accepted and the resistance put up by Kronecker
make a fascinating story as told by Dauben in his book Georg Cantor. For Kronecker’s
influence on Hilbert see Reid’s biography of Hilbert.

Philosophy of Mathematics by Benacerraf and Putnam is an excellent collection of
essays by Brouwer, Heyting, Godel, Frege, Russell, and others on the philosophical
questions raised in this chapter. From Frege to Godel: A Source Book in Mathematical
Logic (ed. van Heijenoort ) contains a good selection of the earliest papers in modern logic.

Two papers provide excellent summaries of this course. In “The foundations of
mathematics” Goodstein explains his views of the foundations of mathematics and why he
prefers to work with only primitive recursive rather than general recursive functions;
Gentzen’s “The present state of research into the foundations of mathematics”, 1938, besides
surveying Go6del’s theorems, contains a discussion of consistency proofs.
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In this chapter we will look at an article that presents a very different view of
mathematics as a process of modeling.

Richard L. Epstein, “On mathematics”

T’d like to tell you a story, a story of how I understand mathematics.

There are so many stories already: the platonist’s, the constructivist’s, the
formalist’s, the structuralist’s, the humanist’s, . . . . But all of these fail to answer
satisfactorily at least one of the following questions:

¢ How do we create and know mathematics?

* How does mathematics compare to our other intellectual activities,
particularly science?

¢ What is mathematical intuition?

+ What is a proof in mathematics?

+ Is a good proof in mathematics also a good explanation?

+ What is mathematical truth, and are mathematical truths necessary?

+ How is it that mathematics is useful in our daily lives and in science?
Any story of mathematics should answer all of these. But a good story should also:

* Be consistent with how we actually do mathematics.

* Be useful to mathematicians, leading to new and interesting work
in mathematics.

I hope my story is a good one.

Reasoning by analogy

One of the fundamental ways of reasoning in all our thinking about what passes in our
lives is reasoning by analogy.!

! This is a brief summary of the analysis in my Five Ways of Saying “Therefore”.
In Critical Thinking I provide many analyzed examples from ordinary life.
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A comparison becomes reasoning by analogy when a claim is
being argued for: On one side of the comparison we draw a
conclusion, so on the other side we should draw a similar one.

This situation or thing is just like that; since we can draw this conclusion about the
first, we are justified in drawing a similar conclusion about the second.

Such reasoning is not good until we can say, in each particular case, what we
mean by “is just like” and “similar”. No two things, no two situations, no two
experiences are exactly the same. We pay attention to some similarities and ignore the
differences. If the differences don’t matter, or rather, if they don’t matter too much,
then we are justified in drawing similar conclusions. The point of an analogy is to
force us to be explicit about that justification, setting out, if we can, some general
claim under which the two sides fall and from which the conclusions follow.

Such reasoning is pervasive in our daily lives:

—“Why shouldn’t T hit you? You hit me,” says the first-grader,
invoking the principle that whatever someone does to me that’s bad,
I'm justified in doing back to her. Since it was O.K. there, it should
be O K. here, too.

—We should legalize marijuana. After all, if we don’t, what’s the
rationale for making alcohol and tobacco legal?

Alcohol is legal. Tobacco is legal. Therefore, marijuana
should be legal. They are sufficiently similar.

We use the similarities to draw conclusions, so long as the differences don’t matter.

Analogies and abstractions in science
Reasoning by analogy is used in science, too.

—Agent Orange has been shown to cause cancer in rats. Therefore,
there is a good chance that Agent Orange will cause cancer in
humans.

Rats are like humans. So if rats get cancer from Agent
Orange, so will humans. Rats are enough like humans.

Science sometimes proceeds by analogy. But scientists always proceed by
abstracting: choosing some aspect(s) of experience to pay attention to and claiming,
perhaps implicitly, that all other aspects of experience in these kinds of situations
don’t matter. What we pay attention to gives us the constraints for saying whether
a claim is true or false; what we pay attention to matters.

A scientific theory is true in the context of what we pay attention to, but it is
false in that it does not take into account all. The hypotheses of scientific theories act
as conditions for where the theory can be applied. When we “falsify” a scientific
theory we do not show that it is false. What we show is that it is not applicable to the
experience described in the falsifying experiment. Then we try to describe carefully
what kind of experience that may be, adding more conditions to our theory in the forn
of further premises. Thus, we can continue to use Newton’s theory of kinetics even
though, it is said, it is false; we use it so long as the objects we are investigating are
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not too large nor too small and are not going too fast; we use it where it is
applicable.2

The abstractions that comprise science are not false, nor are they true.
They are schematic claims until we say what we are paying attention to.

Mathematics as the art of abstraction

Mathematics abstracts from experience, too, only much more so than any science.
That is, mathematical theories ignore a very great deal more than any scientific theory,
as we can see in the following examples.

The natural numbers
We first have numbers as adjectives: one dog, two cats, eighteen drops of water,
fourteen sonatas, forty-seven ideas about mathematics. Numbers are labels.

With practice, repeating and learning the rules for naming and writing new
numerals, the counting numbers become a measuring stick we carry in our head.
We count off objects to find how many, as we use a tape to measure off lengths of
objects. But there is a definite length we cannot go beyond in measuring with our
tape; there is no definite limit we perceive in how far we can go with counting.

Then we take numbers as nouns. We reify our abstracting: the end of the
process of abstraction—paying attention to only some of our experience—begins to be
treated as a thing, an abstract thing. We abstract from counting to get the natural
numbers: 1,2,3,... .

Addition of natural numbers
We can combine countings to get what we call addition.

Consider how we learn 3 + 5 =8, We take something like pebbles or dots on a
piece of paper and count:

[ ] L] [ ]
1 2 3 1 2 3 435
1 2 3 4 5 6 7 8

We show that when we put the two sequences of counting together into one sequence
we get the result that the last item in the new sequence is assigned “8”. Then, it seems
to us, the same results of counting would apply to any other objects like these; the two
ways of counting aren’t idiosyncratic to just these dots or pebbles. So we abstract and
get a theory of addition.

We’ve been doing this so long, we learn it so early, it is so much a part of our
culture that we don’t see this as a model. Surely “1 +2 =3" is true.

But 1 drop of water + 2 drops of water # 3 drops of water. “l +2 =3"isnota
truth about the world; it is one of the claims that is needed to apply in a situation in
order for arithmetic to be applicable there. We can’t use arithmetic for drops of water
when we put those together.

2 This section is a brief summary of the analysis of scientific reasoning I first set out in
Five Ways of Saying “Therefore” and then modified with many examples in “On models and
theories, with applications to economics”. It is supplemented with a more general theory of
truth in my Essays on Logic as the Art of Reasoning Well.
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Our abstraction from counting is applicable or not. Our “truths” of arithmetic
say what follows from our abstraction and hence when our model is applicable, as in
any reasoning by analogy or abstraction. Arithmetic is an application of measuring,
and we must measure correctly.

Applying this theory is not obvious. We have to learn it. We check with
pebbles or dots and verify that 2 + 2 = 4:

HiR

But someone else claims 2 +2 +2 =4:
L] L]
L] L]

We have to learn (as children) how to apply the model.3
It seems to us, once we get the hang of it, that counting-addition is univocal.

3 The example is from Ludwig Wittgenstein, Remarks on the Foundations of Mathematics,
p. 52.
George Lakoff and Rafael E. Nifiez in Where Mathematics Comes From dispute this:

The very idea that babies have mathematical capacities is startling, Mathematics
is usually thought of as something inherently difficult that has to be taught with
homework and exercises. Yet we come into life prepared to do at least some
rudimentary form of arithmetic. Recent research has shown that babies have the
following numerical abilities:

1, At three to four days, a baby can discriminate between collections of two and
three items [reference supplied]. Under certain conditions, infants can even
distinguish three items from four [reference supplied].

2. By four and a half months a baby “can tell” that one plus one is two and that
two minus one is one [reference supplied].

3. A little later, infants “can tell” that two plus one is three and that three minus
one is two [reference supplied].

[The experiments are described in which babies stare at slides showing various
numbers of objects, the length of the stare indicating to the researcher that the
baby is discriminating between different configurations.]

The ability to do the simplest arithmetic was established using similar habitua-
tion techniques.  pp. 15-16

Lakoff and Nifiez describe it correctly in (1): Babies can discriminate between collections of
objects. When they say that babies can discriminate between numbers and do simple
arithmetic, consider that most any mammal and many birds can distinguish between collections
of two versus three objects. That does not indicate any ability to do mathematics. That does
not show that such creatures or that babies have any concept of number. Abstracting the notion
of a number as distinct from a number of objects is the first crucial step in mathematics, and
there is no evidence that other mammals, birds, or babies can make that step. The familiarity of
working with number notations apart from things that are numbered has become so familiar to
the authors that they cannot even see that they have begged the question in their description of
what the experiments showed.



On Mathematics 277

But that only says we have made it very clear how to apply it. There is no reason to
think ahead of time that we will never encounter another situation in which it seems by
all we have done so far that our counting-addition is wrong. If we do, we will surely
restrict counting-addition not to apply to such a case, saying that what we thought
were objects are not things, for only things can be counted.* That is, “1 +2=3"
cannot be falsified not because it is a necessary truth, but because we preserve it to be
true by applying it only in cases in which it is true.’

To say that “1 + 2 = 3” is true is to say that numbers—not as adjectives or as
arising from counting, or as abstracted from those uses—are actual things about which
we reason. That is not incompatible with what I have said, but it gives us no insight
into how we create and do mathematics and why mathematics is applicable.

The integers

We have addition of the natural numbers. We can then abstract from the process of
taking away objects (“Hey, when you took six sheep from that pen it left me with only
five™) to get a theory of subtraction. It may sound odd to call addition and subtraction
“theories” when they are just part of what we do every day. But they are theories or
models just as much as Newton'’s in that they abstract from our experience.

When we do subtraction along with addition, we find that our calculations—that
is, the working out of claims without reference to the things to which they might
apply—go a lot more clearly and smoothly if we have some “things” called zero and
negative numbers. That’s how and why those were first introduced. They flesh out
our abstractions. They make the calculations easier. They don’t seem to apply to
anything.

And hence we feel uneasy about them. If they aren’t abstractions from our
experience, how can we trust that the calculations in which we use them give results
that are applicable? When negative numbers were first introduced in the sixteenth
century they were suspect. How can we understand the equality of ratios? How can
1: =5 =—4: 20 when in the first ratio 1 is “larger” than -5, while in the second, —4 is
“smaller” than 20? Objections and questions about the legitimacy of their use
continued until the 19th century, when they were given a visual/physical
interpretation.6

As in any scientific theory, if we introduce new “entities” that do not arise by
abstraction, there will be, and should be, objections about their use in the theory.
When we can see a path of abstraction to them, we begin to have confidence in our
theory.

Irrationals
Irrationals were not introduced like negative integers. Irrationals were always part of

4 We recognize this in our language with the distinction between count and non-count (mass)
terms. See my Predicate Logic for a discussion of the concept of “thing” in our reasoning,
and “Concluding Philosophical Remarks” in my Propositional Logics for a discussion of other
possible arithmetics.

51 give a similar analysis of the law of non-contradiction in Five Ways of Saying
“Therefore”.

6 See Phi losophy of Mathematics and Mathematical Practice in the Seventeenth Century

by Paolo Mancosu for a discussion of the acceptance of negative integers.
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the abstraction of space we call geometry. Or rather points on a line were always part
of that abstraction, and some of those, it was discovered, couldn’t be measured by
ratios of integers. The measuring of those points then became reified into things:
irrational numbers.

Complex numbers
The square root of —1 was introduced into algebraic calculations because it facilitated
calculations and gave new results that could be checked by older methods. Such
calculations were challenged by many mathematicians as being simple fantasy, as
having no physical counterpart, as not reliable. Yet mathematicians continued to make
those calculations in their work because no contradictions arose when they were used
correctly, that is, according to the rules that were eventually determined for them.
Eventually complex numbers became accepted because they were given a
visual/physical representation as points on a plane. That clear path of abstraction
made us feel confident that their use was legitimate.

Plane geometry

Euclidean plane geometry speaks of points and lines: a point is location without
dimension, a line is extension without breadth. No such objects exist in our
experience. But Euclidean geometry is remarkably useful in measuring and
calculating distances and positions in our daily lives.

Points are abstractions of very small dots made by a pencil or other implement.
Lines are abstractions of physical lines, either drawn or sighted. So long as the
differences don’t matter, that is, so long as the size of the points and the lines are very
small relative to what is being measured or plotted, whatever conclusions drawn will
be true. Defining a line as extension without breadth is an instruction to use the theory
only when we can ignore the breadth of the line.

No one asks (anymore) whether the axioms of Euclidean geometry are true.
Rather, when the differences don’t matter, we can calculate and predict using
Euclidean geometry. When the differences do matter, as in calculating paths of
airplanes circling the globe, Euclidean plane geometry does not apply, and another
model, geometry for spherical surfaces, is invoked.

Euclidean geometry is a mathematical theory, which, taken as mathematics,
would appear to have no application since the objects of which it speaks do not exist in
our experience. But taken as a model it has applications in the usual sense, arguing by
analogy where the differences don’t matter.

Group theory

Consider a square. If we rotate it any multiple of 90° in either direction
it lands exactly on the place where it was before. If we flip it over its
horizontal or vertical or diagonal axis, it ends up where it was before. Any one of
these operations followed by another leaves the square in the same place, and so is

the same result as one of the original operations. a b
To better visualize what we’re doing, imagine the square to have
labels at the vertices and track which vertex goes to which vertex in these d ¢

operations. There is one operation that leaves the square exactly as it is: Do nothing.
For each of these operations there is one that undoes it. For example: the diagonal flip
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that takes vertex ¢ to vertex o is undone by doing that same flip again; rotating the
square 90° takes vertex o to vertex b, and then rotating 270° returns the square to the
original configuration.

Already we have a substantial abstraction. No rotation or flip leaves the square
drawn above in the same place, because we can’t draw a square with such exact
precision (nor can a machine), and were we (or a machine) to cut it out and move it, it
wouldn’t be exactly where it was before. We are imagining that the square is so
perfectly drawn, abstracting from what we have in hand, choosing to ignore the
imperfections in the drawing and the movement. If we like, we can then talk about
abstract, “perfect” objects of which the picture above is only a suggestion, but that
seems to be only a reification of our process of abstracting.

Now consider several objects lined up in a row. We exchange, that is, permute
places of some of them, again leaving them lined up in arow. Any permutation
followed by another is a permutation, a way to get the objects lined up in a row again.
There is one permutation that leaves everything unchanged: do nothing. For any
permutation we can undo it by reversing the replacements.

Consider, too, the integers and addition. There is exactly one integer which,
when we add it to anything, leaves that thing unchanged, namely, 0. And given any
integer there is another which when added to it yields back 0, namely the negative of
that integer.

Mathematicians noted similarities among these and many more examples.
Abstracting from them, in the sense of paying attention to only some aspects of the
examples and ignoring all others, they arrived at the definition of “group”. A typical
definition is:

A group is a non-empty set G with a binary operation o such that:

i. Foralla,beG, acbeG.

ii. There is an e €G, called the identity, such that for every aeG,
ace=eca=a.

iii. For every a €G, there is an ale G, called the inverse of a,
suchthat acal=aloa=e.

iv. The operation is associative, that is, for every a, b, ¢ €G,
(acb)oc=ac(bog).

Now we can prove claims about groups, such as that there can be only one
identity in a group. Such a proof does not show that “There is only one identity in a
group” is true—not, that is, unless we reify our abstraction into abstract things called
groups. But such a proof does give us a true claim:

“There is only one identity” follows from the assumptions of group theory.

If the assumptions of group theory apply to some thing/situation/part of our
experience/process, then the claim about the identity of the group should apply, too.
If that claim should fail to apply, then we know that group theory is not applicable in
that case, not that group theory is false.

7 From my Classical Mathematical Logic.
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Ring theory

We have the integers with addition and multiplication. We have the real numbers with
addition and multiplication. We have the rationals with addition and multiplication.
These and other examples led to the notion of a ring in mathematics. We can abstract
from our abstractions.

But don’t we mean by “abstract” to ignore and pay attention to certain aspects of
our experience?

The practice of doing mathematics is part of our experience, too. Mathematical
abstractions are part of our intersubjective mental life, like laws and sonatas. Our
intersubjective mental activities are also suitable subjects for abstraction. Mathematics
is a human activity.

We can abstract from our abstractions, going further and further in ignoring
aspects of the ordinary experience of our daily lives. Some of us have great pleasure
in considering and reasoning about such highly abstract subjects. But the pleasure is
merely aesthetic until applications of the abstractions are found, relating abstract
subjects such as algebra and plane geometry as René Descartes did.

Perhaps you have heard the phrase “the unreasonable applicability of
mathematics” used as shorthand for saying that it is very odd that highly abstract
theories of mathematics developed solely within the context of other abstractions can
so often be applicable.8 Such a view is mistaken. As mathematicians know, it is
rare for a mathematical theory of abstractions of abstractions of abstractions to be
applicable to our daily experience, as opposed to just the experience of doing mathe-
matics of a few mathematicians. And when such applications can be found, why
should it be so shocking? Yes, the theory was derived from abstracting from
abstracting, perhaps many levels. An application is the result of going back along that
path of abstraction. And that can only be if what the theory pays attention to and what
it ignores is aptly chosen. We can make a theory that ignores almost everything and
pays attention to bizarre or abstruse or little-used parts of our experience. Sometimes,
by chance, those aspects that are considered turn out to be important in other parts of
our experience. In those few cases, the “pure” mathematics is applicable to more of
our ordinary lives. We have hit upon a good analogy.9

The great mathematicians, those who have some insight into what claims follow
in some mathematical theory or who create a theory joining parts of mathematics
never before considered similar, who make abstractions of abstractions well, are said
to have great intuition, mathematical intuition. That intuition is no different from the
intuition that leads a wise person to draw an analogy between dogs and humans in
arguing for the humane treatment of animals, or the intuition of the wise person who
first “sees” that light can be understood as waves. In my own experience I find that
the intuition I had in seeing the general outlines of this paper before I began writing it,
and the intuition I had in proving a new theorem about degrees of unsolvability, and
the intuition I had in writing one of my plays are the same mental activity, differen-

8 Eugene Wigner, “The unreasonable effectiveness of mathematics in the natural sciences”.
9 Compare: “Why is it that this hammer works so well at pounding nails? ” and “How can
arithmetic be successful for counting?”

Reuben Hersh in “Inner vision, outer truth” discusses this issue from a similar
perspective.
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tiated only by the subject matter. Isee a general picture, I see a few of the details,
1 begin with that “vision” or “insight” ahead of me, and I fill in the details, often
arriving at something quite different from what I first imagined.

We do not understand how such intuition works. But mathematical intuition is
not something different in kind; it is only different in its subject matter.

Transfinite ordinals
We have our theory of counting with the natural numbers. We can count forever and
never reach the end.

But we can imagine that there is an end, even if we are not “able” to reach it,
just as there is an end to every counting we do in our lives. By analogy we postulate
an end to the sequence of natural numbers and call it ® (omega). Then we can
continue our counting: @+ 1, ®+2, ®+3,... . And since we’ve done it once,
we’ll do it again: assume an end to that counting, ® + ®. And then we can continue
such counting forever.

This sounds like pure fantasy. What’s to tell us that this will “work™ in the sense
of never leading to contradictions? And why bother? What’s the use?

We can describe such ways of counting in a constructive manner, as arrays of
natural numbers: one sequence is ®; two sequences, with every number in the first
coming before every number in the second is @ + ®; ... . When we see a picture of
this, we can see a path of abstraction. Moreover, such ways of counting can be seen to
correspond to more and more complicated forms of proof by induction. 10

But when someone considers extending the counting beyond what we can
constructively describe, indeed into an infinite that is beyond what could be “counted”
in any sense, we have more serious doubts. Why is this acceptable? Why is this
theory based on analogy and postulating new kinds of doings consistent?

Mathematical proof
As I mentioned briefly in the discussion of group theory and will make clearer now:

A mathematical theorem does not show that a claim is true.
It shows that the claim follows from the assumptions of the theory.

When we give a proof in Euclidean plane geometry of the claim that there
cannot be two distinct lines through a point parallel to another line not through that
point we are not showing that claim is true. We’ve seen that it doesn’t even make
sense to say it is true, but only true of something, in the sense of applicable. Our proof
is good if it is a good argument to establish that the claim about parallel lines follows
from the axioms of Euclidean plane geometry. 1

10 See Chapter 14 above.
Compare the presentation of Euclidean geometry in my Classical Mathematical Logic.
Albert Einstein in Relativity says:

» .

Geometry sets out from certain conceptions such as “plane,” “point,” and “straight
line,” with which we are able to associate more or less definite ideas, and from
certain simple propositions (axioms) which, in virtue of these ideas, we are inclined
to accept as “true.” Then, on the basis of a logical process, the justification of
which we feel ourselves compelled to admit, all remaining propositions are shown
to follow from those axioms, i.e., they are proven. A proposition is then correct
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Mathematicians do not say, “There cannot be two distinct lines through a point
parallel to another line not through that point.” They say, “In Euclidean geometry,
there cannot be two distinct lines through a point parallel to another line not through
that point.” Mathematicians do not say “There is a unique identity.” They say,

“In any group the identity is unique,” invoking thereby that the claim is “true” in
the theory of groups.

The truths of mathematics are truths about inferences.
Mathematics is about what follows from what in our abstractions.

Yet many mathematicians and philosophers say not only that mathematical
claims are true, but they are necessarily true: there is no possible way such a claim
could be false.

There is indeed a necessity in our mathematics, but it is not the necessity of
aclaim such as “2 + 2 =4”. The necessity is that the claim must follow from the
assumptions of the theory. There is no way that the axioms of Euclidean geometry
could be true and the claim about parallel lines false. There is no way that the
assumptions of group theory could be true and the claim that the identity of a group
is unique be false. We demand of a mathematical proof that it establish that the
inference from the assumptions of the theory to the claim to be proved is a valid
inference.

An inference is valid means that it is impossible for the premises to be
true and the conclusion false (at the same time and in the same way).

This requirement on mathematical proofs goes back to before Euclid. It does
not rely on an analysis of the forms of claims. It invokes only the notions of
possibility and truth. What the notion of validity requires, and what it guarantees
when it holds of an inference, is that if the mathematical claims that are the premises
are true in any application, then the conclusion will be true in that application, too.12

(“true”) when it has been derived in the recognised manner from the axioms. The
question of the “truth” of the individual geometrical propositions is thus reduced to
one of the “truth” of the axioms. Now it has long been known that the last question
is not only unanswerable by the methods of genmetry, but that it is in itself entirely
without meaning. We cannot ask whether it is true that only one straight line goes
through two points. We can unly say that Euclidean geometry deals with things
called “straight lines,” to each of which is ascribed the property of being uniquely
determined by two points situated on it. The concept “true” does not tally with the
assertions of pure geometry, because by the word “true” we are eventually in the
habit of designating always the correspondence with a “real” object; geometry,
however, is not concerned with the relation of ideas involved in it to objects of
experience, but only with the logical connection of these ideas among themselves.

It is not difficult to understand why, in spite of this, we feel constrained to
call the propositions of geometry “true.” Geometrical ideas correspond to more or
less exact objects in nature, and these last are und oubtedly the exclusive cause of the
genesis of these ideas.  pp. 1-2

12 This is what is formalized in modern formal logic: a claim in a mathematical theory is true
in a particular model; it follows from other claims if it is true in every model in which those
claims are true. See my “On valid inferences” and the papers in Essays on Logic as the Art of
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The following picture summarizes schematically this discussion of mathematical
proofs:

A Mathematical Proof

Assumptions about how to reason and communicate.

A Mathematical Inference

argument Premises (e.g., axioms of Euclidean plane geometry)
necessity
Conclusion (e.g., parallel lines claim)

The mathematical inference is valid.

The conclusion of the mathematical proof is that the mathematical inference is
valid, though mathematicians are rarely so careful as to say that explicitly. Rather,
they just show that the inference is valid. The mathematical proof as a whole, then,
must be a good argument for that conclusion.

Mathematical proofs are arguments

Reuben Hersh, a mathematician reflecting on his and others’ work, characterizes

mathematical proofs as follows:
Mathematical discovery rests on a validation called “proof,” the analogue of
experiment in physical science. A proof is a conclusive argument that a proposed
result follows from accepted theory. “Follows” means the argument convinces
qualified, skeptical mathematicians. Here I am giving an overtly social definition
of “proof.”

Hersh, as many others, has conflated the two arrows in the picture above, The
mathematical proof must be a good argument, and that can be very loosely described
as one that convinces qualified, skeptical mathematicians. But the “follows from” that
must be established is that the mathematical inference is valid.

We can say a great deal about what constitutes a good a:gument.14 To begin:

An argument is an attempt to convince someone, possibly yourself,
that a particular claim, called “the conclusion” is true. The rest of the
argument is a collection of claims called “premises”, which are given
as the reason for believing the conclusion is true.

The following are necessary conditions for an argument to be good:

The premises are plausible.
The premises are more plausible than the conclusion.
The conclusion follows from the premises.

Reasoning Well for the background on truth, inferences, and possibilities discussed here.

13 What is Mathematics, Really?, p. 6. Though I criticize Hersh here, there is much good in
his book, and reading it stimulated me to write this paper.

14 This and the ensuing discussion of necessary conditions for an argument to be good come
from my Five Ways of Saying “Therefore” and are applied to many examples in my Critical

Thinking.
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Plausibility is a measure of how much reason we have to believe that a claim is
true. In mathematical proofs it is not the assumptions of the mathematical inference
that must be plausible. After all, how can we say that the axioms of Euclidean plane
geometry are plausible when they aren’t even true? Some of them aren’t even simpler
than the claim about paralle] lines.15

The plausibility conditions apply to the mathematical proof as a whole:

The assumptions about the nature of reasoning and abstractions and how we
communicate must be plausible and more plausible than the conclusion that the
mathematical claim follows from the assumptions of the theory.

Many times in the history of mathematics the assumptions of mathematical
proofs—the part labeled “argument”—have been questioned. At one time it seemed
(or still seems) very dubious that we could reason using negative numbers, or the
square root of —1, or that we could invoke infinities, or use the method of proof by
contradiction, or use the law of double negation, or invoke the axiom of choice.

In these cases, though no one doubted that the mathematical inference was indeed
valid if given those assumptions, they doubted that the proof, the argument using
those assumptions, really established that the inference was valid. They found the
premises of the argument—not of the inference—dubious.

The premises of mathematical proofs, the claims about reasoning and communi-
cation, the assumptions about mathematics that we use in our everyday work in mathe-
matics, are usually left unsaid; they are treated briefly in undergraduate texts and even
more briefly in undergraduate mathematics courses. They become of interest to
mathematicians only when paradoxes or wrong proofs arise in some area of mathe-
matics. Uncovering and making those assumptions explicit so that we can debate
them is what logicians and philosophers of mathematics do. Logicians and
philosophers then join in the debates with working mathematicians, for it is the
working mathematicians who will finally decide if some method or assumption
is acceptable in the canon of mathematics.

Two examples about what assumptions are currently acceptable in mathematical
proofs illustrate these points.

Some mathematicians have given proofs that certain very large numbers are
prime by setting out probabilistic analyses. They show that within a very small
possibility of being wrong, a particular number is prime. But they then want to say
more: This suffices to show that the number is prime. After all, they say, if it is
certainty we want from our proofs, many mathematical proofs that are very long and
have many steps left to the reader are less certain than the small probability of error of
their straightforward probabilistic proofs. 16

But it is not certainty that is at issue. The issue is whether the inference in a
mathematical proof must be shown to be valid, not whether the argument, the mathe-
matical proof, is convincing. If we accept probabilistic inferences in mathematics,
then mathematics is no different from any science, for all sciences use strong
arguments and not just valid ones to show that a claim follows from the assumptions
of their theories.17 At present there is little division in the mathematical community

15 Gee the axiomatization due to Lestaw Szczerba of Euclidean plane geometry in my
Classical Mathematical Logic.
16 gee Chapter 5.G.1 for a description of this method.
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about this issue: almost everyone agrees that a mathematical proof must show that the
inference is valid.

The other new method of proof utilises computers to evaluate many complicated
cases that could not be done by hand, eliminating each as a possible counterexample,
and concluding a claim such as the four-color theorem. Mathematicians are hesitant to
accept such proofs because they rely on our trusting that the computer software is right
and that the computer itself is functioning correctly. How can that be part of mathe-
matics? In response, it is again said that very long proofs that leave many steps to the
reader and are accepted on the word of one or two referees are much more dubitable
than such computer proofs.

Here the issue is not whether a mathematical proof should establish that an
inference is valid, for the computer proof is claimed to do just that. The issue is about
what counts as a good argument in mathematics.

Mathematical arguments, just like arguments in our daily lives, leave much
unsaid. And of what is said, much is only hints or sketches, with lots explicitly left
to the reader. We accept such arguments because they are a form of communication.
We can see how to understand and evaluate an argument made by a person, filling in
the gaps when needed. When we cannot fill in the gaps, when questions cannot be
answered, we reject the argument as a mathematical proof. In contrast, a proof by
computer can only be followed step by step in the hopes that we can see how each
step is used in the proof, and that is impossible when there are so many steps that the
prover had to have recourse to a computer. We cannot imagine the intention of the
computer as a guide for how to repair a proof, for computers do not have intentions.

We can, however, try to verify that the program run by the computer does what
it is intended to do. We can perform tests on a few inputs where the outputs are
already known, we can examine how the program is written, and declare that the
program is correct. It is possible that the program might not be, but the chances of
that, it is believed, are small enough considering the cost of more extensive checking.
But that, still, leaves us only with accepting or rejecting a proof by a computer, not
understanding it as one would a human communication. The debate on the accept-
ability of computer programs in mathematical proofs continues to divide the
mathematical community. 18

A comparison of two proofs of a simple claim in arithmetic
Theorem 1+ 2+---+n=1hn"(n+1)

Proof 1 1=1/31"-(1 +1). Thisis called the basis of the induction.
Supposethat 1+ 2+---+n = 1/3n " (n+1). Thisis called the
induction hypothesis. Then:

142+ -+n+(n+l) = [hn @+ D] + (n+1).
So 1+2+-+n+(+l) =1, (n2+n)+1/,2n+2),

17" An inference is strong if it is not impossible but it is highly unlikely that the premises
could be true and conclusion false. See my Five Ways of Saying “Therefore” or “Plausibility,
and the strength of inferences™ for a discussion of the nature of strong inferences.

18 See Brian Davies’ “Whither mathematics?” for fuller discussions of these and more
examples of methods of proof that are currently in debate in the mathematical community.
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0 142+ -+n+(@m+1)=1,0n%+3n+2),
o0 142+ -+n+(n+) =1p@m+]) - (n+2).

Thatis, 1 +2+ - +n+@m+1) = /5 (n+1)"((n+1) +1), which was to be
proved.

Some proof like this is what all mathematicians have encountered in learning
mathematics. We are told that anything less rigorous doesn’t count as a proof. We
are told that it establishes that “1 + 2+ -+ n = 1/ n " (n +1)” is true.

But the proof does not establish that “1+ 2+ -+ n = 1/ n*(n+1)”
is true. What it shows is that the claim follows if we accept the method of proof by
induction. But isn’t that true? True of what—our abstraction? No. The method of
proof by induction is a condition of our theory: it is part of what establishes the subject
of arithmetic. That method is not obvious to students until they have been drilled on
it; it is very hard to use. Any claim that follows from the method of proof by inductior
on the natural numbers must be applicable to any instantiation of the theory. If such a
claim fails, then that’s not what we are talking about. We can’t falsify the method of
proof by induction.

This is what the ultra-constructivists who deny induction miss.19 Their
program is not about what the natural numbers are, nor the right way to reason about
them, nor disproofs of induction. They are going back to counting and deciding not to
make the abstraction from our abilities to say that we can “count” forever.20 They
propose a more “realistic” theory of counting and arithmetic, where a theory can be
said to be more realistic than another if it abstracts less from the same experience(s).

Proof 2
1+ 2+ -++n=1pn"(n+1)
e
@ @
@ & @
® @ @ o
®@ &€ @ o o
® @ @ @ ® ©

Is this a proof? When I saw it I felt for the first time that I understood and could
believe “1+ 2+ -+ n = 1/, n*(n+1)”. Before, I only knew from memory
that there is a proof using a symbolic manipulation of symbols that I could reconstruct

19 See, for example, D. van Dantzig “Is 101010 a finite number?” in Chapter 26.E.

20 Or in the case of David Isles, “Remarks on the notion of standard non—isomorphic natural
number series” (Chapter 26.E above) and “Questioning articles of faith”, that arithmetical
functions such as multiplication or exponentiation do not obviously lead to places on the list of
numbers we can count to by 1’s.
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fairly easily. Each time I did that algebraic proof I saw indeed that the claim followed
by induction. But here I could see that it was true, really true. 21

True? The picture convinced me, without any recourse to induction, that the
equality will apply to any things to which our basic model of counting and arithmetic
apply. Isee from the picture that any things I can count up to some number, call it n,
can be put, along with other such things, in an array that justifies the equality by
counting again. And a 6x7 array was enough to convince me.

But how do we know that we’ll always get the same result, regardless of how
large we expand the diagram? We know in the same way that we know “3 + 5 =8”
will be true for any selection of objects to which we wish to apply our methods of
counting and addition. We can give a proof of “3 + 5 = 8” from axioms for arithmetic,
but that is less convincing and assumes a great deal more as a theory of addition.

The first proof shows that the equality follows from the assumptions of our more
general theory of counting and arithmetic in which we also accept proof by induction;
the assumptions about reasoning, though not about the nature of our abstractions, are
relatively explicit. This second proof by picture leads us to believe that the equality
applies to anything to which our more basic theory of counting and arithmetic apply,
without invoking induction; the assumptions about the modeling are relatively clear,
but the methods of proof are not. In neither case are we showing that a claim is true;
we are showing that it follows, that it is part of our theory. The truths of mathematics
are truths about inferences and applications of theories.

A proof of Pythagoras’ theorem, and progress in mathematics
Consider another proof by diagram, this time of Pythagoras’ theorem.

First, we can represent the product of two numbers a and b by the rectangle with
sides of length a and b. Then we have the identity: (a + b)Z = a% + b2 + 2ab.

a b

b

Now we can note that the area of a right triangle  a
with sides a and b is 1/, ab.

Then we can get Pythagoras’ theorem: b
the square of the length of the hypotenuse

21 Tpe picture comes from Proofs without Words by Roger B. Nelsen, p. 69. Martin

Gardner in “Mathematical Games”, from which Nelsen takes this example, says:
The first n consecutive positive integers can be depicted by dots in triangular
formation. Two such triangles fit together to form a rectangular array containing
n(n+1) dots. Because each triangle is half of the rectangle, we see at once that
the formula for the number of dots in each triangle is n(n + 1)/2. This simple
proof goes back to the ancient Greeks. p. 114

22 One mathematician said to me that the picture is convincing for n = 6, but not for any

larger numbers. But then why not say it is good only for circles colored and laid out in this
manner?
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in a right triangle is the sum of the squares of the lengths of the legs. All we need do
is calculate the area of the large square below by the two different methods:
a b

aZ+b?=¢?

It is clear to me once I have understood the diagrams that it is impossible to
come up with a triangle that would not satisfy the identity.23

Yet some say that these diagrams do not constitute a proof. Rather, it is only in
Euclid that we find a real proof of Pythagoras’ theorem. That view, I believe, is a
reflection of the desire to make our implicit assumptions explicit. Geometric
assumptions necessary for proving Pythagoras’ theorem are explicitly set out in
Euclid. Or at least they seemed to be for over two millennia. But now the same
criticism of Euclid can be given as is given of the diagrams: too much was left as
unstated assumptions. The first time we had a real proof of Pythagoras’ theorem,
it is said, was when Hilbert formalized Euclidean geometry.

What is a proof depends on what we tolerate as implicit assumptions. If progres
in mathematics means (at least in part) making more explicit the assumptions by whicl
we prove results, then it is not clear that Hilbert’s system is progress over the diagram:s
because the assumptions he has made explicit seem to go far beyond what was in our
use of the diagrams. What progress there is in mathematics depends more on the
assumptions that are being made explicit having greater generality and applicability.
That is, progress in mathematics in this sense depends on greater generality through
abstraction. 24

This is not, however, the exclusive kind of progress of mathematics. Solving
a difficult and long-known problem counts as progress, too. But universally it is
acknowledged that such a solution is not of much interest, that is, is not really
considered progress, if it does not employ new methods that allow for the solution
of other problems or a generalization of the original proble:m.25

2 We can easily see that the method does not depend on these specific triangles and
rectangles. Indeed, in ancient times often just one example, such as using “5” and “8” here
(which is the ratio as close as the printer or computer monitor can manage), was given and the
reader was expected to see that the method of proof or calculation was quite general. Seel. G.
Bashmakova and G. S. Smirnova, “Geometry: The first universal language of mathematics”.
24 See Herbert Breger “Tacit knowledge and mathematical progress” for a discussion of this
point and much more on the nature of abstraction in mathematics.

25 This is what is frustrating about evaluating the use of computers in the proof of the four-
color theorem: nothing new is used in the proof, no new generalities or ideas, just the brute
force of the computer working through many, many cases.
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Formal proofs

Some mathematicians think that an objective standard can be given for what counts as
a proof in mathematics. They say an argument counts as a mathematical proof only if
it could be formalized, by which they mean within a system of formal logia26

In my Classical Mathematical Logic 1 provide a derivation in first-order logic
of the claim “The identity is unique” from the axioms of group theory. But that is not
a mathematical proof. I give the mathematical proof first, and then argue that the
formalization is apt.

A proof that a claim follows from some axioms in a fully formal system of logic
is not a proof in mathematics. It is evidence that can be used in a mathematical proof:
Why should I believe that this claim follows from these others? Because—and we
point to the formal proof. It is the pointing that is crucial. It relies on many
assumptions, most particularly that the formal system chosen for the formalization
is an apt model of reasoning and a good one for this mathematical proof, and that
the steps that have been added—for there are always steps that have to be filled in—
are appropn'ate.27

A Mathematical Proof

Assumptions about how to reason and communicate.

A Mathematical Inference

This has Premises (e.g., axioms of group theory)

f’olf':;iigz d. l This is formalized.

Conclusion (e.g., the identity is unique)
The mathematical inference is valid.

We cannot formalize the argument that constitutes the mathematical proof without
leading to an infinite regress.

We cannot replace proofs in mathematics with formal proofs, though we can use
formal proofs as evidence in mathematical proofs. Formalizing mathematical proofs
can lead to uncovering or clarifying assumptions behind such informal proofs and
seeing how or whether such assumptions are needed.

Mathematics as pure intuition
At the other extreme there are those who say that mathematics is entirely subjective.
The noted mathematician R. L. Wilder says,

What is the role of proof? It seems to be only a testing process that we apply to
these suggestions of our intuition.

26 See Don Fallis’ review of papers by Reuben Hersh and others.

27 AsIshow with examples in my Classical Mathematical Logic, first-order logic is rarely
appropriate because much mathematics requires second-order assumptions. And second-order
logic and set-theory give no unique standard because there are many systems of those that
differ too much, Further, as I point out in “The metaphysical basis of logic”, all those systems
are based on a metaphysics that denies a mathematics of processes as distinct from things.
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Obviously, we don’t possess, and probably will never possess, any standard
of proof that is inde2pendem of time, the thing to be proved, or the person or school
of thought using it. 8

The celebrated mathematician G. H. Hardy seems to concur:

There is strictly speaking no such thing as a mathematical proof; we can, in the last
analysis, do nothing but point; . . . proofs are what Littlewood and I call gas,
rhetorical flourishes designed to affect psychology, pictures on the board in the
lecture, devices to stimulate the imagination of pupils.

And the mathematician and philosopher L. E. J. Brouwer says,

In the construction of [all mathematical sets of units which are entitled to that
name] neither the ordinary language nor any symbolic language can have any other
role than that of serving as a nonmathematical auxiliary, to assist the mathematical
memory or to enable different individuals to build up the same set, 30

To do mathematics we must use our intuition. But that does not mean that
mathematics is subjective. It is intersubjective, like law, like drama, like etiquette.

To appeal to each individual mathematician’s intuition leaves us no criteria at all for
judging whether we have a proof, just as appealing to only a judge’s intuition gives no
standard for what is legal. And we know at least one clear standard for mathematical
proofs: they must establish that an inference is valid.

The view of mathematics as subjective introspection leaves it difficult for us to
explain how we learn mathematics, how we judge whether what we have is a proof,
what mathematical truth is, . . . . All the questions that I began this paper with remain
unanswered. Though intuitionists who followed Brouwer have created a full and rich
mathematical theory, they did so by denying his quote above: they use and work with
proofs just as all other mathematicians do.

Set theory and the existence of infinities

Given any few small objects we can collect them together. Given any things that we
can describe, we can make up a description of all of them at once. So proceeding by
analogy, mathematicians in the 19th century assumed that we can “collect” any things
whatsoever into a new entity called the “set” of those things.

We can describe a beautiful theory that way that has many applications. But it
leads to contradictions, such as the set of all sets that are not elements of themselves.
Not every beautiful way of postulating new things in analogy with old ones is good.

But the utility of such a theory is so desirable that mathematicians worked to
rescue it, modifying the analogy to say that only certain ways of collecting are
acceptable. And thus we have modern set theory. And we hope that it is consistent,
for it is a very useful high-level abstraction in which we can codify and which we can
apply to many areas of mathematics.

The assumptions of our new set theory countenance our “collecting” all natural
numbers into one set. And we can also “collect” all points on the line into one set—as

28 “The nature of mathematical proof.”
29 “Mathematical proof,” p. 18.
30 “Intuitionism and formalism”, p. 81 (see Chapter 26.A above).
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if a line that is finite but forever extendible were actually extended and completed as
an infinite thing.

That makes a lot of mathematicians uneasy, from the ancients, through the 17th
century, and continuing today. Intuitionists and constructivists deny that such
abstractions are legitimate in mathematics. They can see no path of abstraction that
leads to such a fantastical analogy. Those who use set theory say it should be accepted
because it is fruitful and (so far, it seems) consistent.

The utility and consistency of a mathematical theory, some argue, are sufficient
for us to investigate it. Indeed, not even utility but just a sense that the theory is
beautiful has been enough in the past century for mathematicians to publish papers on
new theories.

But, as we’ve learned from Kurt Gadel, it is rare that we can prove a theory to
be consistent. Instead, we try to relate it to other theories we know arise from a path
of abstraction and for which we have inductive evidence of consistency: No contra-
diction has arisen in the many years that many mathematicians have worked in the
theory.

Some go farther. They say that consistency of a mathematical theory is all that
is needed for us to conclude that the things of which it speaks exist.3! The infinities
beyond infinities of set theory exist, they say. And they often say so without the
qualifier “if our set theory is consistent”. They have gotten used to working in the
theory and thinking of these objects, so how could they not exist? If the theory is
contradictory, they feel that they can modify it once again to retain their world of
abstract objects; they do not consider that if the theory is modified, the objects of
which it speaks might not be the ones they had been thinking of earlier.

But we do not need that mathematical objects postulated by our theories exist
in order for our theories to be used and to be useful. We only need that the theory is
consistent, for then we can act as if they exist: It is not logically impossible for them
to exist. And possibilities are all we need in order to reason about mathematical
inferences in our mathematical proofs: an inference is valid if there is no possible way
for the premises to be true and conclusion false.

Some find it remarkable that our theories are consistent and cite that as evidence

3 particular, in introducing new numbers, mathematics is only obliged to give

definitions of them, by which such a definiteness and, circumstances permitting,
such a relation to the older numbers are conferred upon them that in given cases
they can definitely be distinguished from one another. As soon as a number
satisfies all these conditions, it can and must be regarded as existent and real in
mathematics.

Georg Cantor, Grundlagen einer allgemeinen Mannigfaltigkeitslehre, p. 182.

A mathematical entity exists, provided its definition implies no contradiction.
Henri Poincaré, The Foundations of Science, p. 61.

If the arbitrarily given axioms do not contradict one another with all their
consequences, then they are true and the things defined by the axioms exist.
This is for me the criterion of truth and existence.
David Hilbert, letter to Frege of December 29, 1899, in Gottlob Frege:
The Philosophical and Mathematical Correspondence, pp. 39-40.

Frege strongly disputes Hilbert’s view in that volume (pp. 43-47).
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that mathematical claims are indeed true or false.32 But the process of abstraction,
ignoring some of our experience and focusing on just part of it, is not likely to lead to
an inconsistency. It is only when we postulate something in addition to our experienct
that we risk inconsistency. The great difficulty in analyzing processes of abstraction i
distinguishing between those cases where we are only ignoring certain aspects of our
experience, as with addition and multiplication of counting numbers, and those cases
where we postulate some additional ability or capacity of ourselves or some extension
of our experience, as in set theories that allow for infinite collections 33

Mathematical proofs as explanations

It is often said that a good mathematical proof does more than just show that a
mathematical claim is true; it provides a good explanation of why the claim is true.
We want to know not just that “1 + 2+ -+ n = 1/3 n * (n+ 1)” is true, but why
it is true.34

An explanation in this sense is characterized as follows:

An inferential explanation is a collection of claims that can be
understood as “E because of A, B, C, ...”. Theclaims A, B,C, ...
are called the explanation and E is the claim being explained.

The explanation is meant to answer the question “Why is E true?”

For an inferential explanation to be good, the inference from A, B, C, . . . to E must be
valid or strong. And the claim being explained must be highly plausible: we do not
explain anything we do not already believe, 33

To view a proof of a mathematical claim as an explanation raises the same
problems that viewing a mathematical proof as an argument for that claim: we must
accept that mathematical claims are true or false, not just true or false in application,
and we have to come up with a way to understand how one mathematical claim is
more or less plausible than another. It is this latter that has particularly stymied
attempts at analyzing mathematical proofs as explanations.

Further, for an explanation to be good, at least one of the claims doing the
explaining must be no more plausible than the claim being explained. Otherwise, we
would have an argument for the conclusion. Thus we would have to have that some
inferencesto “1 + 2+ - .-+ n = 1/ n* (n+1)” are to be judged as arguments for
that claim, establishing the truth of it, and some are to be judged as explanations,
telling us why the claim is true. There would not be a uniform standard by which to
judge mathematical proofs..

None of these problems arise if we go back to the schematic diagram of
mathematical proofs presented above (p. 283). The mathematical inference to the
mathematical claim is neither an argument nor is it an explanation; it is a pure
inference, to be judged solely as to whether it is valid or not. The mathematical proof

32 gee Hilary Putnam, “What is mathematical truth?”, p. 73.

3 See my “On models and theories, with applications to economics” for a fuller discussion
of this.
34 See, for example, Paolo Mancosu’s Philosophy of Mathematics and Mathematical
Practice in the Seventeenth Century and “On mathematical explanation”.
35 See my “Arguments and explanations” for a discussion of inferential explanations.
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is an argument that the inference is valid. Part of the feeling that some proofs are
better at showing “why a claim is true” has to do with what criteria we have for such
an argument to be good.

We have seen necessary conditions for an argument to be good (p. 283). We can
also say that one argument is better than another if its premises are more plausible and
it is more clearly valid or strong. For some kinds of arguments, such as generaliza-
tions and analogies, more can be said about what constitutes a good or better
:;1rgument.36 But consideration of what conditions are needed for one argument to
be better than another in mathematics has been obscured by seeing it in terms of
explanations.

For example, Mark Steiner says,

Now I see no reason, except dogmatism, not to accept this story at face value:
The embedding of the reals in the complex plane yields explanatory proofs of
otherwise unexplained facts about the real numbers. The explanatory power of
such proofs depends on our investing the complex numbers with properties they
were never perceived as having before: length and direction.37

There is more than dogmatism as a motive to reject Steiner’s story, for it depends on
our assuming that mathematical claims have truth-values. Yet if mathematical claims
have truth-values, we cannot “invest” the complex numbers with properties. Either
they have those properties or they don’t. In any case, mathematicians don’t claim that
the complex numbers have those properties: we represent them using those quantities.

To see better what Steiner might be getting at, consider the following quotation
from Philip Kitcher:

And as in other sciences, explanation can be extended by absorbing one theory
within another. It is customary to praise scientific theories for their explanatory
power when they forge connections between phenomena which were previously
regarded as unrelated. Within mathematics the same is true and it has become
usual to defend the “abstract” approach to mathematics by appealing to the
connections which are revealed by studying familiar disciplines as instantiations of
general algebraic structures.

1t is not clear what Kitcher means by “explanation” and “explanatory power”, for we
are not explaining anything in his examples. Rather, we are setting out further
analogies, connecting our abstractions to show that they have instantiations we didn’t
previously see, and showing that some of our abstractions can be abstracted further to
relate them by analogy to other abstractions. As always, good analogies help us “see”
the relationships in the sides of the analogy. It’s not different from marijuana
compared to alcohol, or humans compared to dogs: We don’t explain anything with
such an analogy, but we do see common aspects and reason to similar claims based on
those aspects when the differences don’t matter.

We need such further analogies or instantiations of our abstractions because our
abstractions have become too abstract to reason about well, or because they are so
abstract that we are not sure they are related to anything in experience beyond what

36 See my Five Ways of Saying “Therefore”.
37 “Penrose and Platonism”, p. 137.
38 «Bolzano’s ideal of algebraic analysis”, pp. 259-260.
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they have been abstracted from, or because we are postulating new entities that need to
be shown to have an instantiation in something less abstract, or because we have run
out of ways to conceive of further progress in the area and have need of some other -
way to visualize the subject, as with the algebraization of geometry. All these help
us understand our analogies better. But they are not explanations.

Consider what Ernest Nagel says about a particular mathematical claim that
needs explaining:

Why is the sum of any number of consecutive odd integers beginning with 1
always a perfect square (for example, 1 +3+5+7=16= 4%)7 Here the “fact”

to be explained (called the explicandum) will be assumed to be a claimant for the
familiar though not transparently clear label of “necessary truth,” in the sense that
its denial is self-contradictory. A relevant answer to the question is therefore a
demonstration which establishes not only the universal truth but also the necessity
of the explicandum. The explanation will accomplish this if the steps of the
demonstration conform to the formal requirements of logical proof and if,
furthermore, the premises of the demonstration are themselves in some sense
necessary. The premises will presumably be the postulates of arithmetic; and their
necessary character will be assured if, for example, they can be construed as true in
virtue of the meanings associated with the expressions occurring in their
formulation.3%

The fact to be explained cannot be “the sum of any number of consecutive odd
integers beginning with 1 is always a perfect square” because that is not obviously
true. It has not to be explained but demonstrated. The following proof of that claim
does all one could hope for in making clear why the claim is “true”.

143+5+...+(2n+ D =(n+1)2
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As Martin Gardner says,

Think of the pattern as extending any desired distance to the right and down. Each
reversed L-shaped strip contains the odd number of circles indicated at the top. It

39 The Structure of Science, p. 16.
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is obvious that each additional strip, that is, each new odd number in the series 1 +
3 +5+...,enlarges the square by one unit on a side, and that the total number of
dots in each square bounded by the nth odd number is n2. 40

The picture convinces us that the claim is true in any application of the assump-
tions of our theory of addition and multiplication. To say that it is thus true by virtue
of the meaning of the expressions requires us to pack a very great deal into what is
understood by “meaning”. When a mathematical theory can be shown not to apply to
some situation/experience/thing/process, such as addition to drops of water, we do not
say the theory is false, but that this is a bad application. Has the meaning of the
expressions changed? Or are we only clarifying what we implicitly assumed were the
meanings? The appropriateness of an application seems hard to assimilate to implicit
meanings of expressions in a theory.

Finally, consider what Michael Resnik and D. Kushner say about proofs as
explanations:

We can account for what is probably the most basic intuition behind the idea that
there must be explanatory proofs as such, namely that all proofs convince us that
the theorem proved is true but only some leave us wondering why it is true. We
have this intuition, we submit, because we have observed that many proofs are
perfectly satisfactory as proofs but present so little information concerning the
underlying structure treated by the theorem that they leave many of our why
questions unanswered. In reflecting on this, we tend to conflate these unanswered
why questions under the one form of words “why is this true?” and thus derive the
mistaken idea that there is an objective distinction between explanatory and non-
explanatory proofs.41

The distinction between explanatory proofs and non-explanatory ones is no different
for arguments in daily life, such as in newspaper editorials. Sometimes we can follow
the steps of the argument very well but remain unconvinced. We are not being
irrational: we just don’t “see” the connections that make the argument valid or strong.
Similarly, we sometimes need to “see” the connections in mathematics, too. It
requires us not only to see the deductive connection but the relation to what we already
know or to something familiar, perhaps through a higher-level abstraction that creates
an analogy. Asking “Why is this true?” leads to the mistaken idea of looking for the
grounds of the truth of a mathematical claim. Often what is explanatory replaces
symbolic manipulation (e.g., an induction proof) with something more concrete in
our experience (a picture).

The utility of this story

A good story of mathematics should lead to new and interesting work in mathematics.
By considering the path of abstracting in a mathematical subject rather than

focusing only on the final abstraction, we can see where we have chosen to ignore

certain aspects of our experience. Then, when the development of the subject becomes

stuck, when we cannot adapt our abstractions to accommodate problems that resist

solution, we can look to what we have ignored and see if it is possible to take more

40 «Mathematical Games”, p. 114, from which this diagram is taken.
41 “Explanation, independence, and realism in mathematics”, p. 154.
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into account. This is the usual method of scientists, and it works equally well for
mathematicians. 42

By considering how we as people develop and use mathematics, we are no
longer left grasping at abstractions hoping that they will somehow reveal to our
intellects new solutions, abstractions, or analogies through their ineffable nature.

By remembering that mathematics is a human activity, we can solve more.

We can encourage this view with our teaching. By introducing the process of
abstracting rather than focusing only on the final abstraction, we can help students
grasp new concepts and make use of them, not only as a subject to be learned, but as
a tool for modeling further.*3

Grounding our stories of mathematics

The view of mathematics that I present is grounded in mathematics as a human
activity. Any story of mathematics has to account for that. The assumptions about
the world that I invoke, such as that there are people who do mathematics who
communicate and who have intuitions, are not controversial. In that sense, I have
offered a story that has minimal metaphysics.

I model what I see mathematicians doing. I do not try to account for all.
Abstract things arise—or come to our attention if you are a platonist—via our
abstracting. All mathematics is applied mathematics; we’ve just forgotten that
it's applied because of its familiarity. Mathematics is abstraction, proofs, and
applications, repeated over and over, limited only by our experience and imagination.

But the question can still arise: Why these abstractions?

We can ask for ultimate explanations. Perhaps we have intersubjective work in
mathematics because there are platonic objects that ground our insights; or because
mental constructions and subjective thoughts are somehow shared by all thinking
creatures; or because . . . . These ultimate explanations are the basis of other views of
mathematics. They are beyond testing, except for whether they answer the questions
that a good story of mathematics should answer.

We can view various philosophies of mathematics with their accompanying

42 This is how I developed the work in my Propositional Logics. Rather than viewing
propositional logics as being about abstract things called “propositions”, I saw them as ways to
reason using ordinary language and abstractions of that. Rather than looking for the “right”
logic that captures exactly the properties of such abstract things, I saw that what we pay
attention to in our abstracting, what aspects of ordinary language claims we deem important,
determines the appropriateness of the logic we choose. As we vary the aspect we deem
important, we vary the logic. And that variation, I saw, can be described quite generally by
devising an abstraction of our propositional logics—an abstraction of our abstractions. The
general structures that arise are then worth investigating not only for their own interest but for
the relations among logics they illuminate and for the assumptions about how to reason well
that they uncover. Idid not deny the abstract, for how could I show that there are no such
things as abstract propositions? Rather, I focused on the process of abstracting, and that gave
rise to new mathematics that is grounded in experience.

43 In this book Carnielli and I have given the historical development of the theory of
computable functions in order to recapitulate the path of abstraction to the theory. This is

the “genetic” method of teaching, long favored by George P6lya, as discussed in his
Mathematical Methods in Science.
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metaphysics as providing us with some ultimate account behind why we do
mathematics as I have described. Or we can see such stories of abstract objects
and mental constructions as psychological props that allow us to reason better
about our abstractions.

As for me, I am content to do mathematics and to reflect on how we
communicate when we do that. Come, let us reason together.

Appendix: Other views of mathematics

One of the virtues of the story I have told is its seeming familiarity. But it is quite
new. In this appendix I'll compare it to several well-known views of mathematics
other than platonism and various brands of constructivism, which I discussed
above.#

Mathematical claims are true
Any view of mathematics that takes mathematical claims such as “2 +2 = 4" or “In
every group there is an identity” to be true is different from what I suggest. Often the
reason given for why mathematical claims must be understood as true or false is that
they are indispensable for science. Our scientific theories are true, so the mathematics
that is essential for them must also be true. Or, it is said, sciences produce true claims,
so mathematics, to be a science, has to produce true claims. But sciences produce no
true claims in the usual sense, only claims that are true upon proper application. So
for mathematics to be a science, it needs to do only that, too. Indeed, to be a science,
mathematics must do only that and nothing more, for if mathematical claims are
indeed true prior to any application, then that alone distinguishes mathematics from
all sciences.

Mathematics is no different than science, proceeding by the same method of
abstraction and analogy to yield theories that are more or less applicable.

Logicism

This is the view that mathematics is part of logic. If we develop logic sufficiently, we
will be able to see mathematical theories as consequences of the logical axioms. This,
then, will explain their certainty and objectivity.

There are two main problems with this view.

First, in the working out of the program of logicism it always turns out that in
order to get mathematical theories certain axioms have to be added that are not
“logical”. At least one axiom about the existence of an infinite collection seems
always to be needed. And some axiom or axioms that reduce one part of the
formalism to another are always needed, which seems ad hoc. This makes the
claim that mathematics is part of logic look very suspect.

44 This is not meant to be a comprehensive or even fair discussion of others’ views. See
J. Ferreirés and J. J. Gray’s introduction to The Architecture of Modern Mathematics for
an excellent survey.

After writing this paper I discovered the mathematician W. W. Sawyer’s
Mathematician’s Delight in which he shows more clearly and thoroughly than I the develop-
ment of mathematical theories by a process of abstraction. That part of my views, at least, has
been commonplace among mathematicians for a long time.
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Second, if the reduction is to show that mathematics is certain and objective, tha
must come from logic being certain and objective. But logic as developed in this vein
has no clear claim to that.

The problem is that the formal theories of logic that are used are either
descriptive or prescriptive. Normally, logical systems are understood as prescriptive
theories. It does not count against the theory that some or even almost all people do
not reason in accord with the theory. We say they are reasoning incorrectly. This is
the view of logic as prescribing how to reason well. If logic is taken as presciptive,
then mathematics is prescriptive, too, which seems wrong.

If the logicist claims that his or her logical theories are descriptive, we have to
ask: Descriptive of what? Certainly they are not descriptive of how people actually
reason. So they must be descriptive of some other kind of experience. Boole claimed
that his logical theories were laws of thought. But neither he nor any of the logicists
ever invoked psychological experiments to demonstrate this. And in any case, it
surely must be how people should think, not how they actually think, for we know tha
people do not follow the “laws” of logic in their thinking (very often). The only other
possibility I can see is that the logicist takes his or her logical theories to describe
some abstract reality. Then logicism is a particular program of platonism.

Structuralism
This is the view that mathematics is not about objects but about relationships or, it is
said, structures. Michael Resnik says:

In mathematics, I claim, we do not have objects with an “internal” composition
arranged in structures, we have only structures. The objects of mathematics, that
is, the entities which our mathematical constants and quantifiers denote, are
structureless points or positions in structures. As positions in structures, they
have no identity or features outside a strucure. 45

Structuralists reify structures rather than mathematical objects, and in doing so
they seem to be platonists. They, too, have a problem of how mathematics can be
applied. Charles Chihara says:

I shall not attempt to explain here in any detail how geometry is applied, but a few
generalities may be helpful. Let us begin with the fact that the axioms of this
geometry characterize a type of structure. Since the rules of inference by which
theorems are derived yield sentences that must hold in any structure that is
characterized by the axioms, and since physical space itself can be represented as
having a mathematical structure of the sort that is characterized by the axioms—
Hilbert proves that his geometry is identical to the ordinary “Cartesian geometry”

45 “Mathematics as a science of patterns: ontology and reference”, p. 530. Compare:

“All right,” said the Cat; and this time it vanished quite slowly, beginning with

the end of the tail, and ending with the grin, which remained some time after the

rest of it had gone.

“Well! I've often seen a cat without a grin,” thought Alice; “but a grin
without a cat! It’s the most curious thing I ever saw in all my life!”
. Lewis Carroll, Alice in Wonderland

Carroll got it right: he started with the cat, rather than starting with the grin and wondering if it
was the grin of something.
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[reference supplied]—it follows that the theorems proved in the geometry (when
given an appropriate interpretation) must hold of the represented structure. Thus,
one is justified in drawing conclusions about the lines and points constructed in
physical space from the theorems of Hilbert’s geometry.46

That physical space can be represented as having the structure of the axioms of
some extant geometry is really the issue: what is the nature of that representation?
T understand it as a process of abstraction. If we ignore enough, and that which we
ignore doesn’t matter to the issues involved, then we can view our experience as
interpreting Euclidean geometry. Hilbert was a little closer:

[T]he application of a theory to the world of appearances always requires a certain
measure of good will and tactfulness; e.g., that we substitute the smallest possible
bodies for points and the longest possible ones, e.g., light rays, for lines. We also
must not be too exact in testing the propositions, for these are only theoretical
propositions.47

But it isn’t good will and tact. That’s the issue: the nature of abstraction and
application.

Hilbert’s views

Hilbert wanted to show that the truths of mathematics could be grounded in the finite,
allowing non-finitary claims only as ideal statements whose value came from their
utility in deriving further finitary claims. Hilbert took mathematics as formal systems,
speaking then of their interpretations.*® But he did not see, or at least did not stress
the emergence of mathematics from experience and its uniformity with all other
sciences,

Deductivism

Deductivism, or variants of it called “if-thenism”, is an outgrowth of the demise of
logicism. Mathematics isn’t a part of logic. Rather, it is said, any substantive claim of
mathematics is really an inference with the assumptions of the theory as premises, and
that claim as conclusion.*?

46 4 Structural Account of Mathematics, p. 45.
47 Letter to Frege, December 29, 1899, in Gottlob Frege: The Philosophical and
Mathemattcal Correspondence, pp. 40.
It is surely obvious that every theory is only a scaffolding or schema of concepts
together with their necessary relations to one another, and that the basic
elements can be thought of in any way one likes. If in speaking of my points I
think of some system of things, e.g. the system: love, law, chimney-sweep . . .
and then assume all my axioms as relations between these things, then my
propositions, e.g. Pythagoras’ theorem, are also valid for these things. In other
words: any theory can always be applied to infinitely many systems of basic
elements.
David Hilbert, letter to Frege, December 29, 1899, in Gottlob Frege:
The Philosophical and Mathematical Correspondence, pp. 40—41.
49 Or a conditional with the assumptions conjoined as antecedent and the substantive claim
the consequent. Gottfried Wilhelm Leibniz says:

As for “eternal truths:”, it must be understood fundamentally they are all
conditional; they say, in effect: given so and so, such and such is the case. For
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This sounds very much like what I said above:

The truths of mathematics are truths about inferences.
Mathematics is about what follows from what in our abstractions.

But in all views of deductivism I have seen, the deductions or conditionals are
understood to be part of a system of formal logic. Because of that, deductivists divide
mathematics into pure and applied and find it a significant issue how pure mathematics
can be applied. They do not see mathematics as arising by a process of abstraction
that is no different from what is used in the sciences, where the inferences need not be
formalized to count as good.50

instance, when I say: Any figure which has three sides will also have three
angles, I am saying nothing more than that given that there is a figure with
three sides, that same figure will have three angles.
New Essays on Human Understanding, Bk IV, Ch. xi, §14Bk IV, Ch. xi, §14.

P. H. Nidditch in Elementary Logic of Science and Mathematics says:

[I}t has become more and more widely accepted during the past hundred years,
with the result that it is now the orthodox doctrine, that to say of a mathematical
proposition p that it is true is merely to say that p is true in some mathematical
system S, and that this in turn is merely to say that p is a theorem in S. ...
This view of the nature of mathematical truth . . . was first put forward with full
explicitness and clarity by the Scottish philosopher Dugald Stuart. “Whereas in
all other sciences,” he says, “the propositions which we attempt to establish
express fact, real or supposed—in mathematics, the propositions which we
demonstrate only assert a connection between certain suppositions and certain
consequences. Our reasonings, therefore, in mathematics, are directed to an
object essentially different from what we have in view, in any other employment
of our intellectual faculties—not to ascertain truths with respect to actual
existence, but to trace the logical filiation of consequences from our assumed
hypotheses.” p. 287

50 Alan Musgrave in “Logicism revisted” says:
Russell sought a way to bring geometry into the sphere of logic. And he found it
in what I shall call the If-thenist manoeuvre: the axioms of the various geometries
do not follow from the logical axioms (how could they, for they are mutually
inconsistent?), nor do geometrical theorems; but the conditional statements
linking axioms to theorems do follow from logical axioms. Hence, geometry,
viewed as a body of conditional statements, is derivable from logic after all. . ..
Russell argued that the discovery of non-Euclidean geometries forced us to
distinguish pure geometry, a branch of pure mathematics whose assertions
are all conditional, from applied geometry, a branch of empirical science.
pp. 109-110
If-thenism has nothing to say about un-axiomatised or pre-axiomatised
mathematics, in which creative mathematicians work. Therefore, even if its
account of axiomatised mathematics is acceptable, as an account of mathematics
as a whole it is seriously defective. p. 119

Bertrand Russell, in “Mathematics and the metaphysicians,” says:

Pure mathematics consists entirely of assertions to the effect that, if such and
such a proposition is true of anything, then such and such another proposition is



On Mathematics 301

Hilary Putnam presents a version of deductivism more similar to what I suggest:

There is another way of doing mathematics, however, or at any rate, of viewing it.
This way, which is probably much older than the modern way, has suffered from
never being explicitly described and defended. It is to take the standpoint that
mathematics has no objects of its own at all. You can prove theorems about
anything you want—rainy days, or marks on paper, or graphs, or lines or spheres—
but the mathematician, on this view, makes no existence assertions at all. What he
asserts is that certain things are possible and certain things are impossible—in a
strong and uniquely mathematical sense of “possible” and “impossible”. In short,
mathematics is essentially modal rather than existential, on this view, which I have
elsewhere termed “mathematics as modal logic”.

Let me say a few things about this standpoint here.

(1) This standpoint is not intended to satisfy the nominalist. The nominalist,
good man that he is, cannot accept modal notions any more than he can accept the
existence of sets. We leave the nominalist to satisfy himself.5!

But the differences are essential. First, Putnam understands the modal nature of
mathematics as justified, legitimated, or somehow essentially explicated by formal
modal logic.32 Second, there is nothing in our experience that can count as a possible
way the world could be in which Euclidean plane geometry is true. What counts as a
possibility, and what justifies our use of inferences with claims that are neither true
nor false, is an application of the theory where what we count as true or false is
constrained by our agreements, explicit or not, as to what we will pay attention to in
our reasoning. 53

A version of deductivism described by Alan Musgrave seems closer to what I
have presented:

true of that thing. It is essential not to discuss whether the first proposition is
really true, and not to mention what the anything is, of which it is supposed to be
true. Both these points would belong to applied mathematics. p. 75

51 “What is mathematical truth?”, p. 70.
52 He says that his view of mathematics as modal logic is equivalent to taking mathematics
as based on set theory; see his “Mathematics without foundations”. In “What is mathematical
truth?” he says:
The main question we must speak to is simply, what is the point? Given that
one can either take modal notions as primitive and regard talk of mathematical
existence as derived, or the other way around, what is the advantage to taking
the modal notions as the basic ones? p. 72

Putnam’s comments about the nominalist show that his conception is based on some
more ample metaphysics than mine, for there is nothing in my view that prevents a nominalist
from accepting it—at least in those cases where the abstraction is from sufficently clear
experience—so long as the nominalist agrees to reason with us. Reasoning commits us to
some notion of possibility, but that notion need not be unacceptable to a nominalist; see my
“On valid inferences”.

53 These comments are based on the work I have done in my other works taking the notion of
a proposition or claim to be: a declarative sentence that we agree to view as true or false. I
stress that the agreements need not be explicit or conventional. A platonist could agrue, for
example, that our agreements are, perhaps unconsciously, forced on us by our perception of a
platonic reality. See my article“Truth”.
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I think, for example, that the sophisticated evolutionary Platonism of Popper need
not trouble an If-thenist. Popper tries to combine a Platonistic view of the
objectivity of human knowledge with the Darwinian view that human knowledge
is an evolutionary product. Thus he insists that the natural numbers are a human
creation (part and parcel of the creation of descriptive languages with devices for
counting things), but that once created they become autonomous so that objective
discoveries can be made about them and their properties are not at the mercy of
human whim {Karl Popper, Objective Knowledge, pp. 158-161]. An If-thenist
could agree with much of this. We create, first of all, languages in which to
express certain empirical claims: “Two apples placed in the same bowl as two
other apples give you four apples”; “Two drops of water placed together give you
one bigger drop of water”; etc. Then we come to treat numbers and their addition
in a more abstract way (so that the second statement just given does not count as
an empirical refutation of “1 + 1 =2"). This is, at bottom, to create a more or less
explicit collection of ‘axioms’ for the natural number sequence. And then we find
that, once these are granted, we must also grant other statements about numbers
like “There are infinitely many prime numbers”. We discover, in other words,
that our axioms have certain unintended logical consequences. The objectivity of
mathematics is guaranteed by the fact that what follows from what is an objective
question, and we need not postulate a realm of ‘abstract mathematical entities’ to
ensure it.

The objectivity of math comes from the objectivity of the inference relation relative
to our assumed metaphysics. In any case, neither Popper nor Musgrave developed
these ideas into an analysis of mathematical proof and applications of mathematics.

John Stuart Mill

John Stuart Mill is supposed by many to claim that mathematics is an induction
from experience. But when he uses the words “induction” and “generalization” in
discussions of mathematics he seems to mean what I mean by “abstraction”. Read
that way his views are very similar to mine:

We can reason about a line as if it had no breadth; because we have a power,
which is the foundation of all the control we can exericse over the operations of
our mind; the power, when a perception is present to the senses, or a conception to
our intellects, of attending to a part only of that perception or conception, instead
of the whole.

Since, then, neither in nature, nor in the human mind, do there exist any objects
exactly corresponding to the definitions of geometry, while yet that science can not
be supposed to be conversant about nonentities; nothing remains but to consider
geometry as conversant with such lines, angles, and figures, as really exist; and the
definitions, as they are called, must be regarded as some of our first and most
obvious generalizations concerning these natural objects. The correctness of these
generalizations, as generalizations, is without a flaw: the equality of all the radii

of acircle is true of all circles, so far as it is true of any one; but it is not exactly
true of any circle; it is only nearly true; so nearly that no error of any importance in
practice will be incurred by feigning it to be exactly true. When we have occasion
to extend these inductions, or their consequences, to cases in which the error would
be appreciable—to lines of perceptible breadth or thickness, parallels which

54 “Logicism revisited”, footnote, p. 123
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deviate sensibly from equidistance, and the link—we correct our conclusions, by
combining them with a fresh set of propositions relating to the aberration; just as
we also take in propositions relating to the physical or chemical properties of the
material, if those properties happend to introduce any modification into the result.

When, therefore, it is affirmed that the conclusions of geometry are necessary
truths, the necessity consists only in this, that they correctly follow from the
suppositions from which they are deduced. 35

Whether Mill’s views really are similar to or even compatible with mine awaits further
study.56

55 System of Logic, Book II, Chapter V, §1.
36 John Skorupski in “Later empiricism and logical positivism” discusses Mill’s views and
suggest a program for empiricists that is similar to what I have done here.
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1834

The English mathematician Charles Babbage, 17911871, designs his Analytical Engine,
the first general purpose digital computer. It is to consist of a store, an arithmetic unit,
punched card input and output, and a mechanism to control the sequence of cards that
allows for iteration and conditional branching.

It appears that the whole of the conditions which enable a finite machine to make
calculations of unlimited extent are fulfilled in the Analytical Engine . .. Thave
converted the infinity of space, which was required by the conditions of the problem,
into the infinity of time.

Babbage’s ideas are far in advance of the available technology, and he and others build
no more than parts of his machine, now on display in the Science Museum in London.
Babbage’s influence is minimal until World War II when his work is rediscovered.

1843

Byron’s daughter, Augusta Ada, 1815-1852, translates into English an article on Babbage’s
work by Luigi Ménabréa, later Prime Minister of Italy. She includes her own comments
which are several times longer than the original paper and, with Babbage’s help, appends
sample programs, including one for computing the sequence of Bernoulli numbers by means
of a loop within a loop. Babbage, anxious to have someone of the aristocracy promote his
work, is outraged that after all his tutoring she resists including under her own name his
exaggerated claims and requests for funding for his engine (see Stein, 1985).

1861
Hermann Grassmann, 1809-1877, publishes his Lehrbuch der Arithmetik fiir hohere
Lehranstalten in which he gives recursive definitions of addition and multiplication:

x+0=x x-0=0
x+(y+1D)=@x+y)+1 x-(+D=@x"y)+x

Though also a founder of the study of vector algebra, Grassmann’s application to be a
university professor is rejected because in E. E. Kummer’s judgement his best essay contains
“commendably good material expressed in a deficient form”—his writing is too formal and
abstract. He continues throughout his life as a gymnasium teacher and becomes a

reknowned linguist and specialist in Sanskrit literature.

1872

In an extraordinary departure from previously accepted mathematics, Georg Cantor,
1845-1918, advocates using completed infinite totalities in mathematics and creates a
mathematical theory of the infinite. His publications beginning this year culminate with his
Beitrdge zur Begrundung der transfiniten Mengenlehre of 1895-1897. But his use of
classical logic and nonconstructive existence proofs, as well as various levels of infinities, is
not universally accepted, and later the “paradoxes” of set-theory lead to serious reaction.
Opposition is greatest from Leopold Kronecker, who blocks him from advancing beyond a
position at the University of Halle. From 1884 onwards he suffers from a series of nervous
breakdowns and dies in a mental institution.
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1879
Gottlob Frege, 1848-1925, publishes his Begriffsschrift, a formula language, modeled
upon that of arithmetic, for pure thought in which he establishes much of what we now
know as mathematical logic: the use of variables, quantifiers, relations, propositional logic,
functions, an axiomatization of logic. He proves the principle of induction from his logical
principles.

Frege’s syntactical approach and his new notation are at odds with the current
algebraic approach to logic so that, working alone at Jena, his ideas receive little attention
until the turn of the century.

| | I
E:_—_ b

[ Law of Transposition + (b — a) > (ha > b)]

Q 8 o

1887

Leopold Kronecker, 1823-1891, publishes his “Uber den Zahlbegriff”, the first manifesto
for constructivist mathematics: all mathematics must be based on a finite number of operators
involving only the integers, such that each operation can always be evaluated in a finite
number of steps. A member of the Berlin Academy and later Professor of Mathematics

at the University of Berlin, he is vehemently opposed to Cantor’s introduction of actual
infinities into mathematics, having earlier prevented Cantor from publishing one of his
papers because of its “meaningless” proofs, and later blocking Cantor’s advancement to

a better university position. He is reputed to have said:

God created the positive integers; all the rest is the work of man,

1888

Richard Dedekind, 1831-1916, publishes his Was sind und was sollen die Zahlen? in
which he states the principle of the definition of functions by induction, what is now called
primitive recursion:

If there is given an arbitrary transformation 6 of a system I in itself, and besides a
determinate element o in I, then there exists one and only one transformation y of the
number series N, which satisfies the conditions

L yN)cT

IL y(I)=o

IIL y(n") =6 y(n) where n represents every number.

The existence of such a function he justifies by recourse to the principle of (what we
now call) first-order induction, which he states and proves as a corollary to his theorem
justifying (full) second-order induction. He uses the latter to prove that the natural numbers
are unique.

When only 22 Dedekind received his doctorate in mathematics at Géttingen. Though
a good friend and collaborator of Cantor, he nonetheless turns down a position at Halle for
family reasons, remaining in Braunschweig where he teaches at the Technische Hochschule.
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Relative levels of advanced academic degrees in continental, especially
German-speaking countries (italics), vs. the English and U.S. system:
Master (Thesis)
Doktorate (Dissertation)
Ph. D. (Thesis, Dissertation)
Habilitation (Habilitationschrift)

1889

Giuseppe Peano, 1858-1932, publishes in Latin his axiomatization of arithmetic. His clear
notation is popular and eventually becomes standard, but his excessive formalism makes his
work less and less accessible to mathematicians outside his circle at the University of Turin,
and eventually he is asked to stop teaching. Just as he intends his notation to be used to
unify the presentation of all mathematics, he sets out to create a new popular universal
language, “Latino sine flexione”, to facilitate communication on all subjects.

Because the usual spoken or written languages do not in the least satisfy the require-
ments of consistency demanded of this symbolic logic, formalists try to avoid the use of
ordinary language in mathematics. How far this may be carried is shown by the modern
Italian school of formalists, whose leader, Peano, published one of his most important
discoveries concerning the existence of integrals of real differential equations in the
Mathematische Annalen in the language of symbolic logic; the result was that it could
only be read by a few of the initiated and that it did not become generally available until
one of these had translated the article into German.

Brouwer, 1912, p. 79

Peano’s axioms

1. 1 N.

2.ae N.D. a=a.

3.abe ND:a=b.=.b=a.

4. abce N.D .a=b.b=c:D.a=c

5.a=b.be ND. aceN.

6.ae N.D.a+1¢eN.

7. abe N.Dia=b.=.a+1=b +1.

8. aeN.D. a+l==1
9.ksK.-.lek.'.xeN.xek:DX.x+lek::C).NC)k.

1891

Cantor introduces his diagonal method to show that the reals are not countable: If the reals
were countable then the reals between O and 1 would be, too. So we could list them, using
only representations that do not terminate in a tail of 9°s. And then the real number b
defined below must be between 0 and 1, yet could not be on the list.

a a

0 01 02
31 =
32 =
a, = .a, 4. a, .. 4y
a,, +1 ifa,, <
b=.byb, ... b, ... where bn={"" N
a,,—-1 ifa, 28
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In 1874 Cantor had already proved that the reals are not countable using an argument
based on nested intervals and properties of the irrationals. The point of his new method is its
generality: now he shows that the cardinality of any set must be less than the cardinality of
its power set and hence that there must be infinitely many levels of infinities.

1897

Methods for checking the validity of deductions in aristotelian logic have become well-
known. This year the English mathematician and author of Alice in Wonderland, Lewis
Carroll (Charles Lutwidge Dodgson), 1832-1898, presents three of them in his popular text
on logic Symbolic Logic: Euler-Venn diagrams, Carroll’s diagrams and counters, and a
method of subscripts (algebraic).

1899

The program to axiomatize geometry begun by Euclid more than two millenia earlier comes
to fruition with Hilbert’s axiomatic development of Euclidean geometry in his book The
Foundations of Geometry. The formal axiomatic development and the clear distinction
between the formal language and models for it influence Hilbert towards a formalistic
conception of mathematics.

One must be able to say at all times—instead of points, straight lines, and planes—
tables, chairs, and beer mugs.
Hilbert in Reid, 1970, p. 57.
David Hilbert, 1862-1943, having received his doctorate at Kénigsberg in 1885, is now
permanently at Gottingen.

1900

The Second International Congress of Mathematicians is held in Paris, and Hilbert, one of
the pre&minent mathematicians of the day, states 23 problems as signposts for the develop-
ment of mathematics.

The first problem asks whether every subset of the real numbers can be put into one-
one correspondence with either the entire set of real numbers or the set of natural numbers
and, further, whether it is possible to well-order the set of all real numbers. That is, is it
possible to order the real numbers so that every subset has a least element?

[The second problem is] to prove that “the arithmetical axioms™ are not contradictory,
that is, that a finite number of logical steps based upon them can never lead to
contradictory results.

The tenth problem is to determine of an arbitrary polynomial equation with integer
coefficients in any number of unknowns whether there is a solution for it in the integers.

The conviction of the solvability of every mathematical problem is a powerful incentive
to the worker. We hear within us the perpetual call: There is the problem. Seek its
solution. You can find it by pure reason, for in mathematics there is no ignorabimus.
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1902
Bertrand Russell, 1872-1970, writes to Frege of his discovery of a contradiction inherent in
the first volume of Frege’s The Basic Laws of Arithmetic, the work in which Frege is
attempting to develop mathematics as part of logic.

Let w be the predicate of being a predicate which cannot be predicated of itself. Can

w be predicated of itself? From either answer follows its contradictory. We must

therefore conclude that w is not a predicate. Likewise, there is no class (as a whole) of

those classes which, as wholes, are not members of themselves. From this I conclude

that under certain circumstances a definable set does not form a whole.

Russell in Frege, 1980, pp. 130-131

The second volume is nearly ready for press and Frege can only add an appendix
explaining the problem. He writes to Russell:

Your discovery of the contradiction has surprised me beyond words and, I should almost

like to say, left me thunderstruck, because it has rocked the ground on which I meant to

build arithmetic. ... Your discovery is at any rate a very remarkable one, and it may

perhaps lead to a great advance in logic, undesirable as it may seem at first sight.

Frege, 1980, p.132

This and paradoxes in the theory of sets create concern about the foundations of
mathematics among mathematicians and logicians. Hilbert fears that the finitists such as
Kronecker may be right and that mathematics based on actual infinities is indeed incoherent.

1904

Ernst Zermelo, 1871-1953, working with Hilbert’s group in Géttingen, “solves” part of
Hilbert’s first problem by showing that every set can be well-ordered. He does so by
explicitly formulating and using a principle that he claimed was implicit in the work of many
mathematicians, what comes to be known as the axiom of choice. The mathematical
community becomes divided as to whether it is a legitimate principle. (See Moore, 1982

for the history.)

Hilbert, in an address to the Third International Congress of Mathematicians at Heidelberg,
presents a sketch for proving the consistency of axiomatic arithmetic, the method of which
becomes widely adopted: exhibit a combinatorial property that the axioms possess and which
theorems inherit by the rules of proof, but which no contradiction has.

1910-1913
Alfred North Whitehead, 1861-1947, and Russell, with a grant from the Royal Society and
£100 of their own money, publish their Principia mathematica. Deeply influenced by the
work of Peano and Frege, they attempt to show that all of mathematics can be developed as a
part of logic. Their axiomatization and formal development serve as a basic reference and
establish notation for most logical research for more than twenty years.

The infinite, however, cannot be deduced from solely logical principles:

This assumption [the axiom of infinity]), like the multiplicative axiom, will be adduced
as a hypothesis whenever it is relevant. It seems plain that there is nothing in logic to
necessitate its truth or falsehood, and that it can only be legitimately believed or

disbelieved on empirical grounds.
° piricat gro Principia mathematica, vol. 2, p. 183
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[Law of Transposition]

After many years of work on logic and the philosophy of mathematics, Russell turns to
the study of ethics, epistemology, and metaphysics after World War I because, “All the high-
flown thoughts that I had had about the abstract world of ideas seemed to me thin and rather
trivial in view of the vast suffering that surrounded me.” Whitehead turns mainly to
metaphysics, and in 1924 accepts a chair in philosophy at Harvard, where he will continue
for the rest of his life.

1912

Luitzen Egbertus Jan Brouwer, 1881-1966, is appointed Professor in set theory, function
theory, and axiomatics at the University of Amsterdam. His inaugural address is
“Intuitionism and formalism,” the first public manifesto for his vision of constructive
mathematics. He argues against Hilbert’s formalistic understanding of mathematics and
rejects the use of classical logic outside the realm of the finite.

The intuitionist recognizes only the existence of denumerable sets, i.e., sets whose
elements may be brought into one-to-one correspondence either with the elements of a
finite ordinal number or with those of the infinite ordinal number ®. And in the
construction of these sets neither the ordinary language nor any symbolic language can
have any other role than that of serving as a non-mathematical auxiliary, to assist the
mathematical memory or to enable different individuals to build up the same set.

1915
Leopold Lowenheim, 1878-1957, working in the algebraic tradition of Boole and Schréder
in which truth and validity, not methods of proof, are central, publishes a paper on the
“calculus of relatives”, that is, algebraic identities involving quantifiers over individuals and
relations on a domain, where a quantifier is taken to be a possibly infinite sum or product.
He shows that validity for formulas involving quantifiers over individuals and not relations
depends only on finite and countably infinite domains, and he gives a procedure to decide
the validity of any such formula if it contains only unary predicates. He is not able to give
such a procedure for the entire calculus of formulas involving quantification only over
individuals, but reduces that problem to deciding the validity of formulas involving only
binary relations.

From 1903 to 1933 Lowenheim teaches at a secondary school in Berlin, but is
dismissed that year because he is “quarter-Jewish”. Surviving the war in Berlin, he returns
to his previous post in 1946 until his retirement in 1949.

1918

Paul Bernays, 1888-1977, invited the previous year from Zurich where he was a
Privatdozent to be an assistant to Hilbert in the foundations of mathematics at Gottingen,
establishes in his Habilitationsschrift that for the propositional part of Russell and
Whitehead’s calculus “every valid formula is a provable formula, and conversely”.

The proof is not disseminated outside Hilbert’s circle until its publication in 1926.
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1919

The Norwegian mathematican Thoralf Skolem, 1887-1963, recasts Lowenheim’s decision
procedure to apply to the first-order monadic predicate calculus, explaining the test for
validity in terms of successive elimination of quantifiers in formulas.

1921

Emil Post, 1897-1954, publishes his Ph. D. thesis from Columbia University in which he
formalizes the truth-table method for establishing validity for propositional logic and proves
that the propositional part of Russell and Whitehead’s axiomatic logic is complete and hence
consistent.

Troubled by ill-health throughout his life, Post is able to take up a permanent faculty
position only in 1935 at the City University of New York. When Alfred Tarski, meeting him
many years later, congratulates him on being the only non-Pole to contribute significant
work on propositional logic, Post responds that he is Polish, having come to the United
States from Augustéw in 1904.

1923

Skolem publishes “The foundations of elementary arithmetic established by means of the
recursive mode of thought, without the use of apparent variables ranging over infinite
domains.” As part of a program of constructive mathematics, he sets forth primitive
recursive definitions of many of the basic functions of number theory.

The justification for introducing apparent {bound] variables ranging over infinite
domains therefore seems very problematic; that is, one can doubt the justification of the
actual infinite or the transfinite. . . .

[A further paper simplifying this one, too,] is built upon Kronecker’s principle
that a mathematical definition [Bestimmung] is a genuine definition if and only if it
leads to the goal by means of a finite number of trials.

Skolem, 1923, pp. 332-333
In 1947 he says:

[ The paper 1923] is so far as I know the first investigation in recursive

number theory. The utterance . . . that recursive arithmetic can be traced back

to Dedekind and Peano seems to me rather strange, because the researchs of these men
had another purpose than to avoid the use of quantifiers.

1924

The legitimacy of infinitistic reasoning and particularly the axiom of choice becomes more
pressing in the face of a new paradox. The Polish mathematicians Stefan Banach,
1892-1945, and Alfred Tarski, 1901-1983, use the axiom of choice to give a
nonconstructive proof that a sphere can be cut into finitely many pieces and the parts
rearranged so as to form two spheres each the same size as the first.

Tarski, who uses his family name Tajtelbaum, receives his Ph.D. this year. He
continues working with the logic seminar at Warsaw University, first as Docent then as
Adjunct Professor, but these positions are not sufficient to support him and his family.

At the start of the war in 1939 he is separated from his family while lecturing in the United
States. After several temporary jobs he takes up a position as lecturer at the University of
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California at Berkeley in 1942, where in 1946 he is made full professor. His family,
surviving the war in Poland, joins him.

Wilhelm Ackermann, 1896-1962, one of Hilbert’s students and collaborators at Géttingen,
publishes a constructive consistency proof for what he claims to be all of analysis (arithmetic
with quantification over functions). But just before publication he finds an error and adds
that significant restrictions on the system must be made for the proof to work. In 1927

John von Neumann, 1903-1957, revises the ideas to apply correctly to first-order
arithmetic in which the induction schema is restricted to quantifier-free formulas.

1925

Hilbert delivers a lecture entitled “On the infinite” at a congress in honor of Karl
Weierstrass. It is the fullest expression of his program for the foundations of mathematics:
The infinite has a legitimate place in mathematics as an ideal element, corresponding to
nothing in the world, but fleshing out the system to simplify and clarify finitistic mathe-
matics, in the same sense that i =+-1 can be added to the real numbers and leads to no
contradiction with what can be proved without it. But a proof is needed that indeed the
infinite and infinitistic reasoning lead to no contradiction with finitistic mathematics; Hilbert
claims to be able to do just that. He gives the broad outlines of a proof of the consistency of
arithmetic which uses only finitistic methods.

No one shall drive us out of the paradise that Cantor has created for us.

1927

The American Cooper Harold Langford, 1895-1964, building on the work of Skolem’s
1919 paper and improvements given in 1922 in Gottingen by Heinrich Behmann,
1891-1970, uses the method of successively eliminating quantifiers to show that various
theories of orderings (“sets of properties”) determine the truth-value of every propositional
function in the first-order language of < . If the truth-value of each sentence of the
language is determined, then the theory must be consistent.

1928

Ackermann revises Hilbert’s 1917 lectures on logic which he and Hilbert publish as
Grundziige der theoretischen Logik. This small and succinct presentation of mathematical
logic has great influence: much more accessible than Whitehead and Russell’s Principia
mathematica, it poses the problem of whether every valid formula of first-order logic can be
proved from the axioms of Prinicipia mathematica.

Ackermann also publishes an example of a function that is not of Hilbert’s type 1; that is,
its definition uses, in Hilbert’s system, functions of functions. He shows it can be expressed
by a definition using “simultaneous recursion”:
¢0(a,b,0)=a+b
0 ifn=0
¢0(a,0,n+l) = 1 ifn=1
a ifn#0and n#1

¢(a,b+1,n+1) = @(a, ¢(a,b,n+1), n)
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(Calude and Marcus show that the Romanian G. Sudan independently defined in 1927 a
function that is computable and not primitive recursive.)

Later when Ackermann marries, Hilbert is opposed, feeling it will keep Ackermann
from his scientific obligations. He refuses to do anything to advance Ackermann’s career,
who is thus unable to find a university position and teaches secondary school to support
himself. On hearing that the Ackermanns are expecting a child, Hilbert says, “That is
wonderful news for me. Because if this man is so crazy that he gets married and then even
has a child, it completely relieves me from having to do anything for such a crazy man.”
(Reid, 1970, p. 173.)

1929
Jacques Herbrand, 1908-1931, having already published several papers, completes his
thesis for the doctorate in mathematics at the Sorbonne. In Chapter 4 he uses the method of
eliinination of quantifiers to show how to determine for each statement of the theory of
arithmetic with only successor whether it is true or false of the natural numbers. That is, the
theory is decidable, or as he says, “resoluble” (see van Heijenoort, pp. 580-581).

In 1931 he extends these ideas to prove the consistency of a much larger fragment
of arithmetic. The day that paper is received by the journal editors he dies in an accident
climbing in the Alps.

In Warsaw Tarski has been presenting his work on metamathematics at seminars,
emphasizing decision problems. This year his master’s degree student Mojzesz Presburger,
1904-19437, presents in a talk at the First Congress of Slavic Mathematicians an axiomati-
zation of the sentences true of the integers in which the only operation is addition (in modern
notation):

x=y > (x+2)=0+2)
(x+2)=@+2) >x=y
x+(y+2)=Gx+y)+z

x+0=x
x+y=y+x
Iy x+y=2)

and for each natural number n > 1, taking “ax” to mean x + --- +x
\———r__d
nx=ny > x=y n times
Jy(ny=xvny+l=xv- - vny+(n-1)=x
nx+1#0

Using elimination of quantifiers, he establishes that the truth-value of every formula in this
language can be decided.

After receiving his master’s degree Presburger works at an insurance company until
1939. Heis last seen in 1943, almost certainly perishing in the destruction of the Warsaw
Ghetto. Ironically, it is not his axiomatization but Tarski’s earlier first-order system for
addition and successor on the natural numbers that becomes known as “Presburger
Arithmetic”, following Hilbert and Bernays demonstration in 1934 that Presburger’s
methods apply to that, too.



320  Computability and Undecidability—A Timeline

1930

Tarski announces that the theory of the real numbers in the language of +, <, and 1 is
decidable. He publishes a sketch of the proof in 1931, using elimination of quantifiers,
where provability and truth seem to be identified:

In the system of arithmetic described in §1, every sentence of order 1 [i.e., first-order
sentence] can be proved or disproved. Moreover, by analysing the proof of this result,
we see that there is a mechanical method which enables us to decide in each particular
case whether a given sentence (of order 1) is provable or disprovable. (p.134)

In order to carry out the construction of the formal system of arithmetic which I
shall sketch here, it would be necessary to formulate explicitly those sentences which are
to be regarded as axioms (both the general logical ones and those which are specifically
arithmetical), and then to formulate the rules of inference (rules of proof) with the help
of which it is possible to derive from the axioms other sentences called theorems of the
system. The solution of these problems occasions no great difficulty. If I omit their
analysis here, it is because they are not of much importance for what is to follow. (p. 116)

Tarski, 1931

(For the story of decision problems by Tarski and others at this time see
Doner and Hodges, 1988.)

In 1927 a prize had been offered by the Dutch Mathematical Association to anyone who
could formalize Brouwer’s intuitionistic mathematics. Arend Heyting, 1898-1980, having
already received his doctorate and now teaching at a secondary school, collects the prize in
1928 and this year publishes his axiomatization of the propositional logic of intuitionism.

In his textbook Modern Algebra the Dutch mathematician Bartel Lennart van der
Waerden, 1903-1996, freely uses the axiom of choice to develop field theory on the basis of
the well-ordering theorem. In a separate paper influenced by the intuitionists, he considers
constructive algebra and shows that apparently there can be no general splitting algorithm
applicable to all “explicitly given” fields, for if there were then it would lead to a decision
procedure for any question of the form “Is there an n such that E(n)?” where E is any
property of integers. In the second edition of his book (1937) he abandons the axiom

of choice:

We say “a field is given explicitly” if its elements are uniquely represented by
distinguishable symbols with which addition, subtraction, multiplication, and division
can be performed in a finite number of steps.

Kurt Gidel, 1906-1978, publishes the proof from his doctoral dissertation at the University
of Vienna that the first-order predicate calculus is complete.

Whitehead and Russell, as is well known, constructed logic and mathematics by initially
taking certain evident propositions as axioms and deriving the theorems of logic and
mathematics from these by means of some precisely formulated principles of inference
in a purely formal way (that is, without making further use of the meaning of the
symbols). Of course, when such a procedure is followed the question at once arises
whether the initially postulated system of axioms and principles of inference is
complete, that is, whether it actually suffices for the derivation of every true logico-
mathematical proposition, or whether, perhaps, it is conceivable that there are true
propositions (which may even be provable by means of other principles) that cannot be
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derived in the system under consideration. For the formulas of the propositional
calculus the question has been settled affirmatively; that is, it has been shown that every
correct formula of the propositional calculus does indeed follow from the axioms given
in Principia mathematica. The same will be done here for a wider realm of formulas,
namely, those of the “restricted functional calculus™ “first-order logic”; that is, we shall
prove

Theorem 1: Every valid formula of the restricted functional calculus is provable.

This and his work in 1931 establish him as the premier mathematical logician of his
time, not least because of the exceptional clarity with which he expounds his results.
Though he has been attending the seminars of the Vienna Circle of philosophers, scientists,
and mathematicians, his platonist conception of mathematics is so at odds with their views
that he gradually loses contact with them. As only a Privatdozent he is paid by his students
and must supplement his income with visiting positions in the United States. During the
academic year 1933-1934 he visits the Institute for Advanced Study at Princeton; following
his return to Europe he has a nervous breakdown, and in 1935 his return visit is cut short
because of mental illness. In 1938-1939 he again lectures in the United States and then
returns to Austria. Plans to return to the U. S. in the fall of 1939 are disrupted by the onset
of war. By that time most of his colleagues have fled or been forced from the country, the
position of Privatdozent has been abolished and Godel, being thoroughly apolitical, applies
for a new paid position, Dozent neuer Ordnung. Questions are raised about his association
with Jewish professors and his lack of support for the Nazi regime, and when he is declared
fit for military service and realizes he may be called up to serve, he flees in 1940 to the
United States via the Trans-Siberian railway and Yokohama. He remains bitter throughout
his life about his treatment in 1939-1940, blaming it more on Austrian sloppiness than the
Nazi regime.

In the United States he takes up a permanent position at the Institute for Advanced
Study. Later in his life Gdel’s mental condition deteriorates further and, despite an active
interest in logic and mathematics, he ceases to publish after 1958.

1931
Skolem uses the method of elimination of quantifiers to establish that arithmetic restricted to
multiplication without successor and addition is decidable.

This sentence is not true. The Liar Paradox
This sentence is not provable. Godel’s undecidable sentence

Gddel turns a paradox into a powerful tool. In “On formally undecidable propositions of
Principia mathematica and related systems I” he writes:

These two systems [that of Principia mathematica and Zermelo-Fraenkel set theory] are
so comprehensive that in them all methods of proof today used in mathematics are
formalized, that is, reduced to a few axioms and rules of inference. One might therefore
conjecture that these axioms and rules of inference are sufficient to decide any mathe-
matical question that can at all be formally expressed in these systems. It will be shown
below that this is not the case, that on the contrary there are in the two systems mentioned
relatively simple problems in the theory of integers that cannot be decided on the basis of
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the axioms. This situation is not in any way due to the special nature of the systems that
have been set up, but holds for a wide class of formal systems.

His method is first to number the formulas of the formal language of Principia
mathematica, a procedure that comes to be called “Gédel numbering”. Godel then views
various predicates that apply to formulas, such as “is a well-formed-formula”, “is an axiom”,
“is a consequence of via modus ponens” as relations on the numbers associated with the
formulas. And those relations he shows are representable in the formal theory, that is, for
each there is a formula with the appropriate number of free variables that is provable for
those numerals corresponding to the wiffs of which the predicate is true, and whose negation
is provable for those numerals corresponding to wffs of which the predicate is false.

By a diagonal argument he is able to construct a formula of the formal language which,
when interpreted in this way, asserts that it itself is not provable. But that does not entail a
contradiction: it proves instead that if the formal theory is consistent, then the formula
cannot be provable. And hence the formula is true but not provable, that is, first-order
arithmetic is incomplete. Actually, something stronger than consistency is used in the
argument to get that the sentence is not provable: the formal theory is assumed to be
w-consistent, that is, there is no formula with one free variable, A(x), such that both A(n)

is provable for every numeral n and 3x1A(x) is also provable.

But more, a predicate can be constructed in the formal theory which allows one in
effect to assert that the formal theory is itself consistent. Godel shows that it, too, cannot be
proved within the theory so long as the theory is @-consistent. Gdel points out that this
does not depend on the idiosyncracies of the system of Principia mathematica: all that is
needed is enough of formal arithmetic to represent the appropriate metamathematical
formulas.

Godel is careful not to claim that the consistency of the system cannot be proved by
any finitistic methods, because to do so there must be a clear idea of what “finitistic”
means. Godel investigates the class of arithmetical functions necessary for the representa-
tion, dubbing them the “recursive functions”, later called the “primitive recursive functions”.
He also briefly discusses an idea of Herbrand concerning a generalization of the schema of
primitive recursion.

(See Dawson for Godel’s first verbal announcement of his theorems in 1930.)

1933
Godel shows that if intuitionistic arithmetic is consistent so is classical number theory by
exhibiting a translation of classical number theory into intuitionistic arithmetic:

Classical logic Intuitionistic logic
pr p
~p p
pq ) 2aY’)
P9 Wp Ag)
pPvq p ATg)
Vx Vx
dx Vvx1

The system of intuitionistic arithmetic and number theory is only apparently narrower
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than the classical one, and in truth contains it, albeit with a somewhat deviant
interpretation. ... The above considerations, of course, provide an intuitionistic
consistency proof for classical arithmetic and number theory. This proof, however,
is not “finitary” in the sense in which Herbrand, following Hilbert, used the term.

(Epstein, 1990 has a history of translation of classical into intuitionistic logic.)

1934

Rézsa Péter, 1905-1977, studies the class of functions called “recursive” by Godel, which
she dubs the primitive recursive functions, presenting normal forms and demonstrating that
definitions by nested recursion and course-of-values recursion do not lead out of the class.
The following year she publishes a simplification of Ackermann’s function, showing that it
is not simultaneous recursion but nested recursion on two variables that leads out of the
class of primitive recursive functions:

6(0, n) = 2n+1
o(m+1,0) = 0(m,1)
0(m+1, n+1) = 8(n, 6(m+1, n))

Unable to find work teaching, Péter has been supporting herself by tutoring since her
graduation in 1927, turning more to writing and translating poetry. Her interest in mathe-
matics is reawakened by her classmate Laszlé Kalmar, 1905-1976, who suggests problems
from Gddel’s work. From this year onwards she publishes solely under the name “Péter” in
place of her original German-Jewish name “Politzer”. In 1945 she finally obtains a teaching
position at the Budapest Teachers Training College where she stays until its closure in 1955,
taking up a position as full professor at Lordnd E6tvés (Budapest) University.

Hilbert and Bernays also examine the nature of recursion in the first volume of their
Grundlagen der Mathematik. In the introduction to that work Hilbert defends his program
in the light of Gédel’s work: the incompleteness results only indicate that better methods
must be found to give more widely applicable finitary consistency proofs.

The previous year Bernays had been fired from his position at the Mathematical
Institute because he is a “non-Aryan”, i.e., Jewish. He returns to Zurich, where he has
citizenship and received his doctorate, eventually obtaining a position at the Eidgendssische
Technische Hochschule.

Godel delivers a series of lectures on his incompleteness theorems at the Institute for
Advanced Study, simplifying the presentation of 1931. He finds an active and receptive
audience, von Neumann having already lectured there on the 1931 paper. The notes for the
lectures are written up by two students of Alonzo Church, 1903-1995: Stephen C. Kleene,
1909-1994, who this year receives his Ph. D., and John Barkley Rosser, 1907-1989. In
mimeographed form the notes are widely distributed and serve as the basis for study for a
whole generation of logicians, although remaining unpublished until 1965 (see Davis,
1965).

In the lectures Godel advances an idea of Herbrand about the most general form of
recursion:

One may attempt to define this notion as follows: If ¢ denotes an unknown function,
and ¥, . .., ¥y, are known functions, and if the y’s and the ¢ are substituted in one
another in the most general fashions and certain pairs of the resulting expressions are



324

Computability and Undecidability—A Timeline

equated, then if the resulting set of functional equations has one and only one solution

for ¢, @i ive function.
or ¢, ¢ is arecursive function Godel, 1934, p. 368

1936

Church develops an analysis of computability with his system of the A-calculus,
a method for defining and deriving values of functions in an equational calculus
(see, e.g., Rosser, 1984).

‘We introduce the following infinite list of abbreviations [where — means “stands
for”],

1 — Aab-a(b),

2 — Aab-a(a(b)),

3 — Aab-a(a(a(b)))
and so on, each positive integer in Arabic notation standing for a formula of the form
Aab-aa(-- ab)y---)).

He observes that every function recursive in Godel’s 1934 sense is also A-definable.

At the same time, Kleene, working in collaboration with Church, modifies the Herbrand-
Gédel notion of recursiveness by defining the notion of a general recursive function:

Thus the extension of general over primitive recursive functions consists only in that to
substitutions and primitive recursions is added the operation of seeking indefinitely
through the series of natural numbers for one satisfying a primitive recursive relation.

He introduces the notation “e x[ A(x)]” for the least natural number satisfying A(x)
if there is one and O otherwise.

This method of defining a function, however, may require an infinite search, and the
question arises: when is it legitimate to claim that a function has actually been defined?
Kleene shows by a diagonal argument that this question cannot be decided by a recursive
procedure: a numbering can be given of all possible definitions of functions, say @, , @, ,
R and Kleene presents a normal form for the functions in terms of what comes
to be called the Kleene T-predicate. But the numbering and normal form calculations are
recursive, too, so that the function y(x) = (px(x) + 1 is recursive and hence is ?,, for
some m. Yet the apparent contradiction, y(m) = ¢ n(Mm+ 1=y(m)+1,isno
contradiction at all: It shows rather that ¢ , (m) is not be defined, nor can it be recursively
determined for which x is 0, (x) defined. This is the first example of a class of
computable functions for which the computable diagonalization procedure does not lead
outside the class.

Kleene observes that a function is general recursive if and only if it is A-definable.
This, and the fact that the diagonal function does not lead out of the class, and the wide
applicability of these notions convince Church to propose in his paper a formal counterpart
to the intuitive notion of a computable function:

‘We now define the notion, already discussed, of an effectively calculable function of
positive integers by identifying it with the notion of a recursive function of positive
integers (or of a A-definable function of positive integers). This definition is thought to
be justified by the considerations which follow, so far as positive justification can ever
be obtained for the selection of a formal definition to correspond to an intuitive notion.



Computability and Undecidability—A Timeline 325

Church, too, exhibits an arithmetical predicate which diagonalizes the class of
A-definable functions. By virtue of his new definition he then claims that it is undecidable,
not in the sense of not derivable in his or some other system but in the sense of not being
computable by any effective means.

In a short paper later this year Church extends his conclusions to show there is no
effectively calculable procedure to determine which formulas are theorems of a theory of
arithmetic based on Hilbert and Ackermann’s system of first-order predicate logic, nor of the
system without arithmetical terms and axioms. That is, the Entscheidungsproblem is
undecidable. Church maintains reservations about concluding that there is no effective
procedure for determining validity, for that would require invoking Gddel’s nonconstructive
proof of completeness.

Working independently in Cambridge, England, Alan Turing, 1912-1954, develops his
own analysis of computability. He breaks the notion of computation into its smallest
components:

Let us imagine the operations performed by the computer to be split up into “simple
operations” which are so elementary that it is not easy to imagine them further divided.
Every such operation consists of some change of the physical system if we know the
sequence of symbols on the tape, which of these are observed by the computer (possibly
with a special order), and the state of mind of the computer. We may suppose thatin a
simple operation not more than one symbol is altered. Any other changes can be split up
into simple changes of this kind. The situation in regard to the squares whose symbols
may be altered in this way is the same as in regard to the observed squares. We may
therefore, without loss of generality, assume that the squares whose symbols are changed
are always “observed” squares.

The intuitive arguments lead to his definition of Turing machines.

The “computable” numbers may be described briefly as the real numbers whose
expressions as a decimal are calculable by finite means. ... According to my
definition, a number is computable if its decimal can be written down by a machine.

Having just received a copy of Church’s paper, Turing adds as an appendix a proof
that a function is Turing machine computable if and only if it is A-definable. This proves
decisive: agreement in the mathematical community quickly follows that these definitions
adequately formalize the notion of computability.

The problem that Kleene addresses of when a least search operation actually yields a
definition of a function appears in Turing’s work as the halting problem for Turing
machines: On what inputs does a Turing machine halt? Turing, by a diagonal argument,
shows that the question cannot be decided by a Turing machine. And, like Church, he
applies his methods to logic:

I shall show that there is no general method which tells whether a given formula A is
provable in K [the first-order predicate logic of Hilbert and Ackermann], or, what
comes to the same, whether the system consisting of K with —A adjoined as an extra
axiom is consistent.

During World War II Turing works at Bletchley Field in England on cracking the
German Enigma codes, and is active then and later designing computers. In 1950 he
addresses the question of whether a machine can “think” and proposes a test:
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Can a person, unaware of who is giving the responses, determine whether a person
or machine is answering him?

I believe that at the end of the century the use of words and general educated opinion
will have altered so much that one will be able to speak of machines thinking without
expecting to be contradicted.

In 1952 Turing reports a theft to the police and upon questioning admits that
he suspects his homosexual lover. He is arrested, convicted of the crime of homosexuality,
and forced to undergo hormone treatments. In 1954 he dies, apparently a suicide.

Post, influenced by the work in Princeton but working independently of Turing, presents an
analysis of computability that is strikingly similar to Turing’s. His view of the identification
of computability with recursiveness, however, is very different from that of Church and
Kleene:

The writer expects the present formulation to turn out to be logically equivalent to
recursiveness in the sense of the Godel-Church development. Its purpose, however, is
not only to present a system of a certain logical potency but also, in its restricted field, of
psychological fidelity. In the latter sense wider and wider formulations are
contemplated. On the other hand, our aim will be to show that all such are logically
reducible to formulation 1. We offer this conclusion at the present moment as a
working hypothesis. And to our mind such is Church’s identification of effective
calculability with recursiveness.

[ Foomote]] Actually the work already done by Church and others carries this
identification considerably beyond the working hypothesis stage. But to mask this
identification under a definition hides the fact that a fundamental discovery in the
limitations of the mathematicizing power of Homo Sapiens has been made and blinds us
to the need of its continual verification.

Rosser extends Godel’s incompleteness theorem by showing it is enough to assume that a
formal system of arithmetic is consistent, rather than ®-consistent, in order to establish that it
is not possible to prove its own consistency within it.

Yet Gerhard Gentzen, 1909-1945, working as an assistant to Hilbert at Gottingen, proves
that first-order Peano arithmetic is consistent. His method, however, goes beyond what was
env151oned as finitistic in Hilbert’s program. Péter had already exhibited orderings of not
only 0%, @,...,@" ..., butalsoof ®® , for each of which there is a principle
of induction that can be reduced to ordinary mduction. Gentzen’s proof uses an ordering €,
of the natural numbers that incorporates all these orderings. The method is adopted by
others to prove that various subsystems of second-order arithmetic and of set theory are
consistent.

At the outbreak of World War II, Gentzen is conscripted into the armed forces and
works in telecommunications, but due to ill health is released. On May 5th, 1945, along with
other professors from the University of Prague, he is interned by the Soviets, and on August
4th dies in his cell of malnutrition (at least according to one account given in Kreisel,

1971, pp. 255-256).
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1938
Kleene accepts the inherent partial nature of definitions using search procedures and defines
the class of partial recursive functions, based on a new operator:

If R(x,y) is arelation, then [y R(%, y) denotes the function of ¥ [x,...,x,1
which, for each fixed #, takes as value the least y such that R(x,y) is true,
provided such a y exists and R(%, y) is defined for the preceding values of y,
and is undefined otherwise.

Two partial functions are equal, for which he introduces the notation @(x) = y(x), if they
are defined for the same values of x and when defined yield the same value.

Kleene points out that his normal form theorem generalizes to partial recursive
functions and, in just a few short sentences, establishes his s-m-n theorem and recursion
theorem, justifying the most general form of definition of a function in terms of itself:

There is a primitive recursive function S’ (z, Ypoeres V) such that, ife defines
recursively Q(y;; .. .., ¥,,, %) asafunction of m+n variables, and ky,...., k&,
are fixed numbers, then S:' (e, ky, ... k) defines recursively ¢k, ... ., k. %)

as a function of the n remaining variables. (The construction of S, is based on the
relation Oy, . ..., ¥, %) = D, (e k... k%)) If ¥z, %) is any

partial recursive function, there is a number f which defines Y(f, ¥) recursively.
(Let e define \y(S: (3, ¥), ) recursively, and set f = S,'l (e, €).)

The point of his definitions is to investigate systems of notations for ordinals, and
Kleene shows there is a least nonconstructive one, the ordinal @1, as formulated in 1936 by
Church and him. Kleene is now at the University of Wisconsin where, except for service in
the Navy during the war, he remains throughout his career.

1939

Turing introduces the idea of an “oracle” for a nonrecursive set being made available to a
Turing machine in a study of the possibility of avoiding Godel’s incompleteness theorem by
replacing one logic by a hierarchy of logics.

Let us suppose that we are supplied with some unspecified means of solving number-
theoretic problems; a kind of oracle as it were. We shall not go any further into the
nature of this oracle apart from saying that it cannot be a machine. With the help of the
oracle we could form a new kind of machine (call them o-machines), having as one of
its fundamental processes that of solving a given number-theoretic problem. More
definitely these machines are to behave in this way. The moves of the machine are
determined as usual by a table except in the case of moves from a certain internal
configuration o. If the machine is in the internal configuration o and if the sequence of
symbols marked with ! is then the well-formed formula A, then the machine goes into
the internal configuration p or taccording as it is or is not true that A is dual. The
decision as to which is the case is referred to the oracle.

1943

Kalmar investigates the class of functions that can be obtained by using the four elementary
operations of arithmetic: addition, subtraction, multiplication, and division restricted to the
natural numbers, using composition and bounded recursion, i.e., a function can be defined
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by primitive recursion only if its values are less than one already obtained. This class, the
elementary functions, contains most of the usual functions of number theory and in
particular coding and uncoding functions for numbering the partial recursive functions.

Kleene, influenced by Turing’s 1939 paper, sets out a hierarchy of classes of arithmetic
predicates based on the number of alternations of quantifiers, starting with the recursive
predicates. In doing so, he defines the notion of relative recursiveness, whereby a function
is recursive in gy, . . ., g, if it can be defined from them and successor, the constant zero
function, and the projections by substitution, primitive recursion, and the least-search
operator. Much of the paper is devoted to the motivation and intuitive basis of his ideas.
He argues at length for Church’s identification of recursiveness with computability, which
he dubs Church’s thesis.

The same hierarchy was developed by Andrzej Mostowski, 1913-1975, in occupied
Poland, but, as he says:

Ihad a nice, very big, wonderful notebook with all these discoveries—and then in 1944
there was an uprising in Warsaw and I remember the soldiers came to our house and
ordered us to leave. So I was with my mother in this house and I hesitated whether I had
to take the notebook with me or some bread. I decided to take some bread, so all my
notes were burnt. So then I reconstructed the papers some time in 1945.

Crossley, p. 32

1944

Post gives the first detailed analysis of recursively enumerable sets, sets which can be
enumerated as the output of a recursive function. As an example he shows that the problem
of finding integral solutions to integral diophantine equations, Hilbert’s 10th problem of
1900, can be viewed as the decision problem for a particular recursively enumerable set.

To investigate these sets he defines the notion of a degree of unsolvability, as
influenced by Turing, and states what comes to be known as Post’s problem: Is there a
recursively enumerable set whose degree of unsolvability is intermediate between that of
the recursive sets and the halting problem?

1947

In 1914 the Norwegian Axel Thue, 18631915, proposed the problem of determining for an
arbitrary semigroup whether two words on its alphabet are equal, the word problem for
semigroups. This year Post and the Russian mathematician, Andrei Andreevich Markov,
1903-1979, independently show that the problem is undecidable by exhibiting one
semigroup whose word problem is not recursive, the first example of an open mathematical
problem whose solution consists of showing that a particular set is not decidable. The word
problem for groups remains open.

1949

Of the major number systems it has been shown that the first-order arithmetic of the natural
numbers and hence of the integers is undecidable, while according to Tarski the first-order
theory of the reals and hence complex numbers is decidable. This year Julia Robinson,
1919-1985, publishes the proof from her doctoral dissertation under Tarski that the
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arithmetic of the rationals is undecidable. The set of integers can be defined within the
rationals via:

A rational number g is an integer iff

Yab (¢(a, b, 0) A Ym(¢(a, b, m)>¢(a, b, m+1)) = ¢(a, b, q))

where @(a, b, k) is the formula: Ixyz (2 + abk? + bz? = x% + ay?)

Robinson’s husband, Raphael Robinson, 1911-1995, is a Professor in the Department
of Mathematics at the University of California, Berkeley, and nepotism rules prevent her
~ from teaching there too. She nonetheless pursues her research and becomes known for her
work on Hilbert’s 10th problem (Davis, Putnam, and Robinson). In 1975 she is hired as a
Lecturer in the department and in 1976, the same year she is elected to the National
Academy of Sciences, she is promoted to full professor (see Reid, 1986 for a biography).

1 have been designated the official token woman mathematician and have to shrink from
too much distinction. Anyway, I know my considerable limitations and would like to

left alone in obscurity.
be left alo Y J. Robinson in Smorynski, p. 77

1951
Péter publishes Rekursive Funktionen, the first book on the recursive functions. A thorough

analysis of virtually all that is known about the subject, it contains her hierarchy of comput-
able functions based on nested induction on n variables and induction on ordinal types. A
superb text and compendium, the English translation is delayed until 1967 due to difficulties

in obtaining the rights.

1952
Kleene publishes his textbook Introduction to Metamathematics on classical and

intuitionistic mathematical logic with considerable emphasis on recursive function theory.
It becomes the main reference for mathematical logic.

1953
The Polish logician Andrzej Grzegorczyk, 1922—, establishes a hierarchy of primitive

recursive functions. Each class after the third, which is Kalmar’s elementary functions,
arises by first using one unlimited recursion on the previous class to obtain a function which
dominates all the functions of that class, and closing under composition and bounded
recursion. The diagonalization functions are in essence the levels of Ackermann’s function
of 1934, A ng(n, x, y), which dominates all the primitive recursive functions.

The American Henry Gordon Rice, 1920-?, shows that the unsolvability of the halting
problem is not an isolated phenomenon, for only the most trivial of extensional properties of
the partial recursive functions are decidable: those true of either all functions or none.

Tarski, Mostowski, and Raphael Robinson publish a collection of three papers which
codify and extend the basic procedures for establishing the undecidability of mathematical
theories. Central to their analysis is Robinson’s finitely axiomatized subtheory Q, every
consistent extension of which is undecidable:
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Sx=8Sy > x=y
0#Sy

x#0 - Jy(x=Sy)
x+0=x

x+8y=S(+y)
x-0=0
x-Sy=@x-y+x

1954

In the first book in Russian on computable functions, Markov proposes a new analysis of
computability, what are later dubbed Markov algorithms. They, too, are equivalent to the
recursive functions. Unlike his predecessors, however, Markov gives a truly finitistic
analysis of algorithms: He begins with alphabets understood as concrete inscriptions on
paper, for which he gives a mathematical theory of strings, and only then considers
identifications of alphabets or strings, that is, alphabets and words as types.

The American William Werner Boone, 1920-1983, and the Russian Petr Sergeevich
Novikov, 1901-1975, independently show that the word problem for groups is undecidable.
(See Davis, 1958.)

1955

Albrecht Frohlich, 1916-2001, and John Cedric Shepherdson, 1926—, working in
London, apply the ideas of recursive function theory to algebra, formalizing and extending
van der Waerden’s work on explicitly given fields.

1956
As early as 1935 Bernays criticized the intuitionists’ analysis of mathematics:

Intuitionism makes no allowance for the possibility that, for very large numbers, the
operations required by the recursive method of constructing numbers can cease to have
a concrete meaning. From two integers k, / one passes immediately to K, this process
leads in a few steps to numbers which are far larger than any occurring in experience,
e.g., 67 @575,

Intuitionism, like ordinary mathematics, claims that this number can be
represented by an Arabic numeral. Could not one press further the criticism which
intuitionism makes of existential assertions and raise the question: What does it mean to
claim the existence of an arabic numeral for the foregoing number, since in practice we
are not in a position to obtain it?

This year the Dutch mathematician David van Dantzig, 1900-1959, presses this criticism
further and asks where the line between the finite and the infinite can be drawn:

The difference between finite and transfinite numbers can not be defined operationally:
it is possible that always when a mathematician A uses the term “a transfinite number”,
another mathematician B interprets it as “a finite number” (of course not always the
same one) without ever coming to an inconsistency.

Subsequently, the Russian mathematician Alexander S. Yessenin-Volpin, 1924-, son
of the famous poet Sergei Yessenin, develops this kind of analysis into a critique of current
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mathematical practice. Unable to find a university position in the USSR due to his previous
imprisonment on political charges, Yessenin-Volpin translates logic texts from English to
support himself until he emigrates to the U.S. in 1972. His ideas are taken up by several
Americans, notably David Isles, 1935~ , who turn Yessenin-Volpin’s general remarks into a
mathematical theory, strict finitism.

The American undergraduate student Richard Friedberg, 1935—, and the Russian Albert
Abramovich Muchnik, 1931-, independently solve Post’s problem by exhibiting a
nonrecursive set that is recursively enumerable and yet has a lower degree of unsolvability
than that of the halting problem (see Odifreddi, Volume 1).

1957

Church’s thesis comes under attack for being too restrictive. Kalmdr objects to the
limitations that the thesis imposes and gives several mathematical and quasi-mathematical
arguments against it. He concludes:

There are pre-mathematical concepts which must remain pre-mathematical ones, for
they cannot permit any restriction imposed by an exact mathematical definition.
Among these belong, I am convinced, such concepts as that of effective calculability,
or of solvability, or of provability by arbitrary correct means, the extension of which
cannot cease to change during the development of Mathematics.

At the same conference Péter argues that Church’s Thesis is too broad. For functions
of one variable the thesis states:

A function f is computable if and only if 3 an index e such that Vx, 3 a computation
that results in @,(x) being defined and equal tof(x) [where ¢, @,,...,¢,,.. .isa
computable listing of the partial recursive functions].

But how are we to take the existence operator? It cannot be constructive, for then
the definition would be circular. But the alternative is equally unacceptable according to
Heyting, who recasts Péter’s argument from an intuitionist perspective in 1960:

The notion of a recursive function, which had been invented in order to make that of a
calculable function more precise, is interpreted by many mathematicians in such a way,
that it loses every connection with calculability, because they interpret non-
constructively the existential quantifier which occurs in the definition.

Of course every finite set is primitive recursive. But is every subset of a finite set
recursive? Who can calculate the Godel number of the characteristic function of the set
of all non-Fermat exponents less than 10" or of the set

P,={xlx <n & Ey)Ti(xxy)}

[i.e., {x: ¢, (x) is defined and x < n}], where nis a given natural number? The
answer depends upon the logic which is adopted. If recursiveness is interpreted non-
constructively, then P,, constitutes a counter-example to the converse of Church'’s thesis.

1958

The American Martin Davis, 1928~, publishes Computability and Undecidability, the first
undergraduate textbook on recursive function theory and the undecidability results in which
he simplifies the presentation of Turing machines.
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1963

The theory of computable functions was developed before there were computers. Now
Shepherdson and the American H. E. Sturgis, 1936, recast the notion of computability in
terms of an ideal digital computer with unlimited memory and unlimited time to compute.

1967

Ever since Kronecker’s time ordinary mathematicians unconcerned with the foundations of
mathematics have been attempting to replace nonconstructive existence proofs with
constructive ones. The American Abraham Seidenberg, 1916-1988, for example, with no
background in logic or recursive function theory showed that much of algebraic geometry
can be developed constructively. Invariably the point is to exhibit constructions; proofs that
a problem cannot be solved are of no concern.

This year the American Errett Bishop, 1928-1983, in his book Foundations of
Constructive Analysis organizes that positive, constructive viewpoint into a major program
by developing a significant portion of real analysis without any infinitistic, nonconstructive
assumptions. Even negation is defined in a positive way: two real numbers are said to be
unequal only if another can be constructed between them.

Van Dantzig and others have gone as far as to propose that negation could be entirely
avoided in constructive mathematics, Experience bears this out. In many cases where
we seem to be using negation—for instance, in the assertion that either a given integer is
even or it is not—we are really asserting that one of two finitely distinguishable
alternatives actually obtains. Without intending to establish a dogma, we may continue
to employ the language of negation but reserve it for situations of this sort, at least until
experience changes our minds, and for counterexamples and purposes of motivation.

Recursive function theory and Church’s thesis are rejected by Bishop as requiring a
formalization of that which cannot be formalized: constructivity.

The American Hartley Rogers, 1926—, publishes his textbook Theory of Recursive
Functions and Effective Computability, bringing into one place the accumulated research
on relative recursiveness and orderings of nonrecursive sets. For 20 years it serves as the
standard reference. It is noteworthy, though, for invoking Church’s Thesis at almost all
places where a function is claimed to be computable.

1970

The 22-year-old Russian Yuri Matiyasevich, 1947-, fits in the last piece of the puzzle to
solve Hilbert’s Tenth Problem of 1900: There is no general algorithm which can determine
of any polynomial equation in any number of unknowns with integer coefficients whether it
has a solution in the integers (see Davis, 1958, 2nd edition).
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Hilbert on, 299
Achilles paradox, 5,6, 12
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Ackermann-Péter function, 112-115, 118,
232, 263, 318,323
is computable, 112,113
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of functions, 97, 104
index for, 130
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and recursive function.

algebraic number, 42, 50
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decision problems, 158-159
finitary consistency proofs and, 214
Godel-, 67-68, 158-159
of partial recursive functions, 125,
129-131, 138
of primitive recursive functions, 104
of programs vs. functions, 104, 130
of propositional wifs, 159
of recursive functions, 126
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Odifreddi, Piergiorgio, 71, 85, 116, 121,
138, 143,238
® (omega), 50, 119,215, 262
created by basal intuition, 243
-consistency, 211,212, 216,218
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148, 191, 200
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numbering the, 125, 129-131, 138
in other functions, 131
See also general recursive function;
recursive function
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PC, by, 183, 193
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7 (pi), 69, 106, 244, 246, 248, 260
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235, 237, 265, 296, 298
plausibility, 283-284,292
Poincaré, Henri, 243n, 262, 292n
Pélya, George, 296n
Popper, Karl, 302
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See also inference, valid
Post, Emil, 86-90, 143, 224,225, 226,
233,317, 326, 328
potential infinity, 49, 75, 257, 260
power set, 41
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p.r. Abbreviation for partial recursive
pragmatic content, 250-252
Pratt, Vaughn, 34
predecessor function, 95
predicate, 98
decidable, 225
definable, 200
general recursive, 225
primitive recursive, 98
representable, 200,201
Presburger, M., 216, 319
prf, 164, 186
Prf, 186
prime, 102
prime(s)
Euclid’s proof about, 35, 36, 51-53,
102, 116
nth, 101,102, 110, 115, 116
testing for, 33, 34, 284
See also coding functions
primitive recursion, 92-93
Dedekind’s original definition, 312
deleted as basic operation, 116, 137, 147, 191
vs. nested recursion on two variables, 113
primitive recursive approximation to a real
number, 106, 248
primitive recursive condition, 97
primitive recursive function(s), §11.B
alternate characterization, 100
not all computable functions are, 104
numbering of, 103-104
representability of, 216
primitive recursive operation, 96
Principia Mathematica, 13,214, 216, 249,
315-316, 318
principle of omniscience, 254, 271
prize, 82
problem, recursively decidable, 158
procedure, general. See algorithm;
process, effective; terminating process
process
effective, 21,225
See also algorithm; computability
infinite (endless) 14, 36
See also nonterminating process
is a function, 21, 23, 235, 238
program(s)
numbering, 104, 130
Turing machine, 76, 77
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projection functions, 92
are representable in @, 194, 201
are Turing machine calculable, 83
Projection Theorem, 142
proof, Chapter 5
arbitrary correct, 236, 247-248
as computable procedure, 164-165,
170, 185, 186,
by computer, 33-34, 37,285
by construction, 31, 32, 35, 36
constructivist notion of, 36
by contradiction (reductio ad
absurdum), 31,32,35
by counterexample, 32
by course-of-values induction, 101
by diagram, 286288, 294-295
by double induction, 111
error in, 33-34, 37
existence, 32, 35, 236, 239, 246, 249,
251
See also existential quantifier
explanation vs., 292-295
feasible, 35
finitary. See finitistic reasoning
formal, 161-162, 163, 168, 181
formalists’, 36
formalizable, 289
good —, criteria for, 293
grasping patterns and, 256
intuitionist notion of, 246-247
is an argument, 283-285
left to the reader, 231
legitimacy of, 12
length of, 33,34
needed to define a function, 122

not in the frame of a fixed system, 236,

247-248
probabilistic, 33, 34
rule of, 161
See also name of rule
shows an inference is valid, 282-283
subjective, 289-290
theory of, 56, 57
valid method of, 161
See also induction
properties of equality, 180, 181, 183
proposition(s), 12,30, 155, 170
about abstract objects, 11

cannot be proved by any correct means, 236
compcund, 155
existential, 36
See also existential quantifier;
proof, existence
See also formally undecidable sentence
propositional logic, Chapter 19
See also classical propositional logic
propositional variable, 155
provability (derivability)
computability and, 70, 170, 192, 217
distinct from truth, 12, 218, 256
Liar paradox and, 172,210,211
same as truth, 246
proving as a computable procedure,
164-165, 169, 185-186, 204, 211
psychological fidelity of characterization of
computability, 89
psychology (psychologist), 90, 224,242, 244
Putnam, Erna, 45n
Putnam, H., 272, 292n, 301
Pythagoras, 19,20
Pythagoras’ theorem, 287-288
pythagoreans, 4,5, 19

0, 170, 181, 329-330

consistency of, 171, 182,200-203, 213

deleting axioms from, 203

listing theorems of, 192, 199

model of, 83

w-consistency of, 211, 212,216,218

some theorems of, 182-185

truth of theorems, 185,211

undecidability of, 202, 216

weakness of, 184, 185
quadruples of a Turing machine, 76
quantification

first-order, 171, 176,216

second-order, 171,176,205,218
quantifier(s), 171, 175-176, 227, 249

bounded, 100

in Church’s Thesis, 234-235

Goodstein on, 249

intuitionist, 246-247

nominal definition of, 227

order of, 176

scope of, 178

superfluous, 178
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range, 22-23
of elementary function, 140
of (partial) recursive function, 139-141
rational number, 38-40, 49, 255, 277-288
rational reconstruction, 226
r. e. Abbreviates recursively enumerable
real numbers, 38, 40, 41, 50, 106, 224,
239, 247,248
See also analysis
realist, 10, 265
realistic component of mathematics, 250
reality, 5,9, 249
is vague, 257
objective, 256
See also dream; imagining; paradise
realization of an algorithm, 66-67
recognition, 225. See also perception;
seeing; sensation of delight
recursion
bounded, 108,109-110, 114
course-of-values, 101
on h with basis g, 92-93
on order types, 120-121
primitive. See primitive recursion
on two variables, 117-118
Recursion Theorem (Fixed Point Theorem),
135,138,327
recursive analysis, 239, 248-249
recursive decision procedure. See
decision problem
recursive function, 70, 85, 86, 91, 124,
223, 227,230,234
See also general recursive function;
partial recursive functions
recursive relation, 125
recursive set, 125
recursively axiomatizable theory, 204
recursively enumerable index, 141
recursively enumerable set, 139,140-142,
328
reductio ad absurdum. See proof by
contradiction
regular function, 126
Reid, Constance, 59
relation, 98
recursive, 125
See also function, characteristic
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relatively prime numbers, 201
rem, 190
representability, 70
in @, 192, 199-201, Chapter 22
in a system weaker than Q, 203
of theorems of @, 202
in a theory, 204
of truth, 210
See also formally undecidable sentence
representable function, 170, 171, 192, 199
representable predicate (set), 200, 201
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Rice’s theorem, 137, 329
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Robinson, Raphael, 188, 203, 209, 216, 329
Robinson, Robert W., 138
Rogers, Hartley, Jr., 121, 138, 332
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Sawyer, W. W., 297n
scanned symbol, 74
scheme (schema), 161, 179
of first-order induction, 205,208
valid, 161
See also induction, complete
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scope of quantifier, 178
second-order PA, 218-219
second-order quantification, 171, 176,
205, 218-219
seeing, 228,256. See also perception;
recognition; sensation of delight
Seidenberg, Abraham, 332
self-reference, 3
and arithmetic, §24.A
and the Fixed Point Theorem, 135
and formal systems, 169
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sensation of delight, 241
sentence, 36, 178
See also wif
sequence (in real analysis)
Bishop’s notion of, 253, 255
choice, 247-248, 252,257
convergent, 248
sequence, causal, 240
set(s), 38
abstraction from experience, 290-291
of all sets, 41, 106
characteristic function of, 97
equivalent, 39
not an ideal entity, 251
primitive recursive, 97
recursive, 125
recursively enumerable, 139, 140-142
representable, 200
transfinite (or infinite), 14, 38, 39, 245
See also class; infinite collection;
ordinal; transfinite number
set theory, 43, 49, 213, 244, 265
Shepherdson, J.C., 70, 213, 330, 332
Shoenfield, J., 213-214
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simultaneously defined functions, 100,
105
Skolem, Thoralf, 216, 264, 317,318, 321
Skorupski, John, 303n
Smirnova, G. S., 288n
s-m-n theorem, 134,327
Soare, R., 143
Socrates, 8, 9-10, 17
Solovay, R., 34n
solvability, 90, 158,225
of every mathematical problem, 57, 58
See also undecidability
space
indivisibility of, 5
infinite subdivisibility of, 6, 46-48
Spencer, Joel, 219
square (of a tape), 73, 75, 89
square root of 2 is not rational, 19-20, 31
standard interpretation, 177
state
of mind, 73-76
of a Turing machine, 76
Steiner, Mark, 293
Stewart, Dugald, 300n

Strassen, V., 34n
strict domination of a function, 111
structuralism, 298-299
Sturgis, H.E., 70, 332
subject matter of mathematics, 52
subjective conception of mathematics, 256
See also objectivity
substitution, 179, 181, 188, 193
subtraction, limited, 95
success as measure of achievement, 46, 291
successor function, 92
characterization in formal arithmetic,
170, 174, 180, 181
characterization of repeated iteration of,
266
representability in @, 194
Turing machine calculates, 79
Sudan, G., 319
surjective function, 26
Swart, E.R., 37
symbol(s), 67, 72-76
interpreting, 170
scanned, 74,75
space, 87
studied apart from meaning, 56
symbolism, 12
See also formal system
system, formal. See formal system

T predicate, 138,324

tape, Turing machine, 75
one-way, 144

Tarski, A., 188, 203, 209, 216, 229,
317-318, 319, 320,329

tautology, 157

term, 174
is free for, 179, 185, 186, 188

terminating process (algorithm), 66, 88,
126, 127
See also nonterminating process;

process, infinite

tertium non datur. See excluded middle

theorem of a formal system, 161, 181
has arbitrarily many proofs, 168
listing of, 164, 185, 186

theoretical vs, actual computability,
232-234, 238, 258, 259

theory, 204
axiomatizable, 204,216,217
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complete, 208

consistent, 204, 205
extends another theory, 204
undecidable, 205

Thue, Axel, 328

Tillyard, EM.W., 107

me

can compute in, 131, 140, 260, 266

infinity of space replaced by infinity of
time, 311

in intuitionism, 241, 243, 247

total function, 124
ranscendence of mathematics, 258
transfinite number, 49, 50, 121, 262, 281

See also ordinal; set, transfinite

trisecting the angle, 64
Troelstra, A.S., 249, 256,272
true wif(s)

collection of,
not axiomatizable, 207
not definable, 210

reduced to a formal system, 172,210

of a model, 44,58, 184

of the natural numbers, 177
necessarily, 241

theorems of Q are, 182, 185
unprovable, 172,207, 211

See also formally undecidable sentence

ruth, 9, 155

arithmetical, 10, 12, 182, 206, 207, 210
decidability of, 172
definability of, 210
derivable, 241
empirical, 13
evidence for, 35
mathematical — as inference, 282ff
necessary, 277,282,294, 303
paradoxes related to, 3, 4
See also Liar paradox
provability vs., 12,218, 246,256
See also provability

truth-table, 155-157
truth-value assignment, 157, 158, 160-161,
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Turing, Alan M., 72-75, 86,91, 127, 217,
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248,249, 325-326, 327
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Turing machine(s), 70, 75-76, Chapter 9,
Chapter 18, 325
calculates a function, 78, 79, 170
Church’s Thesis and, 230, 232
configuration of a, 77, 79
conventions for, 76
formalizes computability, 126, 127,
217
halting problem for, 83, 149, 269, 270
halts, 76
head of, 75
input for, 79
nature of natural numbers and, 269
numbering of, 83
operation of, 76
output of, 79
productivity of, 84
program for, 76,77
quadruple of, 76
recursive functions and, Chapter 18
representability and, 200
scanned square of, 75
square of tape of, 75
state of, 76
symbols for, 73-75, 76
universal, 149
Turing machine for
addition, 79-80
composition, 82, 186
constant function, 83
duplicating number of 1’s, 77
equality function, 83
exponentiation, 82
least search operator, 146
multiplication, 80-82
projections, 83
successor function, 79
writing n 1’s, 77
writing 2n 1’s, 78
zero function, 79
Turing machine computability
and partial recursiveness, 148
and representability, 200
Turing machine computable function, 79
Turing’s Test, 326
two-oneness, 243
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U, 172
unary notation, 19, 52, 67, 94, 175

See also successor function
undecidability

of Arithmetic, 206

of extensions of @, 205

of 0, 202

See also decidability
undecidable wif (proposition)
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formally, 207, 208,211, 216-218, 236
undefined on input, 124
uniformly primitive recursive functions, 99
Unique Readability Theorem, 165, 176-177
uniqueness of the natural numbers, 240,

263-266, 269, 270
universal computation predicate, 131-133
universal function for the p.r. functions,

128, 133, 138
universal quantifier, 172, 175

bounded, 100

See also quantifier(s)
universal Turing machine, 149
unprovable wff. See undecidable wff
unsolvability

degrees of, 138

See also name of particular problem,
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valid method of proof, 161

valid scheme, 161

valid wff, 157
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decision procedure for, 159-160
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